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[1] When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a
site of magnetic reconnection, it is desirable to be able to accurately determine the
orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are
three key directions, the direction of maximum inhomogeneity (the direction across the
reconnection site), the direction of the reconnecting component of the magnetic field, and
the direction of rough invariance (the “out of plane” direction). Using simulated spacecraft
observations of magnetic reconnection in the geomagnetic tail, we extend our previous
tests of the direction-finding method developed by Shi et al. (2005) and the method to
determine the structure velocity relative to the spacecraft Vstr. These methods require data
from four proximate spacecraft. We add artificial noise and calibration errors to the
simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed
time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are
examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation
without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a
two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent
minimum gradient was not exactly zero, even without added artificial errors. We also
examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of
the directions found varied depending on the simulation and spacecraft trajectory, but all
the directions could be found within about 10� for all cases. Various aspects of the method
were examined, including how to choose averaging intervals and the best intervals for
determining the directions and velocity. For the kinetic simulation, we also investigated in
detail how the errors in the inferred gradient directions from the unmodified Shi et al. method
(using the unperturbed gradient) depended on the amplitude of the calibration errors. For
an accuracy of 3� for the maximum gradient direction, the calibration errors could be as
large as 3% of reconnection magnetic field, while for the same accuracy for the minimum
gradient direction, the calibration errors could only be as large as 0.03% of the reconnection
magnetic field. These results suggest that the maximum gradient direction can normally be
determined by the unmodified Shi et al. method, while the modified method or some other
method must be used to accurately determine the minimum gradient direction. The structure
velocity was found with magnitude accurate to 2% and direction accurate to within 5%.
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1. Introduction

[2] One of the major goals of magnetospheric spacecraft
observations is to investigate spatial structures such as sites of
magnetic reconnection. The starting point for such investi-
gations is to determine the orientation of the structure relative
to the spacecraft. While there has been considerable research
on methods to determine the direction across a one dimen-
sional discontinuity from spacecraft observations [Sonnerup
et al., 2006, and references therein; see also Mozer and
Retinò, 2007], there has been less research on methods to
determine the orientation of two-dimensional structures. In
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this paper, we will consider “quasi-two dimensional” recon-
nection, as illustrated in Figure 1. If a structure is quasi-two
dimensional, there will be a direction in which the variation
is significantly less than that of the other directions. We
call this the “invariant” or “out of plane” direction, recog-
nizing however that in a real three-dimensional system,
this invariance is only approximate. In the case of quasi-
two dimensional reconnection the equilibrium (large-scale)
gradients within the plane shown in the figure will be
much larger than the gradients out of the plane. The direction
of largest gradient in Figure 1 is across the current sheet,
i.e., the Z direction (ez) in the figure. The direction of inter-
mediate gradient is along the reconnecting magnetic field,
i.e., the X direction (ex) in the figure. The direction of
minimum gradient is the third (out-of-plane) direction, i.e.,
the Y direction (ey).
[3] Shi et al. [2005] developed a method to determine

three directions corresponding to maximum, intermediate,
and minimum values of the squared magnitude of the vector
magnetic field gradient. They called this technique “Mini-
mum Direction Derivative (or Difference)”, or MDD, anal-
ysis. This method requires field observations from four
closely spaced spacecraft in order to determine the gradient.
A potential advantage of this method is that it yields the
directions at each point in time, thus in principle allowing
changes in orientation of a structure to be monitored.
According to the method, the gradient of the magnetic field
is first calculated, and expressed as the matrix MrB, where
Mik

rB = ∂iBk, and ∂i is the spatial partial derivative in the i’th
direction. Then the symmetric matrix MG ≡ MrB ⋅ (MrB)T

is formed, where “T” indicates the transpose of the matrix.
The three eigenvalues of MG, lG�max, lG�int, and lG�min,
represent the maximum, intermediate, and minimum values
of the squared directional derivative (gradient), with the
eigenvectors eG�max, eG�int, and eG�min indicating the
corresponding directions. As Shi et al. [2005] explain, in
order for the structure to be roughly two-dimensional,
lG�min should be significantly less than the other two
eigenvalues. If lG�max ≫ lG�int, lG�min, the structure is
quasi-one-dimensional. If all the eigenvalues are

comparable, the structure is fully three-dimensional, and the
eigenvector directions may not be useful for our purposes.
Shen et al. [2003, 2007a, 2007b] used a similar approach
based on the gradient of the magnetic field direction b ≡ B/B
(see discussion by Denton et al. [2010]). Note that the Shi
et al. [2005, 2006] method has been used recently to inves-
tigate small-scale magnetic structures [Shi et al., 2009a] and
the cusp boundary [Shi et al., 2009b].
[4] Assuming time stationarity (∂/∂t = 0) in the frame of

the structure, Shi et al. [2006] went on to use dB/dt and

#

B,
observed by the four spacecraft to determine the velocity of
a structure relative to the spacecraft, Vstr = �Vsc, where Vsc

is the velocity of the spacecraft array relative to the structure,

dB

dt
¼ ∂B

∂t
þ Vsc⋅

#

B ¼ �Vstr⋅

#

B; ð1Þ

They called this technique “Spatio-temporal Difference”
analysis, which they abbreviated as STD.
[5] Denton et al. [2010] considered the effect of random

noise and calibration errors on the Shi et al. [2005, 2006]
methods. While the effect of noise errors could be elimi-
nated by averaging in time, calibration errors were a more
difficult problem to deal with because they systematically
contaminate calculation of the gradient

#

B [Denton et al.,
2010]. This is because the magnetic field measured by the
spacecraft is the sum of the real magnetic field and the con-
stant (with respect to time) calibration errors, and the gradient
of the calibration errors is constant and nonzero, leading to
systematic error in the apparent gradient.
[6] In order to eliminate the effect of calibration errors,

