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ABSTRACT

We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude
longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a
dipped part with hot coronal regions on either side. We have found the normal modes of the system and establish that
the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate
curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring
force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation
frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the
normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed
large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly
influenced by the curvature of the dips of the magnetic field in which the threads reside.
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1. INTRODUCTION

Large-amplitude longitudinal (LAL) oscillations in promi-
nences were first reported by Jing et al. (2003); since then, only
few additional reports of these motions have appeared (Jing et al.
2006; Vršnak et al. 2007; Zhang et al. 2012). These oscillations
produce motions along the magnetic field, have long periods of
50–160 minutes, and are damped in 2.3–6.2 cycles, with high-
velocity amplitudes in the range 30–100 km s−1. LAL oscilla-
tions are apparently triggered by an energetic event: a sub-flare,
a microflare, or a flare close to the filament.

Several models have been proposed to explain the restoring
force and damping mechanism of the LAL oscillations (see
review by Tripathi et al. 2009 and Arregui et al. 2012), but most
do not successfully describe the thread motions. Recently, we
studied the oscillations of threads forming the basic components
of a prominence (Luna & Karpen 2012) in a three-dimensional
sheared arcade (DeVore et al. 2005; Luna et al. 2012). We found
that the restoring force is mainly the gravity and the pressure
forces are small. This type of oscillation resembles the motion of
a gravity-driven pendulum, where the frequency only depends
on the solar gravity and the flux-tube dip curvature. We estimated
the minimum value of the magnetic field at the tube dips and
found agreement with previous estimates and observed values.
Additionally, this study revealed a new method for measuring
the radius of curvature of the filament dips. Zhang et al. (2012)
observed and analyzed an oscillating prominence and found
that the motion is produced along a dipped magnetic field, in
agreement with Luna & Karpen (2012). These studies reveal that
the LAL oscillations are strongly related to the filament-channel
geometry.

The filament-channel structure is not well understood and
several models have been suggested. The sheared arcade and the
flux rope models are the most successful candidates explaining
most of the observational evidence (see the review by Mackay

et al. 2010). In these models the magnetic structure is static and
independent of the prominence evolution because the plasma-β
is small, and the structure has dips where the cool prominence
resides. Because of the low plasma β, however, most models
agree that these dips are not caused by weight of the prominence.
The prominence mass forms in the dipped part of the magnetic
field because it is a gravity potential well where evaporated mass
plasma condense and collect (Antiochos et al. 1999; Karpen
et al. 2003). There is also direct observational evidence from
polarimetric inversions of the dipped magnetic structure of the
filaments (López Ariste et al. 2006; Xu et al. 2012). In these
models the curvature in the dips is large and the LAL oscillations
could be strongly influenced by these geometries. In contrast,
where the magnetic field is slightly curved by the prominence
weight, the curvature effects on the oscillations are negligible
(Oliver et al. 1992, 1993; Oliver & Ballester 1995; Terradas
et al. 2001).

In our previous study of LAL oscillations, we assumed the
threads to be solid masses moving in curved flux tubes without
interaction with the surrounding hot plasma. In this work we use
a full wave description of the oscillation, expanding our previous
investigations. We focus on the restoring forces of the LAL
oscillations and the influence of the curvature of the filament
magnetic fields in different tube geometries, and compare
the resulting thread motions with observed LAL oscillations
properties.

2. FLUX TUBES WITH CURVATURE

In this work we assume that the plasma is low-β and confined
with static magnetic field. In this regime the plasma motion
is described with Equations (1)–(4) of Karpen et al. (2005).
We additionally consider that the system is adiabatic, with no
heating and radiation, and the tubes have a uniform width. Thus,
the terms associated with the energy loss and gains, and the area
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Figure 1. Sketch of the configurations considered in this study, differentiated by
the shape of the flux tube in the hot plasma region. The upper sketch corresponds
to Model 1, the middle sketch to Model 2, and the lower sketch to the M-shaped
Model 3. The length of the flux tubes is 2L, the length of thread is 2l, and the
dipped part of the tube has a length 2d in Model 3.

