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Abstract Consensus on global warming is the result of multiple and varying lines
of evidence, and one key ramification is the increase in frequency of extreme
climate events including record high temperatures. Here we develop a metric—
called “record equivalent draws” (RED)—based on record high (low) temperature
observations, and show that changes in RED approximate changes in the likelihood
of extreme high (low) temperatures. Since we also show that this metric is indepen-
dent of the specifics of the underlying temperature distributions, RED estimates
can be aggregated across different climates to provide a genuinely global assess-
ment of climate change. Using data on monthly average temperatures across the
global landmass we find that the frequency of extreme high temperatures increased
10-fold between the first three decades of the last century (1900–1929) and the most
recent decade (1999–2008). A more disaggregated analysis shows that the increase
in frequency of extreme high temperatures is greater in the tropics than in higher
latitudes, a pattern that is not indicated by changes in mean temperature. Our RED
estimates also suggest concurrent increases in the frequency of both extreme high and
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extreme low temperatures during 2002–2008, a period when we observe a plateauing
of global mean temperature. Using daily extreme temperature observations, we find
that the frequency of extreme high temperatures is greater in the daily minimum
temperature time-series compared to the daily maximum temperature time-series.
There is no such observable difference in the frequency of extreme low temperatures
between the daily minimum and daily maximum.

1 Introduction

Extreme temperatures are not only an important dimension of climate but there is
wide spread recognition that increased frequency of extreme temperatures leads to
major societal impacts including adverse health effects (Githeko and Ndegwa 2001;
Curriero et al. 2002; Hay et al. 2002) and diminished crop productivity (Ciais et al.
2005; Battisti and Naylor 2009). In this paper we present a global assessment of
climate change by analyzing changes in extreme high and extreme low temperatures
over the past century. We do so by constructing a metric on the basis of record
theory and temperature record data to measure changes in the likelihood of extreme
temperatures.

The idea that the empirical frequency of record breaks can be exploited to
make inferences about changes in the underlying distribution is certainly not new
(Yang 1975; Ballerini and Resnick 1985; Munasinghe et al. 2001). The basics of
record theory (Arnold et al. 1998) imply that if the underlying distribution is
time invariant—that is, independent and identically distributed (i.i.d.)—then the
likelihood of a record break in a given time period is simply the inverse of the elapsed
time periods over which records are kept. Put simply, the chance of a record break
in the second time period is 1/2, in the third period it is 1/3, etc. Clearly, with the
passage of time it becomes increasingly difficult to break a record from a stationary
distribution (Rényi 1962). The actual pattern of temperature record breaks over
the last one hundred years, however, does not match this pattern predicted by a
stationary distribution. As a matter of fact, the 10 hottest years—in terms of recorded
annual global mean temperature—occurred between 1998–2010. The discrepancy
between the observed and predicted record break frequencies of course suggests
a change in the underlying temperature distribution. For example, a higher than
predicted observed frequency of high temperature record breaks implies a positive
shift in the underlying temperature distribution.

The technical challenge is how to measure a shift in the underlying distribution
that would be consistent with the discrepancy between the observed and predicted
record break frequencies. Our solution is to estimate an implied sampling rate—
what we call “record equivalent draws” (RED)—from the same distribution that
would match the empirical frequency of record breaks. The idea is that we pretend
to sample more (or less) random draws from the same original distribution until the
predicted record break rate equals the higher (or lower) observed record break rate.
Note that since the record break process for any given time-series is independent
of the specifics of the underlying distribution, the empirical record break frequency
(for given time period) can be constructed from observations that have different
underlying distributions. We link RED to extreme outcomes by showing that an
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increase (decrease) in RED converges to a corresponding increase (decrease) in the
frequency of an extreme outcome.