Denton et al. [2010] modified the Shi et al. [2005] method
by using the perturbed matrix

dMrB ≡MrB � MrB
� �

0
; ð2Þ

where 〈MrB〉0 is an average value of MrB (=

#

B) calcu-
lated within an interval typically centered on the time at
which MrB has its largest value. This is also the time of
largest eigenvalue of MG, since that eigenvalue is the square

Figure 1. Sketch of reconnection geometry in the magnetotail. The X point is at the origin of the X-Z (GSM)
coordinate system. At large |Z|, the reconnecting magnetic field is oriented in the X direction. Magnetic flux is
transported toward the X point from above and below with speed vin, and away from the X point to the right
and left with speed vout. The width d of the diffusion region (rectangular box), is less than its length L,
corresponding to greater gradient in the Z direction. The path of the centroid of the array of virtual spacecraft
is schematically represented by the path S. (The spacecraft separation is small on this scale.)
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of the amplitude of the largest value of

#

B [Denton et al.,
2010]. They then used dMrB for the analysis in the
same manner as Shi et al. [2005]. Subtracting off the
average value of MrB eliminates the effect of the calibration
errors, since these errors lead to a constant gradient. Denton
et al. then found the time average 〈dMG〉 of the time depen-
dent matrix dMG ≡ dMrB ⋅ (dMrB)T, where dMrB ≡MrB�
〈MrB〉0. The averaging interval used to calculate 〈dM

G〉may
be different from that used for 〈MrB〉0. Experience to date
indicates that it may be best to average 〈MrB〉0 near the
center of the current sheet where the gradient is large,
whereas the minimum gradient direction is sometimes best
found away from the current sheet [Denton et al., 2010].
Having averaged 〈dMG〉, we can then use the eigenvectors of
〈dMG〉 to get the gradient directions. By use of shifting
averages, slow changes in orientation can in principle still be
monitored, although this aspect is not pursued here.
[7] Denton et al. [2010] also modified (1) in order to

eliminate the effect of calibration errors. Using the average
of

#

B and the average of dB/dt (in the spacecraft frame)
over the same time interval, Vstr can be found from

d
dB

dt

� �
¼ �Vstr⋅d

#

Bð Þ; ð3Þ

where d(dB/dt) ≡ dB/dt� 〈dB/dt〉0, and d(

#

B) ≡

#

B� 〈

#

B〉0.
[8] Using simulated spacecraft observations from four

virtual spacecraft flown through an MHD simulation of
magnetic reconnection in the geomagnetic tail, Denton et al.
[2010] tested the direction-finding method [Shi et al., 2005]
and the method to determine the structure velocity [Shi et al.,
2006]. Employing the gradient calculated from the measured
vector magnetic field without calibration errors and noise,
they found that these quantities could be well determined.
They also showed that these quantities could be well deter-
mined even when calibration errors were added, provided
that the perturbed quantities were used in the calculations as
discussed above. They found that the angles were deter-
mined within about 3� and the magnitude of the structure
velocity within about 3%.
[9] While the results of Denton et al. [2010] are encour-

aging, there are limitations of the study that we address in this
paper. First, the results were derived entirely from a single
MHD simulation of reconnection in the magnetotail. We
now want to see if the method works for other simulations.
The simulation used by Denton et al. was for anti-parallel
reconnection (no component of the equilibrium magnetic
field in the out of plane eY direction). In the present paper, we
will test the method for another quasi-two dimensional, anti-
parallel MHD reconnection simulation, but we will also test
it using an MHD simulation with a guide field and a full
dynamics kinetic simulation.

2. Errors

[10] As discussed by Denton et al. [2010], in real space-
craft data there are two kinds of errors in magnetic field
measurements, digitization (noise) errors that randomly vary
with respect to time, and systematic calibration errors that
are constant or very slowly evolving with respect to time.
For each simulation, following Denton et al., we will add to
the virtual spacecraft measurements 0.01 nT time varying

noise errors and constant 0.1 nT calibration errors, both
randomly chosen for each component of the magnetic field.
(For calibration errors of this magnitude, the apparent value
of

#

⋅ B (from the trace of the Mik
rB matrix) is not signifi-

cantly affected, though it could be for larger calibration errors.)
We consider this a worst-case scenario. For Cluster, it is
sometimes possible to reduce the calibration errors in the
spacecraft spin plane using measurements by the Electron
Drift Instrument (EDI) [Georgescu et al., 2006]. For MMS,
it should be possible to reduce the relative (between space-
craft) calibration errors (which is crucial for calculating
the gradient), taking advantage of time periods for which the
magnetic field measured by each spacecraft should be the
same because the field is nearly uniform and the spacecraft
separation is small (R. Torbert, private communication,
2010). Reduction of the errors will make the calculations
more accurate. For the present paper, we will ignore errors
associated with calculation of the gradients; basically, the
spacecraft configuration needs to be roughly tetrahedral and
the scale length for spatial variation needs to be significantly
larger than the spacecraft separation in order for the gra-
dients to be calculated accurately.