(A color version of this figure is available in the online journal.)

expansion, can be neglected. We linearize this set of equations
to obtain the equations for the perturbed quantities

∂ρ1

∂t
+ v

∂ρ0

∂s
+ ρ0

∂v

∂s
= 0, (1)

ρ0
∂v

∂t
+
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∂s
− ρ1g‖ = 0, (2)

∂p1
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+ v

∂p0

∂s
+ γp0

∂v

∂s
= 0, (3)

where the “0” index means the equilibrium quantity that depends
on the coordinate s, the “1” index means the perturbed quantity,
v is the perturbed velocity (a zero background velocity is
considered), and g‖ is the gravity projected along the flux tube.
Additionally, the plasma is in hydrostatic equilibrium:

∂p0

∂s
= ρ0g‖. (4)

Combining Equations (1)–(4) we obtain the equation for the
velocity perturbation:

∂2v

∂t2
− c2

s

∂2v
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= γg‖

∂v

∂s
+ v

∂g‖
∂s

, (5)

where cs = cs(s) = γp0(s)/ρ0(s). This equation is similar
to Equation (7.30) of Goedbloed & Poedts (2004) assuming a
displacement constrained along the flux tube.

We model the filament flux-tube geometry as composed of
up to three curved segments (see Figure 1). These segments
are contained in a vertical plane with the center of curvature
located above or below the tube for concave-up or concave-down
segments, respectively. Each segment has a constant radius of
curvature R. The radius of curvature is positive for a concave-up
segment and negative for a concave-down segment. With these
considerations on each segment of the tube, Equation (5) is
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∂t2
− c2

s

∂2v

∂s2
= −γg0 sin θ

∂v

∂s
− v

g0 cos θ

R
, (6)

where 1/R = ∂θ/∂s defining θ = s/R. Assuming now that
the radius of curvature R is sufficiently large to fulfill the
condition |s/R| � 1, the θ angle takes small values in all the
positions of the tube. Thus considering linear approximations
of the sinusoidal functions (sin θ = θ and cos θ = 1), then
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− c2

s

∂2v

∂s2
+

γg0s

R
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+ v

g0

R
= 0. (7)

This equation reduces to Equation (8) of Dı́az & Roberts
(2006) for a low-β plasma when curvature is negligible (i.e.,
R → ∞). Hence, for a straight tube the equation describing the
perturbations is simply

∂2v

∂t2
− c2

s

∂2v

∂s2
= 0. (8)

We consider solutions for which the time dependence is a
simple harmonic oscillation with frequency ω and the veloc-
ity perturbation takes the form v(s)e−iωt . Thus Equation (7)
becomes

c2
s

∂2v

∂s2
− γg0s

R

∂v

∂s
+

(
ω2 − g0

R

)
v = 0. (9)

This equation describes the oscillatory motion of a plasma
embedded in a curved tube with constant curvature in hydrostatic
equilibrium.

2.1. Isothermal Plasma Flux-tube Segments

Solving Equation (9) is complicated because the sound
velocity depends on the position along the tube, i.e., cs = cs(s).
However, if we assume that the segments of the tube are
isothermal, the sound velocity is uniform on each segment, i.e.,
cs �= cs(s). Thus, we can perform a linear change of variable
defined by

r = s

(
γg0

2c2
s R

)1/2

, (10)

and Equation (9) becomes

∂2v

∂r2
− 2r

∂v

∂r
+

2

γ

(
Rω2

g0
− 1

)
v = 0. (11)

We consider that the plasma within the flux tubes of the
filament is distributed in three isothermal regions. The thread
consists of cool plasma centered at the dip with an uniform
sound speed, csp. The remaining thermal regions are the hot
coronal plasma filling the tube from both ends of the thread to
the footpoints, with a uniform sound speed, csc. In this work
we ignore the small transition region from the cool prominence
thread to the coronal hot plasma (the so-called PCTR) at both
ends of the thread. This region is thin in comparison with the
thread length, and the influence on the thread oscillations may
be small, so we leave the incorporation of this region for a future
study. We note that both the equilibrium density and pressure
depend on s, despite having a uniform sound speed along each
flux-tube segment. In this situation, the density and pressure
decrease exponentially with height at a rate given by the pressure
scale height. For a typical hot coronal plasma, the pressure scale
height is a few tens of Mm. However, for a typical prominence it
is about 0.2 Mm. Therefore, the pressure and density are roughly
uniform in the coronal parts of our low-lying flux tubes, whereas
they vary rapidly along the curved thread.