Climate scientists have addressed global warming not only by analyzing mean
temperature changes but also by analyzing changes in extreme temperatures using a
variety of statistical methods. Meehl et al. (2009) analyzed the ratio of the number of
daily high and daily low temperature record breaks (using U.S. data) and showed that
this ratio is around 2 in the most recent decade. They explain this finding by arguing
that high temperature record breaks are declining by less than what is predicted by
a stationary distribution since the late 1970s. Benestad (2003) examined the record
break frequency of global mean temperatures over the past century and showed that
the number of actual high temperature record breaks is larger than the theoretically
predicted number under the assumption of a stationary distribution. This disparity
in the actual versus predicted number of high temperature record breaks rejects the
“no warming” hypothesis.

Methodologically, the RED metric is closely related to extreme value theory
(EVT). The key result of EVT is that the maximum from a sufficiently large number
of draws form a well-defined generalized extreme value (GEV) distribution (Gumbel
1958). Several recent studies (Zwiers and Kharin 1998; Kharin and Zwiers 2000;
Nogaj et al. 2006; Yiou et al. 2008) have used temperature time-series data to fit
a GEV distribution by estimating location and scale parameters that characterize
the tails of the density function. Changes in the underlying distribution of the tails
are inferred on the basis of estimated changes in these parameters using either
parametric or nonparametric methods (Hall and Tajvidi 2000). Some studies have
also used the concept of return period to assess the risk of extreme events based on
GEV constructions (Kharin and Zwiers 2000; Laurent and Parey 2007; Zwiers et al.
2011).

Several other studies have analyzed trends of various indices related to extreme
temperatures including daily minimum and maximum temperatures (Karl et al. 1993;
Easterling et al. 1997; Bonsal et al. 2001; Frich et al. 2002; Griffiths et al. 2005;
Alexander et al. 2006; Choi et al. 2009; Zwiers et al. 2011). The basic methodology
here is to estimate a trend line of say the daily minimum temperature for each
weather station and then compute the fraction of weather stations (across regions or
seasons) that have a significant positive or negative trend line. The overall findings
from these trend analyses (and also from EVT studies) are that the frequency of
extreme warm events have increased while the frequency of extreme cold events have
decreased in the second half of the last century, and that there is a larger increase in
the minimum temperatures compared to the maximum temperatures.

We hope that the RED metric proposed in this paper and our findings will com-
plement the methods and findings from these earlier studies. The major difference
between our metric and previous estimation methods is the distribution-free prop-
erty of RED. For example, changes in mean temperature can of course be highly
informative of local changes in temperature, but aggregating mean changes in
temperature across climate environments as diverse as the tropics and Antarctica
is more challenging. Moreover, the mean temperature in any location in the world
does not follow the global average (Trenberth et al 2007). The RED metric can
address whether warming (or cooling) is truly global, and it also allows a comparison
of changes in the frequency of extreme temperatures across vastly different climates
as represented by geographic regions and seasons.
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2 Methods

We begin the methods section with a non-technical illustration of RED. In the more
formal analysis to follow we present the basic record framework and then show
how we can carefully ignore the i.i.d. assumption in order to incorporate changes
in the underlying distribution. Next we detail the empirical estimation of RED by
maximum likelihood techniques. To link the RED estimates to changes in extreme
temperatures, we prove that changes in RED converge asymptotically to changes
in the frequency of extreme temperatures. Finally, we highlight the inefficiency of
our current estimation of RED using only record break information, and suggest an
alternative estimation strategy using the rank ordering of temperature observations.