3. Investigations

[11] Denton et al. [2010] considered a snapshot of the
MHD fields from a quasi-two-dimensional simulation of
reconnection [Birn and Hesse, 2009]. On the large scale
[Birn and Hesse, 2009, Figure 3], the structure was strongly
three dimensional, but at the central value of the simulation
(y = 0 [Birn and Hesse, 2009, Figure 3], where y is the cross
tail (GSM Y) coordinate), the simulation was approximately
two dimensional. That is, their By was small compared to the
lobe magnetic field and the cross-tail variation was weak
compared to the variation in their z (downstream tail coor-
dinate, GSM �X). Virtual (simulated) spacecraft were flown
across this snapshot (with a path schematically represented
by S in Figure 1) so that the only time dependence of the
recorded data was due to the motion of the spacecraft. (The
spacecraft velocity included components in all three direc-
tions including the quasi-two-dimensional “out-of-plane”
direction (y direction of Birn and Hesse).) This same method
will be used in this paper; that is, real time dependence will
not be considered. Therefore, the potential of the Shi et al.
method to recover slow time evolution of directions and
velocity will not be examined. Anomalous resistivity was
used in the region around the X point which was traversed
by the spacecraft. The reconnecting magnetic field (the X
component) was 20 nT and the proton density was of order
0.08 cm�3 in the current sheet, and 0.05 cm�3 in the
upstream (inflow) region. The plasma beta was small �10�3

to 10�2 in the inflow region, but large ≫1 at the current
sheet. This simulation had approximately zero guide field
(zero Y component of B in the midnight meridian plane).
Here we will first consider data from two other MHD
simulations with similar parameters.

3.1. MHD Simulation With Zero Guide Field

[12] Run 1 is very much like the simulation considered by
Denton et al. [2010]; it also does not have a guide field. The
main difference between the two simulations is that the
length scale in the new simulation is smaller (200 km versus
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1000 km), so that the crossing of the current sheet is faster
and there are consequently fewer data points during the
crossing. Before analyzing the data, we add 0.01 nT random
noise error (varying with time) and 0.1 nT systematic cali-
bration errors (constant with respect to time) to each com-
ponent of the magnetic field. The data were sampled at a
time resolution of 1.0 s. Figure 2 shows the magnetic field
measurements in (arbitrary) simulation coordinates for all
four virtual spacecraft. The fact that the four curves for each
component do not vary greatly (the blue curves, for instance,
are almost exactly superposed) indicates that the separation
of the spacecraft (100 km here) is small relative to the global
spatial scales. To implement the Shi et al. [2005] method
using the perturbed magnetic field developed by Denton
et al. [2010], we first need to identify the region of the
largest gradient, which occurs when the central current sheet
is crossed at approximately t = 0. Figure 3 shows the three
eigenvalues, lG�max (black), lG�int (blue), and lG�min

(green) using the matrix MrB based on the gradient of the
unperturbed magnetic field after doing a running average of
the magnetic field values at each time using the values
within �5 s (11 measurements) in order to reduce the effects
of noise. The peak in lG�max occurs at about t = �3 s. Using
a procedure to be discussed shortly, we chose a time seg-
ment between �41.5 s and 34.5 s for the purpose of calcu-
lating 〈MrB〉0 in order to get dMrB using (2).
[13] Figure 4a shows the eigenvalues using the perturbed

gradient matrix dMrB, again after doing a running average
of the magnetic field values at each time using the values
within�5 s. As mentioned in the Introduction, averaging the
data helps to eliminate problems related to random noise,
whereas using the perturbed gradient dMrB eliminates the

problem of calibration errors. Note that the maximum gra-
dient eigenvalue lG�max (black) in Figure 4a is now much
lower in the central region, because we have subtracted off
the average gradient within this region. Nevertheless, this
eigenvalue is still significantly higher than the other eigen-
values except at two times where lG�max plummets to small
values; this is where the value of lG�max based on the
unperturbed gradient approaches the average value of the
gradient within the central region. Figures 4b–4d show
the direction cosines for the maximum gradient direction
eG�max, the intermediate gradient direction eG�int, and the
minimum gradient direction eG�min. The gradient directions
are specified by the direction cosines with respect to the
x (black), y (blue), and z (green) directions. For the MHD
simulations, this (x, y, z) coordinate system was rotated in an
arbitrary way relative to the original simulation coordinates
to see if the latter could be recovered in blind tests.
[14] As suggested by Denton et al. [2010], there are two

guidelines for picking a section of time within which to cal-
culate the gradient directions. We look for a period of time
during which there is a large separation in the gradient
eigenvalues (Figure 4a) and during which there is also sta-
bility to the gradient directions (Figures 4b–4d). These cri-
teria are fairly well satisfied in the right half of the plot from
t = 40 to 140 s. Using this time interval, we calculate the
average perturbed gradient matrix 〈dMrB〉 and then get the
eigenvalue directions using this matrix. The direction
cosines relative to the simulation (x, y, z) coordinate system
calculated using this average matrix are the filled circles
(dots) plotted in Figures 4b–4d, where the colors have the
same meaning as for plotting the instantaneous direction
cosines. Clearly the direction cosines based on the average
matrix are consistent with the values calculated using the
instantaneous gradient dMrB during this time interval (t =
40 to 140 s). These directions are 2.7, 4.4, and 3.5� off from
the presumed exact directions. (Since the actual simulation

Figure 2. The x (black), y (blue), and z (green) components
(rotated in an arbitrary way relative to the natural simulation
coordinates) of the magnetic field for all four virtual space-
craft flown through the snapshot of the magnetic field from
Run 1.

Figure 3. Maximum gradient (black), intermediate gradi-
ent (blue), and minimum gradient (green) eigenvalues, lG�i,
versus time in seconds for Run 1 using the matrix MrB

based on the gradient of the unperturbed magnetic field.
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was only quasi-two-dimensional, the exact simulation max-
imum gradient, intermediate gradient, and minimum gradi-
ent directions are not known with precision.) These errors
are listed in Table 1.