Equation (11) governs the plasma motion on each part of
the piecewise flux tube with uniform temperature and R. This
equation is a second-order ordinary equation with a irregular
singular point at infinity, so its solution can be expressed as
a combination of two regular linearly independent functions
at each point (except at infinity). The general solution can be
written in terms of confluent hypergeometric functions (CHFs)
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M(a, b; x) (see Abramowitz & Stegun 1972) as

v(r) = A1 M
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4
,

1

2
; r2

)

+ A2 r M

(
−λ − 2

4
,

3

2
; r2

)
, (12)

with A1 and A2 being two arbitrary constants and

λ = 2

γ

(
Rω2

g0
− 1

)
. (13)

This solution can be expressed in terms of the well-known
Hermite polynomials if λ = 2n, with n being an integer, but even
in this case there is a second regular solution, which cannot be
discarded. Hence, it is suitable to work directly with the general
solution in terms of CHFs (Equation (12)).

Regarding the symmetry at r = 0, the CHFs have the
following property at the origin:

M (a, b, 0) = 1, (14)

so we obtain a symmetric function by setting A2 = 0 and an
antisymmetric one by setting A1 = 0.

In this work we use three flux-tube models to investigate the
influence of the hot region on the motion of the cool plasma. The
cool thread is clearly located in a concave-up field depression
or dip as shown in our earlier study (Luna et al. 2012). Model 1
is the simplest: a tube with straight hot regions connecting to
the chromosphere (see upper sketch of Figure 1). Model 2 is
a tube that is concave-up in all domains (see middle sketch of
Figure 1(b)). Finally, Model 3 has the most complex geometry
considered in this work, as shown in the bottom sketch of
Figure 1: a dipped part containing a central cool thread and two
hot plasma regions at both sides, connected with two concave-
down segments forming the legs of an M-shaped tube.

2.2. Boundary Conditions

The solutions of each region of our piecewise flux-tube
model must be joined by the boundary conditions. The resulting
solutions are the normal modes. To solve this problem we
need two types of boundary conditions: line tying at the
chromospheric footpoints of the tube (located at s = ±L, with
2L being the length of the supporting magnetic flux tube) and
jump conditions at the plasma interfaces. We adopt the simplest
possible conditions at the footpoints: a line-tied rigid wall with
no flow (Hood 1986; van der Linden et al. 1994; Dı́az et al.
2004), namely,

v(±L) = 0. (15)

Since the chromosphere is much denser than the corona, it
behaves as a purely reflecting layer. This condition is appropriate
mainly because there is not enough energy in the perturbations
carried by the coronal material to drive important motions in
the chromosphere. Moreover, this simple condition completely
decouples the coronal and the photospheric plasmas (so the
dynamics of the photospheric plasma are not taken into account),
although we plan to address more advanced “flow-through”
conditions and coupling with the chromosphere in future works.

The second set of boundary conditions is prescribed at the in-
terface between the cool and hot plasmas, located at s = l, with
2l being the length of the dense thread. We need to carefully
deduce these boundary conditions. Following Chandrasekhar

Figure 2. Symmetric (solid lines) and antisymmetric (dashed lines) normalized
solutions of Equation (12) for the values λ = 0 (black), λ = 0.3 (red), λ = 10
(green), and λ = 40 (blue) for a thread of half-length l = 5 Mm, R = 75 Mm,
and csp = 20 km s−1.

(A color version of this figure is available in the online journal.)

(1961) we integrate the differential equations (1)–(3) across the
boundary (from s = l − a to s = l + a) and let a → 0. The
integral of any variable that does not have an infinite jump be-
comes zero in that limit. First, integrating the hydrostatic equi-
librium (Equation (4)) we obtain [p0] = 0 with the commonly
used notation [a] = a2 − a1 for the jump between mediums 1
and 2. Therefore, the equilibrium pressure is continuous at the
boundary. Similarly, from Equations (1)–(3) the two boundary
conditions for the velocity are

[v]s=l = 0,

[
dv

ds

]
s=l

= 0. (16)

Thus, including gravity does not affect the jump conditions, in
agreement with Dı́az et al. (2004) and Dı́az & Roberts (2006).

3. UNCOUPLED THREAD

In a first approximation we consider the oscillation of the
thread alone, assuming that the hot plasma filling the rest of
the tube is irrelevant to the dynamics of the prominence. This
assumption is justified by our previous work (Luna & Karpen
2012), in which we found that the dynamics of the threads
are basically governed by the gravity, and the interaction with
the ambient hot plasma is small. In this situation the boundary
conditions of Equation (16) are not applicable. We assume that
the thread moves freely and thus the boundaries at s = ±l are
open. The motion of the thread is described by Equation (12);
the A1, A2, and λ parameters can be chosen freely because there
is no constraining condition.