2.1 A non-technical illustration of RED

How do we measure changes in the frequency of extreme temperatures? We will
illustrate our approach and the RED metric with a simple example. Assume a large
and fixed number of weather stations report the temperature on January 1 at 12
Noon annually from 1900 to 2008. If the underlying temperature distributions remain
unchanged then the temperature observations from each station in 1900 and 1901 will
have the same probability of being the “record” high temperature. Hence we would
expect 50% of all stations to report a record high temperature in 1901. However,
suppose 75% of the stations in fact report a record high temperature. This would
suggest the underlying distribution in 1901 is warmer. The key question is, “how do
we quantify this warming” Consider the following hypothetical scenario: whereas
the recorded temperature in 1900 was from a single “draw”,1 suppose the recorded
temperature in 1901 in each station was the maximum of three independent draws
from the identical 1900-temperature distribution. Note of course that the implied
1901 distribution is clearly different from the 1900 distribution since the former
distribution is the maximum of three draws from the latter distribution. But more
importantly, 1901 represents a warmer climate in the sense that a temperature
reporting in 1901 is more likely to exceed any given temperature than a temperature
reporting in 1900. To get back to our hypothetical scenario, if this were the case
then 75% of the stations would be expected to report a record high temperature in
1901. Now suppose in 1902, 50% of the stations report a temperature higher than
all previous years’ temperatures. Given that the total draws in 1900 and 1901 add
up to four (one in 1900 and three in 1901), a total of four hypothetical draws from
the 1900-temperature distribution in 1902 are required to predict that 50% of the
stations will report a record high temperature in 1902 compared to all previous years.
By proceeding similarly to 2008, the number of hypothetical draws for each year can
be computed using the observed fraction of record high temperatures in each year
across all the weather stations.

It is this number of hypothetical draws that we call “record equivalent draws”
(RED). To be terminologically specific, if the records refer to high (low) temperature

1The term “draw” in this paper refers to the sampling from a distribution as opposed to the
sometimes British English usage of the term to refer to a tie.
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records then we call it RED for high (low) temperature, and refer to it as “RED-
H” (RED-L) for short. In Section 2.2.4 below we formally show that the change in
RED-H and RED-L approximate the change in the frequency of “extreme” high and
“extreme” low temperatures, respectively.

2.2 Derivation and estimation of RED

2.2.1 Standard results from record theory

Let k ∈ {(i, j)} denote a composite index for month i and grid j. We start with the
single-draw framework that implies a stationary temperature distribution such that
for each k, a single temperature observation is drawn from a continuous temperature
distribution function Fk(.) in each year t.2 Let {xk

t } denote a sequence of such
temperature draws that are independent random variables for each k, where t =
1, 2, .... We call a temperature observation a “record high temperature” at time t
for k if it is the highest temperature observed up to time t. We can similarly define a
record low temperature at time t for k. The first temperature draw is trivially a high
and low record temperature. Under these assumptions it does not matter whether we
talk about record highs or record lows (Chandler 1952), and hence we refer only to
record high temperatures in the following exposition.

To formally define a record, first denote Vk
r as the r-th time for record high

temperature in k and define it inductively as follows:

Vk
r = min

{
t|t > Vk

r−1, xk
t > xk

Vk
r−1

}
, Vk

1 = 1.

And then denote ek
t as the record high indicator for k at year t and define it as follows:

ek
t = 1 if for some r, Vk

r = t; and ek
t = 0 otherwise.

The key result (Rényi 1962) we use is that under the i.i.d. assumption of the
temperature distribution the record indicators ek

2, ek
3, ..., are independent Bernoulli

variables with Pr
(
ek

t = 1
) = 1/t for each k. The intuition is that a new record is set at

time t if and only if xk
t is the maximum of the first t realizations for an given k. Since

each temperature observation is drawn from the same stationary distribution, each
realization has the identical probability of being the maximum. This probability is
independent of the underlying temperature distribution and hence does not depend
on the specifics of the distribution such as the mean or the standard deviation.
This feature, due to the nonparametric nature of record processes, will be used to
aggregate record observations from different months and geographic regions, i.e.,
across different month-grid pairs. Therefore from now on we drop the index k from
the definition of the temperature distribution and simply denote it as F(.).

2.2.2 Modeling changes in the underlying distribution

Here we introduce the idea of time-varying multiple draws in order to drop the i.i.d.
assumption and incorporate changes in the underlying distribution. Let Ft(.) denote

2We assume that the temperature distribution is continuous. Otherwise we need to deal with ties of
temperature observations that happen with positive probability, which unnecessarily complicates the
presentation of Rényi (1962) result below.