[15] Now we return to the question of how to determine
the time interval for averaging 〈MrB〉0. Denton et al. [2010]
suggested that the time interval should encompass the region
of maximum gradient. This is the region where the recon-
nection magnetic field changes rapidly within the “magnetic
island”, the region of reconnected magnetic flux shown, for
instance, in Figure 1. They showed [Denton et al., 2010,
Table 1] that the results for the directions were relatively
insensitive to the averaging interval. The results became
somewhat worse if a very large averaging interval was used;
the accuracy for small averaging intervals wasn’t explored.
Now we attempt to find a systematic method to determine a
good averaging interval.
[16] We first identify the largest range of time for which

the time-dependent maximum gradient is within half of its
maximum value maximized with respect to time, i.e., the
time range for which the black curve in Figure 3 is within a
factor of 4 of its largest value (note that the eigenvalue is the
square of the gradient). Then we examine the error in the
minimum gradient direction (which direction is often diffi-
cult to find; the maximum gradient direction can usually be
found from the unmodified Shi et al. [2005] method) for
different time intervals centered on the midpoint of this time
interval. The range of time used, Dtrange, can be specified by
the ratioDtrange/Dthalf, whereDthalf is the previously defined
time range encompassing the region for which the maximum
gradient is half of its maximum value. We use the same time
range t = 40 to 140 s for evaluating the average perturbed
gradient matrix 〈dMrB〉, from which we evaluate the gra-
dient directions, in each case. Figure 5a shows the angle
∠(eG�min, eY) between the minimum gradient direction
eG�min and the presumed exact direction eY. While there are
possibly fortuitous choices of small averaging intervals, the
presumed error ∠(eG�min, eY) becomes consistently small
only for Dtrange/Dthalf ≥ 2. The choice of �41.5 s and 34.5 s
for the averaging interval mentioned earlier represented
Dtrange/Dthalf = 4. (Figure 5b is discussed in Section 3.2, the
bold curve of Figure 5c is discussed in Section 3.3, and the
thin curves of Figure 5c are discussed in Section 4.)
[17] While in our experiments we know the desired

answer, i.e., the eY direction, this will not be known when we
are dealing with real spacecraft data. But Figure 5a suggests
that we can use a time interval for the average gradient that is
large enough such that the minimum gradient direction
converges to some stable answer.
[18] For comparison, if we instead use the unperturbed

matrix MrB based on B with errors within the time interval
t = �10 to 10 s in Figure 3, during which time the separation
in the three eigenvalues is largest, the eigenvector directions
from the average matrix are 1.0, 35.6, and 35.6� off from the
exact directions. This shows that the maximum gradient

Figure 4. (a) Eigenvalues lG�i as in Figure 3, except using
the perturbed matrix dMrB, (b) maximum gradient direc-
tion eG�max, (c) intermediate gradient direction eG�int, and
(d) minimum gradient direction eG�min, all versus time for
Run 1. The gradient directions are specified by the direction
cosines with respect to the x (black), y (blue), and z (green)
directions. The filled circles (dots) indicate the directions
cosines found using the perturbed gradient matrix 〈dMrB〉
averaged from t = 40 to 140 s.

Table 1. Angular Difference Between Directions eG�max, eG�int, and eG�min Inferred by the Modified Shi et al. [2005] Method Using the
Perturbed Gradient, and the Corresponding Approximate (for Quasi-Two-Dimensional MHD Simulations) or Exact (for Exactly Two-
Dimensional Kinetic Simulation) Directions, eZ, eX, and eY

Run Equations Guide Field Time Range (s) ∠(eG�max, eZ)
a ∠(eG�int, eX)

a ∠(eG�min, eY)
a

1 MHD no 40 to 140 2.7� 4.4� 3.5�
2 MHD yes �700 to �500 3.9� 3.7� 3.1�
3 Kinetic no 150 to 190 2.6� 2.7� 1.9�

aAngle between the argument vectors.
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direction can be accurately determined using the unper-
turbed matrix, but the minimum gradient direction can only
be well determined (at least with the Shi et al. [2005]
method) using the perturbed matrix if the calibration errors
are large. The effect of calibration errors on the unmodified
method will be examined more thoroughly in the Discussion
section. As mentioned by Denton et al. [2010], comparison
of the directions using the unperturbed and perturbed matrix
can help to establish whether or not the calibration errors are
significant.
[19] Now we calculate the structure velocity Vstr using the

data from Run 1, again with 0.01 nT random noise errors
and 0.1 nT systematic calibration errors added to each
component of the magnetic field. In order to calculate Vstr,
we use the perturbed gradient and perturbed time derivative
as described by (3) with the same time interval for averaging

as was used for determining the directions. Before calculat-
ing the gradients and time derivative of the magnetic field,
the magnetic field values were averaged at each point in time
over a time interval of �5 s (11 data points) as before.
[20] Figure 6 shows the results for the inferred velocity

components versus time (curves) and the exact values of the
components from the simulation (dotted horizontal lines).
The components of the spacecraft measurements in the x, y,
and z coordinate directions are indicated by black, blue, and
green color, respectively. As was done by Denton et al.
[2010], we determine the total structure velocity Vstr, not
just the “in-plane” components. This is possible because the
simulation was weakly three-dimensional and the gradient in
the minimum gradient direction was large enough so that the
component of the velocity in that direction could be well
determined. Evidence that the total velocity is reliable is that
the components of Vstr in Figure 6 are relatively stable
(except in the vicinity of the spike in Vstr components at t� 0
where the minimum gradient is particularly small; see
Figure 3a). While we were able to determine all three com-
ponents of the structure velocity in this case, it should be kept
in mind that the component of the velocity in the minimum
gradient direction could be inaccurate [Shi et al., 2006].
[21] Median values of the velocity components were

determined between t = 35 s and t = 125 s, during which time
the velocity components were particularly stable. The median
values are plotted in Figure 6 as the filled circles. The mag-
nitude of the inferred velocity is accurate to 1.6%, and the
direction is accurate to within 5.2�. These values are listed in
Table 2. (Comparable values could be found by using a time
range which included the sharp peaks in Figure 6 as was done
byDenton et al. [2010]; using the median values excludes the
extreme values within the peaks.)Figure 5. Angle ∠(eG�min, eY) between the minimum gra-

dient direction eG�min and eY versus the normalized time
range Dtrange/Dthalf used for averaging 〈MrB〉0 as described
in the text for (a) Run 1, (b) Run 2, and (c) Run 3 (thick
black curve). In Figure 5c, the thin curves show variations
of Run 3; the thin black curve is for the spacecraft passing
through the X point with same velocity as was used for
Run 3, the blue curve is for spacecraft velocity in the Z direc-
tion crossing the current sheet about 20 c/wpi downstream of
the X point, and the green curve is for the spacecraft relative
velocity in the Z direction passing through the X point.