In Figure 2, we have plotted different symmetric and anti-
symmetric solutions of Equation (12) along the thread, |s| � l,
for different λ values. For a symmetric solution and λ = 0 the
whole thread moves as a rigid body with an uniform velocity.
For a small value (λ = 0.3) the symmetric velocity distribu-
tion differs only slightly from the uniform case: The velocity
at the ends of the thread is slightly smaller than in the center.
For λ = 10, the velocity clearly is not uniform but still positive.
For λ = 40, the motion is more complex, however, with the
thread ends moving out of phase with respect to the center of
the thread. Hence, the λ parameter gives the spatial coherence
of the velocity in the thread. For small λ, the spatial coherence
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is high, with a uniform velocity distribution, whereas for larger
values the spatial coherence is small with steep velocity gradi-
ents along the thread. For antisymmetric solutions and λ = 0,
both ends of the threads move in opposite directions, compress-
ing and rarefying the thread plasma, whereas the center remains
at rest. For λ = 0.3, the antisymmetric solution is slightly dif-
ferent, whereas the solution is more complicated for λ = 10 and
40.

The general solution is a superposition of these modes, where
the exact combination depends on the initial conditions. One
special case is worth studying carefully: an exact rigid-body
perturbation in which the whole thread is shifted from the initial
equilibrium position. In this case the solution is symmetric and
the spatial coherence parameter is λ = 0. Thus the frequency of
the oscillation is

ωg =
(g0

R

)1/2
. (17)

This solution was described in Luna & Karpen (2012,
Equation (4)) and predicts the thread oscillating as a gravity-
driven pendulum. For a general initial perturbation A0(s, t = 0),
this solution is no longer valid and Equation (7) must be solved
instead.

4. CURVED THREAD WITH A STRAIGHT FIELD
IN THE HOT PLASMA REGION

We consider now Model 1, where the thread is located in
the center of the flux-tube dip and the remainder of the flux
tube is straight and filled with hot coronal plasma (upper sketch
of Figure 1). The solution to this piecewise model is given
by Equation (12) in the dense region and Equation (8) with
g0/R → 0 in the evacuated region, namely,

v(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1 M
(
− λ

4 , 1
2 ; r2

p

)
+ B2 rp M

(
− λ−2

4 , 3
2 ; r2

p

)
, 0 < s < l,

D1 sin
{

ω
csc

(L − s)
}

, l < s < L.

(18)

We have ensured that the line-tying boundary condition
(Equation (15)) is enforced by choosing only the sine func-
tion in the hot region. Using the series expansion for the CHF,
it can be proved that

lim
g0/R→0

M

(
g0/R − ω2

2γg0/R
,

1

2
; s2 γg0

2c2
spR

)
= cos

ωs

csp
, (19)

so we recover the fully straightened case with very large R
studied in Dı́az et al. (2002, 2010).

Next, we apply the boundary conditions (Equation (16)) at the
interface between the cool and hot plasma at s = ±l. We obtain
the following dispersion relation for the symmetric normal
modes (symmetric with respect to s = 0) after eliminating
the amplitude constants B1 and D1, and considering B2 = 0:

− ω

csc
cotg

[
ω

csc
(L − l)

]
= − lg0

c2
spR

(
ω2R

g0
− 1

)

×
M

(
1 + 1

2γ
− ω2R

2γg0
, 3

2 ; γg0l
2

2Rc2
sp

)
M

(
1

2γ
− ω2R

2γg0
, 1

2 ; γg0l2

2Rc2
sp

) . (20)

We define a new set of dimensionless variables as

Ω = ω

ωg
, W = l

L
, Φ = ωgL

csc

, χ = c2
sc

c2
sp

. (21)

Figure 3. Symmetric (solid lines) and antisymmetric (dashed lines) normal
modes for Model 1 as a function of the radius of curvature R of the dip.
The fundamental mode is plotted with a thick solid line. The gravity-driven
frequency, ωg, defined by Equation (17) (dot-dashed line), and the pressure-
driven frequency, ωs, of Equation (26) (three dot dashed line), are also plotted.
Additionally, the approximate fundamental frequency of Equation (27) is shown
(dotted line). The half-length of the tube is set to L = 100 Mm, the thread half-
length l = 5 Mm, the coronal sound speed csc = 200 km s−1, and the contrast
χ = 100.