1006 Climatic Change (2012) 113:1001–1024

the temperature distribution at time t so that the distribution is now time dependent.
For example, if time period s is warmer than time period t it means that Fs(.) is in
some sense a warmer distribution than Ft(.). For some purposes it may be convenient
to model warming as an increase in the mean of the distribution. However, mean-
increasing change is not convenient for our purposes since our focus is on changes in
extreme temperatures. Hence we will concentrate on what we call “logarithmically
proportional” warming to incorporate the idea that the new distribution is generated
by taking the maximum of multiple draws from the old distribution (Munasinghe
et al. 2001). For s > t, we say that warming between t and s is logarithmically
proportional if there is some positive constant γ (t, s) > 1 such that for all x,

ln Fs (x) = γ (t, s) ln Ft (x) ,

which reduces to:

Fs (x) = (Ft (x))γ (t,s) .

By induction, this becomes:

Fs (x) = (F1 (x))γ (1,s) . (1)

If γ (1, s) > 1 implies warming then Eq. 1 says that observing a temperature lower
than x is less likely at time s than at time 1.

Put differently, equation Eq. 1 shows that the distribution Fs (x) is generated by
taking the maximum of γ (1, s) draws from the initial (or base) distribution F1 (x).
Therefore the number of draws at any time is measured relative to the number
of draws in the base time period (which can be normalized to 1). Note that the
temperature distributions in the base time period and the latter time period s are
different even though the distribution at time s is a direct transformation of the
base distribution. Moreover, since the multiple draws in any given time period are
assumed to arrive from the same base distribution, Rényi’s result from above holds
in this multi-draw context: the record indicators ek

2, ek
3, ..., are independent Bernoulli

variables with Pr
(
ek

t = 1
) = γ (1, t) /

∑t
τ=1γ (1, τ ) (See Nevzorov 1985 for a formal

treatment of this result). As a consequence, the number of draws at any time period
is independent of the base temperature distribution.

Note that EVT shares the same theoretical foundation with our approach up to
this point. From here EVT is extended by establishing the asymptotic distribution of
the tails for a sufficiently large number of draws. Subsequently, the changes in the
distribution are examined by estimating changes in the parameters that characterize
this asymptotic distribution under the assumption of a large value for γ (t, s) for all t
and s. By contrast, our approach infers changes in the distribution on the basis of the
estimates of the number of these draws in each period that “best” fit the observed
record break data.

2.2.3 Estimation of RED

Let ct (RED) be the empirical counterpart of γ in year t, defined as the area-weighted
(by the cosine of latitude) sum of record indicators over the twelve time series
(representing the twelve months in a year) and grids in year t. Define λt = ∑t

τ=1cτ .
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Then the probability that a new record will be set in year t is ct/λt. If ct is constant
then this probability simplifies to 1/t, the classical case with a constant draw rate.
Our empirical strategy is to estimate the {ct} sequence by maximum likelihood
estimation (MLE). Let nt and b t denote the area-weighted number of distinct tem-
perature observations and the number of new records at year t, respectively. Define
ft = b t/nt. Note that ft is an unbiased estimator of ct/λt. Therefore {ct} can be
estimated as follows: fix ĉ1 = 1 and let:

ĉt = ft

1 − ft
λ̂t−1, where λ̂t−1 = ∑t−1

τ=1ĉτ .

Denote Lt
(
ĉ
)

as the logarithm of the likelihood of observing precisely ft proportion
of new record high temperatures in year t with the vector of parameters ĉ =(
ĉ1, ĉ2, ..., ĉT

)
, where T is the last year for each of the time series:

Lt
(
ĉ
) ≈ b t ln ĉt + (nt − b t) ln λ̂t−1 − nt ln λ̂t. (2)

We use maximum likelihood techniques to estimate the vector of ĉ so as to maximize∑T
t=1Lt

(
ĉ
)
.