Figure 6. Run 1 spacecraft measurements x (black curve),
y (blue curve), and z (green curve) components (arbitrary
coordinate system) of the structure velocity Vstr versus time,
found from the Shi et al. [2006] method modified by using
the perturbed gradient and time derivative of B. The filled
circles show the median values of the curves using the data
between t = 35 s and 125 s, while the dotted horizontal lines
show the exact values from the simulation.
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3.2. MHD Simulation With a Guide Field

[22] Run 2 is also quasi-two-dimensional. It differs from
Run 1 in that it has a guide field (a component of B in the
“out of plane” direction) of about half the magnitude of the
reconnecting field. Again we add 0.01 nT random noise
error and 0.1 nT systematic calibration errors to each com-
ponent of the magnetic field. Next we subtract the average
gradient within t = �68 and t = 60 s to determine the per-
turbed gradient. In order to make this choice, we examined
the presumed error in the minimum gradient direction in a
similar manner as was done for Run 1. The results
corresponding to Dtrange/Dthalf = 8 are shown in Figure 5b.
(As was mentioned in reference to Run 1, when we are
analyzing spacecraft data we will not know the Y direction,
so in practice, we will need to look for convergence of the
minimum gradient direction.) Figure 7a shows the eigenva-
lues of the maximum, intermediate, and minimum gradient
directions for Run 2, while Figures 7b–7d show the
corresponding direction cosines (as for Run 1). Again, we
look for a time interval during which the eigenvalues for the
gradient directions (Figure 7a) are well separated and the
eigenmode directions are relatively steady. Picking the time
period between t = �700 and �500 s, we find the compo-
nents (black, blue, and green for x, y, and z, respectively) of
each eigenmode direction; these are plotted as the filled
circles in Figures 7b–7d. These directions are 3.9� 3.7� and
3.1� off from the presumed extremal gradient directions in
the simulation; these values are listed in Table 1. As men-
tioned in reference to Run 1, the true directions are not
exactly known because the simulation is only approximately
two-dimensional. If we instead choose the time period t = 40
to 90 s, for which the eigenvalues are better separated
(Figure 4a), but the directions are less steady (Figures 7b–7d),
we find that the directions are 5.8�, 7.0�, and 5.4� off from the
presumed true directions.
[23] If we do not add any random or calibration errors to

the simulation data, and use the unmodified Shi et al. [2005]
method, we get the results shown in Figure 8. In this case, it
is not possible to use the same time interval to find the
maximum and minimum gradient directions. Using the
central time interval, t = �15 to 5 s, where the maximum
gradient eigenvalue (black curve in Figure 8a) is extremely
large, we can find the maximum gradient direction eG�max

with an error of 3.4� from the presumed direction. Then
using the interval t = 120 to 260 s, during which the mini-
mum gradient eigenvalue lG�min (green curve in Figure 8a)
is much lower than the other eigenvalues, and during which
the minimum gradient eigenmode direction eG�min is rela-
tively steady (Figure 8d), we can find the minimum gradient
direction with an approximate error of 5.7� from the pre-
sumed direction. If we then get the intermediate gradient

direction as the renormalized cross product eG�min �
eG�max, we find the presumed errors in the three directions
to be 3.4�, 1.0�, and 4.1�, respectively, for the maximum,
intermediate, and minimum gradient directions.
[24] Comparison of Figures 7 and 8 shows an interesting

fact. Subtracting off the maximum gradient near the peak of
the maximum gradient (t � 0 in Figure 8a) has the effect of
introducing a larger maximum gradient (in that direction) at
times away from the peak (times different than t � 0 in
Figure 4a; note that the black curve is almost uniformly at a
large value). So, in addition to subtracting off constant gra-
dients that would result from calibration errors, the modified
Shi et al. [2005] method using the perturbed gradient trans-
fers information about the maximum gradient to times away
from its peak value.
[25] Now we calculate the structure velocity Vstr using the

data from Run 2 with 0.01 nT random noise error and 0.1 nT
systematic calibration error added to each component of the
magnetic field. We then smooth the data at each time using a
time interval �50 s (101 data points) and use the perturbed

Figure 7. Same as Figure 4, except Run 2 (MHD with a
guide field). The filled circles indicate the directions cosines
found using the perturbed gradient matrix 〈dMrB〉 averaged
from t = �700 s to �500 s.

Table 2. Difference D(Vstr, Vstr
rB) Between the Magnitude of the

Actual Structure Velocity Vstr and That Inferred Using

#

B, Vstr
rB,

and the Angular Difference ∠(eVstr, eVstrrB ) Between eVstr and eVstr
rB

for the Cases Indicated

Run Equations
Guide
Field

Time
Range (s) D(Vstr, Vstr

rB) ∠(eVstr, eVstrrB )

1 MHD no 35 to 125 1.6% 5.2�
2 MHD yes �700 to �200 1.5% 0.9�
2 Kinetic no 150 to 180 0.08% 1.8�
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gradient and perturbed time derivative as described by (3) to
calculate Vstr. The results are shown in Figure 9 for the entire
velocity Vstr, again not subtracting off the component of Vstr

in the minimum gradient direction. The clue that we are able
to obtain a reliable result is again that all 3 velocity com-
ponents in the plots are steady (Figure 9). Figure 9 shows the
results for the inferred velocity components versus time
(curves) and the exact values of the components from the
simulation (dotted horizontal lines). The median values of
the velocity components were determined between t = �700
and �200 s, and are plotted in Figure 9 as the filled circles.
The magnitude of the inferred velocity is accurate to 1.5%,
and the direction is accurate to within 0.9�. These values are
listed in Table 2.
[26] Figure 10 shows the inferred structure velocity Vstr

using the same method, but with a smoothing interval of
�5 s instead. The results are similar, but more noisy.