With these definitions the dispersion relation takes the form

Ω cotg [ΩΦ(1 − W )] = χWΦ(Ω2 − 1)

×
M

(
1 + 1

2γ
− Ω2

2γ
, 3

2 ; χγW 2Φ2

2

)
M

(
1

2γ
− Ω2

2γ
, 1

2 ; χγW 2Φ2

2

) . (22)

The parameter χ is usually called density contrast when the
density and pressure are assumed uniform in each segment
along the tube. However, in this work we consider nonuniform
densities and pressures. The variable χ is equal to the density
contrast only at the interface s = l because the pressure must be
continuous across the thread–corona interface (see Section 2.2).
Thus, χ = ρp(l)/ρc(l) and we call this parameter the contrast
or density contrast hereafter.

Similarly, we obtain the dispersion relation for the antisym-
metric modes by eliminating the amplitude constants B2 and D1,
and considering B1 = 0,

Ω cotg [ΩΦ(1 − W )] = 1

WΦ
+

χWΦ
3

(γ + 1 − Ω2)

×
M

(
3
2 + 1−Ω2

2γ
, 5

2 ; χγW 2Φ2

2

)
M

(
1
2 + 1−Ω2

2γ
, 3

2 ; χγW 2Φ2

2

) , (23)

in terms of the dimensionless variables of Equation (21).
In Figure 3, we have plotted the fundamental mode and

several overtones of the dispersion relations (Equations (22)
and (23)) as a function of the dip radius of curvature R.
The fundamental mode (solid line) decreases with R, clearly
indicating that the fundamental mode is affected by the dip
curvature. In contrast, the frequencies of the overtones are
independent of R, indicating that these overtones are purely
sound-like or pressure-driven modes. We have also plotted the
curve ω = ωg (or equivalently Ω = 1), which corresponds
to the case where the restoring force of the thread oscillation is
exclusively the gravity projected along the tube (Luna & Karpen
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Figure 4. Normalized velocity along the flux tube, v (s), for the fundamental
mode (solid line), the first antisymmetric overtone (dashed line), and the
first symmetric overtone (dot-dashed lines). The flux-tube half-length is L =
100 Mm, the thread half-length is l = 5 Mm, dip radius of R = 75 Mm, coronal
sound speed csc = 200 km s−1, and contrast χ = 100.

2012). We see that the fundamental mode is very similar to the
gravity-driven oscillation ω ≈ ωg for small values of R. For
an intermediate radius of curvature, R = 200 Mm, the gravity-
driven approximation differs by 18% with respect to the exact
solution and by 38% for a relatively large radius R = 600 Mm.
Therefore, the approximation ω ≈ ωg is good for small and
intermediate values of R. The increasing deviation from the
purely gravity-driven case indicates that the pressure force
has some influence for intermediate values of R and becomes
important for large radii.

The argument in the CHFs of the symmetric dispersion
relation (Equation (22)) is small (χγW 2Φ2/2 � 1) for the
values of the parameters considered here. Additionally, ΩΦ =
ωL/csc < 1 for the fundamental mode. Thus, we expand the
dispersion relation and obtain

Ω2 = 1 +
1

W (1 − W ) χ Φ2
. (24)

Substituting the dimensional variables (Equation (21)) yields an
approximate expression for the fundamental mode:

ω2
fund = g0

R
+

c2
sc

l (L − l) χ
. (25)

The fundamental frequency has two contributions: the gravity-
driven frequency ωg and the pressure-driven slow oscillation
frequency

ωs =
√

c2
sc

l (L − l) χ
. (26)

Now Equation (25) can be written as

ω2
fund = ω2

g + ω2
s . (27)

Figure 3 exhibits a perfect match between the approximate ex-
pression and the exact values of the fundamental mode frequen-
cies for a range of R values. The ωg and ωs terms are identical at
R ≈ 330 Mm, while for larger values of R the major contribu-
tion to the restoring forces is the pressure gradient. However, the
fundamental mode differs significantly from ωs, except at huge
values of R. Oliver et al. (1993) and Oliver & Ballester (1995)

Figure 5. Same as Figure 3 for the symmetric (solid lines) and antisymmetric
(dashed lines) normal modes for Model 1 as a function of the density contrast
χ at the interface between the cool and hot plasma. The fundamental mode is
plotted with a thick solid line. The half-length of the tube is set to L = 100 Mm,
the thread half-length l = 5 Mm, a coronal sound speed csc = 200 km s−1, and
the radius of curvature R = 75 Mm.

studied the oscillation modes of a slab in a Kippenhahn–Schlüter
magnetic configuration with a very slight curvature. They con-
cluded that the forces responsible for the slow modes are the
pressure gradients, and the frequency of the fundamental mode
is well described by ωs , consistent with the present result.