For stations with temperature data that start at different time periods, we need
to slightly modify the above procedure. We group the time series that start at time
h as the time series of cohort h where h ∈ {1, 2, ..., T − 1}. Then we compute the
logarithm of the likelihood function defined by the Eq. 2 for each cohort, and
aggregate all such functions to form the new likelihood function to maximize.

There is one technical issue with the observed temperature data sets that we still
need to address. Since temperature data are recorded only up to a 10th of a decimal
point we have several ties in our time-series. Ties in temperature observations violate
the continuity assumption of the underlying temperature distribution. To resolve this
issue of ties, we perform Monte Carlo type simulations. In each simulation ties are
randomly broken prior to the estimation of RED. This experiment is repeated 1,000
times, and the mean and 95% confidence intervals (CI) of RED estimates from this
1,000 experiments are computed for each year.

2.2.4 Deriving the frequency of extreme temperatures from RED

The focus of this paper is not record temperatures per se, but rather the estimation
of changes in the frequency of extreme temperatures over time. Hence we need
to link the relationship between our RED estimates and the frequency of extreme
temperatures. Here we show that the change in RED converges to the change in the
frequency of a given temperature as this temperature goes to an extreme limit of the
distribution.

First we normalize RED-H in the base year to one and assume that the RED-
H in the current year is equal to n > 0. Suppose the distribution of the underlying
temperature distribution in the base year is continuous, differentiable, and strictly
increasing in the range [α, β], where α and β can be infinity. Let Z denote the tem-
perature random variable with the corresponding cumulative distribution function
(cdf) FZ (.), and let Z(n) denote the nth order statistic (i.e. the maximum of n draws)
with the corresponding cdf denoted as FZ(n)

(.). Assuming that Z1, Z2, ..., Zn are from
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the same initial distribution FZ (.) as given in Eq. 1,3 the probability density of the
nth order statistic is given by:

fZ(n)
(x) = dFZ(n)

dx
(x) = nFn−1

Z (x)
dFZ (x)

dx
= nFn−1

Z (x) fZ (x) .

Hence the probability of observing a temperature greater than x from a maximum of
n draws is given by:

g (x) = ∫ β

x≥α
nFn−1

Z (z) fZ (z) dz.

Similarly, the probability of observing a temperature greater than x from a single
draw is given by:

h (x) = ∫ β

x≥α
fZ (z) dz.

Then the ratio g (x) /h (x) represents the change in the frequency of observing a
temperature greater than x in the current year compared to the base year. Since
both g (x) and h (x) are differentiable and converge to zero, the limit of the ratio
g (x) /h (x) as x approaches an “extreme” high value is obtained by L’Hospital’s rule:

lim
x→β

g (x)

h (x)
= lim

x→β

g′ (x)

h′ (x)
= lim

x→β

nFn−1
Z (x) fZ (x)

fZ (x)
= lim

x→β
nFn−1

Z (x) = n.

Therefore changes in RED-H approximate the change in frequency of observing
an “extreme” high temperature. The same argument holds for the frequency of
observing an extreme low temperature derived from changes in RED-L. Note that
the observed maximum or minimum temperature doesn’t necessarily correspond to
this “extreme” temperature since the latter refers to the “limit” of the underlying
distribution.

To complete the proof we need to show that the ratio approaches this limit
monotonically as x approaches extreme values. We rewrite the ratio g (x) /h (x) as
follows:

g (x)

h (x)
=

∫ β

x≥α
nFn−1

Z (z) fZ (z) dz
∫ β

x≥α
fZ (z) dz

= 1 − Fn
Z (x)

1 − FZ (x)
= ∑n

t=1 Ft−1
Z (x) .

If F (.) is strictly increasing then this ratio is also strictly increasing in x for any n,
which completes the proof.