3.3. Full Dynamics Kinetic Simulation

[27] Now we consider results from an array of virtual
spacecraft flying through a two-dimensional full dynamics
kinetic simulation of the magnetotail. This simulation was

described by Shay et al. [2007] and Drake et al. [2009]. In
this case, referred to as Run 3, the simulation is truly two-
dimensional. While there is no constant guide field, there is a
significant spatially varying Hall magnetic field in the out of
plane direction, with magnitude about half that of the
reconnection magnetic field immediately upstream of the
current sheet. The kinetic simulation used normalized units;
for the purposes of comparison and more easily relating to the
real situation in the magnetotail, we convert the normalized
units to real units by multiplying values of B by 15 nT, values
of time by (1/1.5) s, values of velocity by 1500 km/s, and
values of distance by 1000 km. If the fields were exactly
known, it would be possible to find the direction along which
there was exactly zero gradient. The simulation, however,
has numerical noise due to the particle distribution. We
estimate the amplitude of this numerical noise level to be at
least 0.005 nT. In order to bring the noise level up to 0.01 nT,
we add additional time-dependent random noise (time-

dependent) of 0.009 nT (from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01ð Þ2 � 0:005ð Þ2

q
) to each

component of the magnetic field. In addition, we also add
random time independent calibration errors to the compo-
nents of the magnetic field at the level of 0.1 nT. The data
were sampled at a time resolution of 0.1 s, and the effect of
noise errors could be eliminated with a smaller averaging
interval; we used �3 s.
[28] The interval used to determine the average gradient,

t = 70 to 120 s, was chosen in the same way as for Runs
1 and 2. The error in the minimum gradient direction is
shown versus the averaging interval as the thick black
curve in Figure 5c. We chose Dtrange/Dthalf = 4.
[29] Figure 11a shows the eigenvalues of the maximum,

intermediate, and minimum gradient directions for Run 3,
while Figures 11a–11d show the corresponding direction
cosines using the modified Shi et al. [2005] method.
[30] The eigenvalues are well separated and the directions

are stable in the early and late stages of the simulation. Using
the time period between 150 and 190 s, we find directions
that are 2.6�, 2.7�, and 1.9� off from the exact directions

Figure 9. Like Figure 6, except for Run 2. The filled cir-
cles show the median values of the curves using the data
from t = �700 s to �200 s.

Figure 8. Same as Figure 7, except for Run 2 with no mag-
netic field errors added, and analyzed using the unmodified
Shi et al. [2005] method.
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(because this simulation is precisely two-dimensional); these
values are listed in Table 1. In this case, the ex, ey, and ez
spacecraft measurements directions are the same as the
simulation directions eX, eY, and eZ, respectively (the coor-
dinate axes have not been rotated). Clearly, these directions
are very well determined by the modified Shi et al. [2005]
method.
[31] If we calculate the eigenvalues and directions using

the unmodified Shi et al. [2005] method instead, but still
including random and calibration errors, the directions (not
shown) are not very steady for any time period. The most
stable directions occur near the peak in the gradient, but the
intermediate and minimum gradient directions found using
that time interval are off from the actual directions by about
88�. The maximum gradient direction is accurate to within
1.5�. This again shows that calibration errors at a level of
0.1 nT severely corrupt information about the intermediate
and minimum gradient directions (which have relatively
small contributions to the total gradient, compared to the
maximum gradient direction), but do not significantly con-
taminate information about the maximum gradient direction.
[32] Figure 12 shows the same data as in Figure 11,

except that here the unmodified Shi et al. [2005] method is
used for the Run 3 data without errors. The filled circles in
Figures 12b–12d show the directions plotted in Figure 11
using the modified method; these directions are within
about 3� of the exact directions (Table 1), as was discussed
previously. This figure also shows some of the features we
have discussed previously. The maximum eigenvalue direc-
tion is steady and pointing in the ez (=eZ) direction (the green
curve in Figure 12b is close to unity) within the central time
region from about t = 70 to 125 s, where the maximum gra-
dient is large ( the black curve in Figure 12a is well above the
blue and green curves). The correct direction of the minimum
gradient is the ey (=eY) direction, as indicated by the blue
curve in Figure 12d being near plus or minus 1 (there is an
arbitrary 180� ambiguity in the direction). The minimum
gradient direction in Figure 12d is seen to be accurate in the
early (before 50 s) and late (after 125 s) times. These intervals
correspond to the times during which the minimum gradient

eigenvalue (green curve in Figure 12a) is significantly lower
than the other eigenvalues (blue and black curves in
Figure 12a). During the period of large maximum gradient,
the minimum gradient direction from the unmodified Shi
et al. [2005] method is not steady, indicating that the best
time periods for determining the minimum gradient direction
are at early or late times.
[33] Now we calculate the structure velocity for Run 3

using the modified Shi et al. [2006] method, again including
calibration and noise errors. Since Run 3 is truly two-
dimensional, the gradient in the out of plane direction is
exactly zero. Therefore the out of plane component of Vstr is
arbitrary, and cannot be found from (3), except as deter-
mined by the noise. Figure 13 shows the results for Vstr

using (3) to determine only the components in the maximum
and intermediate gradient directions. As described earlier,
we average the gradients and dB/dt in the interval t = 70 to
120 s and also smooth the fields over an interval of
approximately �30 s (increasing this averaging interval does
not significantly improve the results). Figure 13 shows that

Figure 10. Same as Figure 9, but with the smoothing inter-
val for the magnetic field reduced to �5 s.