Similarly to the symmetric case we find an approximate
expression for the frequency of the first overtone. In the range of
small l and large R the term WΦ is small in the antisymmetric
dispersion relation (Equation (23)). The only way to balance
the first term of the right-hand side of the equation is for the
argument of the cotangent function to be near the first asymptote;
then

Ω ≈ π

(1 − W )Φ
. (28)

In dimensional variables this equation is simply

ω = πcsc

L − l
, (29)

which is the frequency of a standing wave trapped in one of the
hot sections of the tube with wavelength 2(L − l). In Figure 3,
we see that the frequency is more or less independent of R.

In Figure 4, the velocity perturbations of the first three normal
modes are shown. In the fundamental mode the maximum
velocity is centered within the thread and the thread speed is
quite uniform, indicating that motion resembles the motion of
a solid body. In the coronal part the velocity reduces to zero
at the footpoints as dictated by the boundary conditions. The
first overtone is an antisymmetric mode with a node (v = 0)
at the center of the tube. In this mode the motion consists of
compressions and rarefactions of the cool plasma with no net
displacement of the thread. The second overtone has a node
at each thread end, so the motion of the plasma is complex in
this mode. All overtones reach their maximum velocities in the
coronal parts of the tube.

The frequencies of the symmetric and antisymmetric normal
modes as a function of the contrast χ are shown in Figure 5.
The fundamental mode rapidly reaches a constant value for
increasing values of χ , reflecting a weak dependence on the
contrast. The frequency of the approximation ωfund is very
similar to the fundamental mode. For relatively large values
of the contrast, the match between both curves is very good.
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Figure 6. Same as Figure 3 for the frequency of the fundamental mode as a
function of R, for Model 1 (dotted line), Model 2 (solid line), and Model 3
(dashed line). In Model 3 we have considered a dip half-length d = 20 Mm and
a radius of curvature of the legs R2 = −100 Mm.

The frequency ωs is inversely proportional to χ and thus rapidly
goes to zero (triple-dot-dashed line in Figure 5), so the main
contribution to the fundamental mode (Equation (27)) comes
from the gravity term ωg . Then, for sufficiently large values
of χ , the oscillation of the thread decouples from the hot
plasma and is governed by the gravity forces as shown in
Section 3. The frequencies of the overtones have also a complex
dependence on χ , with avoided crossings between modes. These
avoided crossings are similar to those found in Dı́az et al.
(2002) and Dı́az & Roberts (2006), and have the same origin:
two modes cannot have the same frequency, since it would
violate the conditions in a Stürm–Liouville problem such as our
Equation (11). Furthermore, the modes can have extrema in the
prominence region and the hot region, and an avoided crossing
occurs when the amplitude of the extrema in the prominence
region changes from being small (such as the first overtone in
Figure 4) to being larger than the amplitude in the hot region.

5. INFLUENCE OF CURVATURE IN THE HOT REGIONS

We consider next the effects of curvature in the hot parts of
the tube, which were assumed to be straight in the previous
section. Two different cases are discussed.

5.1. Model 2: Concave-up Field in the Hot Region

We consider a tube with constant curvature in the entire
domain (see the middle sketch of Figure 1). We assume that
isothermal cool plasma occupies the region |s| � l, while the
rest of the tube is filled with isothermal hot plasma. In this
model we have the limitation that |R| 	 L in order to satisfy
the small-angle approximation |s/R| � 1 (see Section 2). Thus,
we can only consider the range of large curvature radii. As in
the previous section (Section 4), we have found the dispersion
relation for the normal modes of this model. Figure 6 shows
that the fundamental frequency is essentially identical to that of
Model 1. The frequencies and spatial distribution of the velocity
obtained with both symmetric and antisymmetric dispersion
relations are very similar to the corresponding solutions of
Model 1 (Section 4) for all values of R, L, χ , and l. For this
reason we do not show the dispersion relations for Model 2.