2.3 An alternative approach to estimate RED

One shortcoming of our current estimation of RED is the fact that we do not use
all the information available in our temperature data. More specifically, we only
use record break information and not also the magnitude of temperature changes
from one time period to the next. Hence our estimates of RED are inefficient.
The question is whether we can use this additional information while preserving

3As mentioned earlier, although we assume that the n draws come from the same initial distribution
the transformed distribution by taking the maximum of n such draws clearly represents a change in
the underlying distribution.
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the distribution-free property of RED. One alternative approach is to rank order
temperature observations, and then estimate a time series of RED that maximizes
the likelihood of the rank order of the entire history of temperature observations.

This rank-order approach clearly incorporates more information than the record-
break approach, though not quite the exact magnitudes of temperature changes. For
instance, the temperature observation in the third year may be a record high among
the first three temperature observations, but when considered against the entire
history of temperature data, this high record may be also the third lowest. By using
this additional fact, the estimated number of draws associated with this temperature
observation will be smaller under the rank-order approach. In other words, the
rank-order approach uses more information by looking at the overall standing
of a temperature observation in relation to the entire time series of temperature
observations.

The rank-order method still maintains all the basic properties of our current
record-break approach, including the distribution-free property. Moreover, the rank-
order method is especially useful when sample sizes are small which is likely to be the
case when we study geographically restricted areas. Note that a record is less likely to
be broken simply due to the passage of time, and this problem is further exacerbated
when we have small sample sizes because we may not observe even a single record
break toward the end of a long time series where the predicted probability of a record
break is low. This problem can be avoided by using the rank ordering of temperature
observations which, unlike record break information, does not depend on the time
elapsed nor the sample size, i.e., temperature observations in a time series can be
always ranked by its magnitude.

The downside of this rank-order approach is that it is very costly in terms of
computation resources due to maximum likelihood routines that use multinomial
regressions. The current RED estimates using record data only require binomial
regressions. However, initial simulation results suggest that as long as we have
sufficiently large sample sizes the RED estimates are very similar across these two
estimation methods. In our future research we hope to implement the more efficient
rank-order estimation routine in order to assess changes in extreme climate events.

3 Data

The two most widely used temperature data types are daily extremes and monthly
average temperatures. The type of data that is more appropriate will typically depend
on the kind of impacts we wish to study. We choose the monthly average land surface
air temperature (LSAT) as our main data primarily due to the limited availability
of high quality daily temperature data (especially in the tropics and in the early
time periods of the last century). However we do compare RED estimates from the
monthly average temperature data with RED estimates from the best-available daily
extreme temperature data (see Section 4.4).

3.1 Monthly average temperature data

The monthly average temperature data we use for our main analysis are the
0.5◦ × 0.5◦ gridded global network of time-series between 1900–2008 provided by the
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Center for Climate Research at the University of Delaware (called here by Del-
CCR2). This data set is available from the University of Delaware website.4 The
DelCCR2 is constructed from major historical LSAT data including homogenized
GHCN-Monthly version 2. The monthly average temperature in each grid is ei-
ther directly observed from weather stations or interpolated from nearby stations
(Willmott and Matsuura 1995).

We select this data set as our primary source over others (e.g. HadCRUT3v) for
two specific reasons. First, it has a complete data record, whereas the other sources
have missing data entries due to unreliable station data. Missing data can lead to
biased RED estimates because we do not know whether an unobserved temperature
is a new record or not, and hence whether a subsequent temperature in the same time
series is a record or not. Second, the DelCCR2 data have better spatial coverage,
especially for low latitude regions. However, the reason that the DelCCR2 does
not have missing data entries is because it uses interpolation over much longer
distances than compared to say HadCRUT3v. This implies that some of the data
observations in the DelCCR2 are likely to have a larger uncertainty associated with
them compared to HadCRUT3v. To address this issue we restrict our analysis to
grids with latitudes higher than 24◦S.