Figure 11. Same as Figure 4, except for Run 3 (the full
dynamics kinetic simulation). The filled circles indicate the
directions cosines found using the perturbed gradient matrix
〈dMrB〉 averaged from t = 150 s to 190 s.
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the in plane components of Vstr (black and green curves) are
well determined. The median values in the interval 150 to
180 s are plotted as filled circles, and agree well with the
exact values (horizontal lines), with an error of 0.08% in
magnitude and 1.8� in direction. These values are listed in
Table 2. Note that Vstr,y in Figure 13 (blue curve) is not
exactly zero because the minimum gradient direction used to
subtract off the minimum variance component of Vstr is the
one that we calculated and not the exact Y direction (here the
y direction).
[34] Figure 14 shows the results if we try to determine all

three components of Vstr. The x and z (in plane) components
of Vstr determined from (3) (black and green curves, with
median values shown for the time interval t = 150 to 180 s as
filled circles) again agree well with the exact values (dotted
horizontal lines) but the out of plane component Vstr,y (blue
curve in Figure 14) is not accurate, despite the fact that it
appears to be steady from t = 150 s to 180 s (though not at

earlier times). It should have the same value as the z com-
ponent (green curve). This indicates that caution should be
used when interpreting the minimum gradient component of
the structure velocity, at least using the modified Shi et al.
[2006] method. (For the unmodified method, the y compo-
nent of Vstr varies wildly at all times (not shown), clearly
indicating that it is not meaningful.)

4. Discussion and Summary

[35] We have shown that the Shi et al. [2005, 2006]
methods can be successfully used to determine the recon-
nection geometry and structure velocity Vstr relative to the
spacecraft, even when calibration and noise errors are pres-
ent, provided that the perturbed gradient is used as described
in Section 1. This was shown in Section 3.1 for an MHD
simulation without a guide field similar to that examined by
Denton et al. [2010], in Section 3.2 for an MHD simulation
with a guide field, and in Section 3.3 for a full dynamics
kinetic simulation that did not have a constant guide field,
but did have a Hall magnetic field in the out of plane
direction. The agreement between the inferred directions and
the approximate true directions (for quasi-two-dimensional
simulations) or the exact directions (for the two-dimensional
simulation) was good (all within 5�, as shown in Table 1).
The structure velocity could also be well determined (mag-
nitude within 2% and direction within 5�, as shown in
Table 2).
[36] The maximum gradient and the associated large

eigenvalue of the gradient matrix occurs generally at the
center of the current sheet crossing, whereas the minimum
eigenvalue is most distinct from the intermediate eigen-
value away from the central current sheet crossing (Figures 3
and 12). Thus if the unmodified Shi et al. [2005] method is
used to determine the reconnection geometry, our results
suggest that the maximum gradient direction may be best
determined near the central current sheet, while the minimum

Figure 13. Like Figure 6, except for Runs 3. The compo-
nents of the velocity are determined only in the maximum-
intermediate gradient plane. The filled circles show the
median values between t = 150 s and 180 s.

Figure 12. Same as Figure 11, except that the unmodified
Shi et al. [2005] method (using the total gradient of B) is used
for the Run 3 data with no magnetic field errors added. The
filled circles in Figures 12b–12d show the directions from
Figure 11, i.e., from the modified method, again for t =
150 s to 190 s.
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gradient direction may be best determined away from the
central current sheet.
[37] To use the modified Shi et al. [2005, 2006] methods,

we need to subtract the average gradient from a particular
time interval. In agreement with results of Denton et al.
[2010], we find that a good choice for the subtracted term
〈MrB〉0 in (2) is the average gradient near the central current
sheet crossing. Examination of Figures 3 and 12 shows that
the maximum eigenvalue tends to be best separated in
magnitude from the other eigenvalues (intermediate and
minimum) in this region, and that the minimum and inter-
mediate eigenvalues are often least well separated. This
means that, at the central current sheet crossing, the recon-
nection structure tends to be more one dimensional than at
other locations. After subtracting the gradient in the central
current sheet, information about that gradient direction is
transferred to regions far from the central current sheet
(Figures 4a, 7a, and 11a), so that an interval away from the
central current sheet can then be used to determine all three
directions (Section 3.1).
[38] The structure velocity Vstr can also be determined

using the modified Shi et al. [2006] method. If the structure
is three-dimensional, we are able to determine all three
components of the velocity (Figures 6 and 9), but if the
minimum gradient is very small (such as occurs exactly for a
true two-dimensional system), the minimum gradient com-
ponent of the structure velocity will not be well determined.
In that case we can only get the “in-plane” components of
Vstr (Figures 13 and 14). Noise errors lead to noise in the
inferred values of Vstr (Figure 10 versus Figure 9). The time
resolution of the magnetic field instrument is greater for
CLUSTER (1/67 s�1 time resolution [Balogh et al., 1997])
and even greater for MMS (0.01 s resolution for the fluxgate
instrument), than what we have assumed here (between 0.1
and 1 s). We therefore conclude that digital noise errors are
unlikely to be a problem.
[39] In all the cases we have studied up to this point, the

virtual spacecraft passed to the side of the X point as sche-
matically illustrated in Figure 1. For the full dynamics