5.2. Model 3: M-shaped Flux Tube

Finally, we consider a more realistic model composed of three
different regions (see the bottom sketch of Figure 1). The dipped
part is equivalent to Model 2, with the cool and dense thread of
length 2d centered and filling a portion 2l, and the remaining
portion of the dip is filled with hot rarefied plasma. This dipped
part is connected to the chromosphere by two concave-down
segments filled with hot plasma. The resulting flux tube has an
“M” shape, similar to the thread-bearing flux tubes identified by
Luna et al. (2012).

The new feature of this M-shaped tube is the concave-down
region, where the radius of curvature is negative. Thus, in this
region the linear substitution in Equation (10) must be replaced
by

r = s

( −γg0

2c2
s R2

)1/2

, (30)

with R2 < 0, the radius of curvature of the concave-down region.
With this new definition Equation (9) becomes

∂2v

∂r2
+ 2r

∂v

∂r
− 2

γ

(
R2ω

2

g0
− 1

)
v = 0. (31)

The solution of this equation can be written again in terms of
CHFs as

v(r) = A1e
−r2

M

(
2 + λ

4
,

1

2
; r2

)

+ A2e
−r2

r M

(
4 + λ

4
,

3

2
; r2

)
. (32)

This functional form must be used for d < |s| � L, while for
|s| � d, Equation (12) is still valid. Using the boundary condi-
tions to match the solutions at s = l, s = d (Equation (16)) and
the line-tying boundary condition at s = L (Equation (15)), we
obtain a very cumbersome dispersion relation, which involves
products of five CHFs. For this reason, this dispersion relation
is not shown in here.

Figure 6 shows that the fundamental frequency for Model 3 is
very similar to that of Model 1. In this figure we have considered
a radius of curvature in the flux-tube legs of |R2| = 100 Mm
(note that this is the smallest possible value allowed by the
small-angle condition, |R2| > L). For larger values of |R2| the
difference between the frequencies of Models 1 and 3 are even
smaller, and zero when |R2| → ∞. We have also studied the
dependence of the frequencies on the other parameters of the
system and found identical results.

6. THE RESTORING FORCE

In our theoretical model of prominence oscillation there are
two restoring forces: the gas pressure and the gravity. Their
relative importance is determined by the ratio

ω2
s

ω2
g

= Rc2
sc

l(L − l)χg0
= R

Rlim
, (33)

where Rlim = l(L− l)χg0/c
2
sc is a reference radius of curvature

determined by measurable filament properties. The restoring
force of the LAL oscillation is mainly the solar gravity when
this ratio is small, i.e., R � Rlim. In contrast, the oscillation
is pressure driven for a large value of the ratio or R 	 Rlim.
With the data shown in Figure 3, we find that Rlim = 325 Mm,
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so for smaller radii of curvature the gravity is the restoring
force. The length of the threads and density contrast have a
wide range of measured or estimated values (see, e.g., Labrosse
et al. 2010; Mackay et al. 2010). Considering larger values of
the thread length and contrast of l = 10 Mm and χ = 200, we
find Rlim = 1200 Mm, indicating that the gravity dominates
even for almost flat tubes. Zhang et al. (2012) studied the
observed longitudinal oscillations of a prominence and found
a small radius of curvature less than 100 Mm. Therefore, the
restoring force is certainly the gravity, as we would expect in
those structures. Additionally, the relative importance of the
two restoring forces also depends on the geometrical parameter
R/L (Equation (33)), which can be determined from the global
geometry of the filament magnetic structure. For the deep-dip
flux tubes of a double sheared arcade (DeVore et al. 2005), this
factor is always R/L < 1 (Luna et al. 2012).

In Section 3, we discussed that the spatial coherence of
the motion of the thread is determined by λ. Combining
Equation (13) with Equation (27), we find that in Models 1
to 3

λ = 2

γ

ω2
s

ω2
g

. (34)

Thus, the relative importance of the pressure and gravity forces
determines the way the thread moves. For a gravity-driven
oscillation λ = 0, the thread basically moves almost as a
solid body; however, for a pressure-driven motion the thread
compresses and rarefies, changing its shape in the oscillation.
For the reference values of Figure 3 and a radius of 75 Mm, the
coherence parameter is λ = 0.3. The velocity profile for this
parameter value plotted in Figure 2, is quite flat in the thread,
indicating that the motion is very similar to the displacement of
a rigid solid body.