To construct the annual time-series of record high and record low temperatures
for each month-grid pair, we create a 2◦ × 2◦ grid network that contains (a maximum
of) 16 monthly average temperatures from the original 0.5◦ × 0.5◦ grid network.
From each of these expanded grids we select the maximum and minimum monthly
average temperatures to create the annual time-series of record high and record low
temperatures, respectively.5 In other words, we estimate RED-H for the maximum
of monthly average temperatures (“RED-H Mx” for short), and RED-L for the
minimum of monthly average temperatures (“RED-L Mn” for short).6 Since there is
no missing temperature information in DelCCR2, each grid has 12 record high and
12 record low time series corresponding to each month. In our sample we have 3, 996
2◦ × 2◦ grids geographically distributed as follows: 1,432 grids at latitudes higher than
55◦N; 1,391 between 24◦N and 55◦N; 630 between 0◦ and 24◦N; and 542 between 24◦S
and 0◦.

For each month-grid pair we take 1929 as the base year and substitute its temper-
ature with the average of the maximum (minimum) monthly average temperatures
from 1900 to 1929 (for that month-grid). This thirty-year average temperature should
be long enough to make valid comparisons with the future changes in the underlying
distribution of temperatures. For the base year 1929 we normalize RED to 1 for
both samples. Given this normalization RED should be interpreted as follows: if for
example RED-H Mx in year 2000 is 10, then an extreme high temperature in terms of
monthly averages is ten times more likely in year 2000 than it is in first three decades
of the past century (See Section 2.2.4).

4http: / / climate.geog.udel.edu /∼climate/html_pages/Global2_Ts_2009/README.global_t_ts_2009.
html
5As defined earlier, the record high (low) temperature at time t is the highest (lowest) temperature
observed up to time t.
6Although one can also estimate RED-H for the minimum of monthly average temperatures and
vice versa, here we are interested in how the “extreme” monthly average temperatures become more
extreme over time in order to examine changes in the tails of the temperature distribution.

http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/README.global_t_ts_2009.html
http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/README.global_t_ts_2009.html
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We use HadCRUT3v data (Brohan et al. 2006) to test the robustness of our
findings. These data also help to address whether the use of land only data in
DelCCR2 leads to biased estimates of global temperature changes. Since the original
5◦ × 5◦ grid of this data is too coarse to construct two separate time-series for the
maximum and minimum temperatures, we construct record high and record low
indicators from the single time-series of monthly average temperatures for each
month-grid pair.7

As mentioned before, estimates of RED based on HadCRUT3v data could be
biased because this data source has missing temperature information. Hence we con-
struct our time-series of record indicators only on the basis of observed temperature
data and ignore the years where temperature data are missing. To further minimize
the impact of missing data we restrict our comparison to the period 1969–2008, where
we have fewer missing data points. We substitute mean temperature in 1969 with the
average of mean temperatures from 1940 to 1969. We also exclude month-grid pairs
that have less than 10 years of data or more than 5 gaps in the time series. This leaves
us with 1,376 grids in total (468 in landmass and 908 in sea).

3.2 Daily extreme temperature data

The data we used (called here by ETCCDI) for daily extreme temperatures are
based on work by CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change
Detection and Indices (ETCCDI) (Peterson 2005). The data set is available from
http://cccma.seos.uvic.ca/ETCCDI/index.shtml and has been widely used to examine
changes in extreme temperatures and precipitations (Griffiths et al. 2005; Alexander
et al. 2006; Choi et al. 2009). The data set has monthly station level information of
daily extreme temperatures. The station level data is preferred over the gridded data
to examine changes in daily extreme temperatures since the latter data are smoothed
and thus the record information in this data can be artificial.

To compare with our monthly average temperature data, we use the following
four indices based on daily extreme temperatures: monthly maximum of the daily
maximum temperature (TXx), monthly minimum of the daily maximum temperature
(TXn), monthly maximum of the daily minimum temperature (TNx), and monthly
minimum of the daily minimum temperature (TNn). It should be noted that a
direct comparison of RED based on daily extreme temperatures and RED based on
monthly average temperatures is not possible since monthly average temperatures
contain both daily maximum and minimum temperatures, and thus the variabil-
ity of daily extreme temperatures may not be identified in the monthly average
temperatures.