kinetic simulation, we tried some variations of the spacecraft
trajectory. For Run 3, the spacecraft trajectory was at an
angle of about 27� to the current sheet and passed about
20 c/wpi (assumed to be �20,000 km) in the outflow
downstream of the X point. The thin black curve in
Figure 5c shows the error as a function of the averaging
interval if the spacecraft trajectory is at the same angle to the
current sheet but now shifted in the X direction so as to pass
through the X point. The blue curve in Figure 5c shows the
error as a function of the averaging interval if the spacecraft
trajectory is normal to the current sheet (in the Z direction)
and crosses the current sheet about 20 c/wpi downstream of
the X point. The green curve in Figure 5c shows the error as
a function of the averaging interval if the spacecraft trajec-
tory is normal to the current sheet (in the Z direction) and
crosses the current sheet through the X point. Though some
of the errors in Figure 5c (�10�) are somewhat larger than
those in Table 2 (<5�), it appears that the modified Shi et al.
[2005] method can be used for all these cases as long as the
time interval for averaging the gradient matrix is sufficiently
large around the region of peak gradient. We need to note
one complication. Note that the blue curve in Figure 5c does
not extend past values of Dtrange/Dthalf = 4. For greater
values, the minimum gradient direction is not clearly steady
in any time interval, and in that case the results will depend
heavily on the time interval used.
[40] We found that one needs to examine carefully the

effect of different values of Dtrange/Dthalf, especially for the
kinetic simulation. To do this we used the fact that we knew
the right answer. In order to test again how we would do in a
truly blind test, we generated a totally new set of data from
the simulation used for Run 3. In this case, the spacecraft
trajectory was at an angle of 45� to the current sheet passing
10 c/wpi downstream of the X point. The coordinates were
then rotated using random Euler angles that were unknown
to us. We then chose a time interval during which the three
directions were relatively constant, and found the maximum,
intermediate, and minimum gradient directions for different
values of Dtrange/Dthalf. We looked for convergence of the
directions. The directions for Dtrange/Dthalf = 8 were within
0.1� of the directions using Dtrange/Dthalf = 32, while the
directions for Dtrange/Dthalf = 4 varied by about 5� from
those using Dtrange/Dthalf = 32. Based on this, the directions
were determined using Dtrange/Dthalf = 8. After rotating the
resulting directions back to the original coordinate system,
the directions for maximum, intermediate, and minimum
gradient direction were found to be 9.6�, 9.7�, and 1.5� off
from the correct directions. These results were obtained
using the modified Shi et al. [2005] method from the per-
turbed gradient. We also calculated the maximum gradient
direction using the unmodified method (without subtracting
the average gradient). In that case, we found the maximum
gradient off by only 0.9� from the correct direction.
[41] Figure 15 shows the median error for 10 trials of

Run 3 with different random calibration errors of varying
magnitude and different noise errors of the same magnitude
(0.01 nT) for the maximum gradient direction eG�max (black
curve) and minimum gradient direction eG�min (blue curve)
versus the ratio of the calibration error dBcal to the recon-
nection magnetic field Brec expressed as a percentage. For
each trial, a random distribution of dB was assumed for each
component of the magnetic field. The horizontal axis shows

Figure 14. Like Figure 13 for Run 3, except that now all
the components of the velocity are determined. The filled
circles show the median values between t = 150 s and 180 s.
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the root mean squared value dBcal for each component of the
assumed distribution. Based on Figure 15, the unmodified
Shi et al. [2005] method can determine the maximum gradi-
ent direction to within 3� for calibration errors as large as 3%
of the reconnection magnetic field, while in order to find the
minimum gradient direction to the same accuracy, the cali-
bration errors must be no larger than 0.03% of the recon-
nection magnetic field. For reference, the calibration errors
assumed here are 0.7% of the reconnection magnetic field.
[42] Based on these numbers, it’s likely that the unmodi-

fied method can be used to determine the maximum gradi-
ent direction, but that the modified method must be used
to determine the minimum gradient direction. The results
described above for the blind test suggest that the maximum
gradient direction might be determined more accurately by
the unmodified method. The method is also less complex,
not depending on a choice of time interval for averaging the
gradient matrix. Combining the maximum gradient direction
from the unmodified method with the minimum gradient
direction from the modified method, all three angles would
be determined within a couple degrees. Another possibility
would be to combine the maximum gradient direction from
the unmodified method with the maximum variance direction
for the magnetic field (yielding the intermediate gradient
direction), and from those two directions get the minimum
gradient direction.
[43] It should be kept in mind when using the modified Shi

et al. [2005, 2006] method that subtraction of the gradient
〈MrB〉0 averaged over the intervalDtrange (in order to cancel
out the effect of constant (in time) calibration errors) results
in loss of real information about the average gradient of the
real field. In a situation with constant (in time) gradients, the
modification would not be likely to give satisfactory results.
Comparison between results from the unmodified Shi et al.
[2005, 2006] methods and the modified methods using the

perturbed gradient and time derivative of B may give infor-
mation on the degree to which calibration errors contaminate
the gradients. Ideally, a way will be found to reduce the
calibration errors sufficiently as mentioned in Section 2 so
that the unmodified and modified methods using the per-
turbed fields yield the same results. But our estimates indi-
cate that if these calibrations are not reduced, results from
the unmodified method may not be satisfactory, especially
for the minimum gradient direction (Figure 15).
[44] The effects of explicit time dependence still need to be

investigated. It’s likely that explicit time dependence will
make the procedures we have demonstrated here more diffi-
cult. Directions and velocities may be changing with respect
to time, in which case they will have to be determined within
smaller time intervals. In that case, we would not be able to
use extremely large values of Dtrange/Dthalf. Presumably, as
Dtrange/Dthalf is increased, the directions would converge
toward some values, and then diverge as the timescale over
which the data is collected becomes large. Also, large
amplitude time-dependent effects in a 3-D kinetic system,
associated with physical effects such as waves or non-
uniformities in the inflow to the reconnection site, may be
larger than what we have in our simulations, and these could
have an adverse effect on our ability to obtain accurate
information from the Shi et al. [2005, 2006] methods and
their extension to perturbed fields [Denton et al., 2010].
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