7. DISCUSSION AND CONCLUSIONS

In this work we have studied the influence of the curvature
on the longitudinal oscillations of a prominence. We have
considered three different models in which the region where
the thread resides is modeled as a tube segment with uniform
curvature R. The differences between the three models are in the
hot regions of the tubes. We have found that the frequency of the
fundamental mode is dependent on R and can be approximated
by ω2

fund = ω2
g + ω2

s , where ωg and ωs are the frequencies of
the gravity-driven pendulum and the fundamental slow mode of
a straight tube, respectively. For small and intermediate R the
frequency is very close to ωg. We modeled a prominence with
realistic dimensions and found that most of the filament flux
tubes have dips with a radius of curvature around 75 Mm (Luna
et al. 2012; Luna & Karpen 2012). We also inferred the radius
of curvature from the oscillation periods reported by Jing et al.
(2003) and Vršnak et al. (2007), and found 152 Mm and 62 Mm,
respectively. Zhang et al. (2012) observationally determined the
radius of filament-dip curvatures to be less than 100 Mm. Thus,
the observations and theoretical models are consistent with this
range of small and intermediate R. For larger radii the pressure
force becomes more important and the fundamental frequency
differs from ωg. The frequencies of the overtones are basically
independent of the curvature of the tube, consistent with the
slow nature of these modes.

The fundamental mode is also weakly dependent on the
density contrast, χ , for small contrast, but as χ increases
the fundamental mode rapidly reaches a constant value that
coincides with ωfund or ωg (note that ωfund ≈ ωg because
ωs is very small for relatively large contrast). Therefore, the
oscillation of the thread decouples from the environment for
relatively larger values of the contrast, and the thread oscillates
with the frequency ωg. Observational estimates of prominence
densities give a broad range of possible χ values, but typically
the density contrast is 100 or larger (see review by Labrosse et al.
2010). Therefore, the threads are in the range of large density
contrasts. The overtones depend on χ , indicating the sound-like
nature of these modes. The spatial velocity distribution of the
fundamental mode along the tube is symmetric with respect to
the tube center; although the maximum is located at the thread
center, the velocity in the thread is more or less uniform. In
the fundamental mode the motion is mainly concentrated in
the thread. The overtones produce complex compression and
rarefaction motions with small or zero net displacements of the
thread.

In Models 2 and 3, with curved hot regions, the frequencies
and the spatial distribution are very similar to the corresponding
values for Model 1. We conclude, therefore, that the shape of the
hot regions is irrelevant to the longitudinal oscillation, and that
using a straight field-line approximation in these regions gives
results that are accurate enough and much easier to compute.
Hence, the approximation given in Equation (27) is quite robust,
despite only being truly valid for Model 1. The sound speed in
the corona is very high, and the contribution of the first term
in Equation (7) is larger than terms involving curvature. Thus,
the resulting motion in the coronal parts of the flux tube is well
described by Equation (8).

The relative importance of the pressure and gravity forces is
determined by the geometry of the dipped part of the filament
flux tubes. We found that the oscillation is gravity driven when
R � Rlim, where Rlim is determined by the properties of the
filament flux tubes and the cool thread. For typical prominences
Rlim is much larger than the radius of curvature of filament
models or observationally inferred values.

We conclude that the longitudinal oscillations of a promi-
nence are strongly influenced by the curvature of the dipped
magnetic fields. In the fundamental mode the gravity domi-
nates for small and intermediate radius of curvature, consis-
tent with values in our multi-threaded prominence model (Luna
et al. 2012) and with the values derived from observed oscil-
lations. Similarly, for relatively large density contrast between
the prominence and the corona the main restoring force is also
the gravity. Thus, the frequency of the LAL oscillations is given
by ωg = √

g0/R, and the pressure forces introduce only a small
correction, showing that the LAL oscillations are not pure slow
modes. This demonstrates that the ωg expression is robust and
can be used for seismology of prominences, as we showed in
Luna & Karpen (2012).

In this work we have not studied the damping of the observed
LAL oscillations. In Luna & Karpen (2012) we found that the
damping is associated with mass accretion onto the threads and
nonadiabatic effects. The former produces strong damping at
the beginning of the oscillation, and the latter yields a weak
damping throughout the oscillation. In order to have a full
and self-consistent model of prominence oscillations, we must
perform a nonlinear study, including the temporal variation of
the prominence mass and the nonadiabatic effects. This will be
the subject of a future work.
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