We use station data at latitudes higher than 24◦S (to be compatible with the
monthly data) and exclude month-station pairs that have less than 10 years of data or
more than 5 gaps in the time series. We also exclude station data that are identified
as inhomonegeous. For each of the four series we substitute the mean temperatures
from 1940 to 1969 as the base year temperature for 1969. Although we have station
data up to 2007 in ETCCDI, we restrict our analysis to 2004 because (with the

7Although the use of the same time series for both high and low record samples implies that for any
month-grid pair we cannot set both a high and low temperature record in any given time period, this
restriction does not qualitatively change our results as long as the time-series is sufficiently long.

http://cccma.seos.uvic.ca/ETCCDI/index.shtml
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exception of the TXx time series) there are no station data in the tropics—i.e. in
the latitudes between 24◦S and 24◦N—from 2004 to 2007. Hence our daily extreme
temperature data span from 1969 to 2004.

The stations in ETCCDI are unevenly distributed across the global landmass, and
hence it is difficult to say whether the RED estimates are globally representative.
The two solutions to this problem are either to thin the station network (Frich et al.
2002) or create a grid network (Kiktev et al. 2003; Alexander et al. 2006; Caesar et al.
2006). If we thin the station network then we lose stations in places where we do not
have many stations to begin with. On the other hand, if we grid the station network
then temperature information is smoothed. As an alternative, we attach appropriate
weightings for each station to aggregate all available station data as follows. We
create a 5◦ × 5◦ grid network and compute the total number of stations in each grid.
Then we weight the record break information of each station by the inverse of the
total number of stations in the grid to which it belongs in our formulation of the
likelihood function. By doing so, we still use station level data directly to estimate
RED without smoothing the temperature information. The RED estimates do not
vary much as we choose different grid resolutions,8 and hence we only present results
based on the 5◦ × 5◦ grid network.

4 Results

4.1 Global analysis

In Fig. 1 global annual estimates of RED-H Mx and RED-L Mn from 1929 to 2008
are shown in panels (a) and (b), respectively. Note that in both panels the figures
show the 95% CI bands and the five-year moving-averages of the mean RED (both
from 1,000 simulations of random tie-breaks). Global warming is indicated by an
increase (decrease) in RED-H Mx (RED-L Mn). Since the RED-H Mx and RED-L
Mn estimates do not suggest a linear trend over the entire time period of study, we
first identify “change-points” (Lund and Reeves 2002) in time where the linear fit
before and after the change-points are significantly different. The change-points we
identify on a yearly basis are: 1986 and 1996 for RED-H Mx, and 1976, 1985 and 2004
for RED-L Mn.

The striking finding is that the global RED-H Mx has increased 10-fold between
the first three decades of the last century (our base period) and the most recent
decade (based on five-year moving-averages). In the context of global warming this
implies that the likelihood of observing an extreme high temperature (measured in
terms of monthly averages) has increased 10 times over the last hundred years. To
further summarize our findings, RED-H Mx shows a mild upward trend until the
mid 1980s, where the RED-H Mx about doubled from the base period. However,
since 1986 the increase in RED-H Mx has been dramatic and also more volatile.
On the other hand, the magnitude of changes in the global RED-L Mn (Fig. 1b) is
much smaller compared to RED-H Mx over the past century. The detailed changes
in RED-L Mn show a more complex pattern compared to the changes in RED-H

8The grid resolutions we tested include 2◦ × 2◦, 5◦ × 5◦, 8◦ × 8◦ and 10◦ × 10◦.
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Fig. 1 Global annual estimates of RED from 1929 to 2008. RED-H Mx (red) are in panel (a) and
RED-L Mn (blue) are in panel (b). The black line in (a) and the green line in (b) are the five-year
moving averages (MA) of RED-H Mx and RED-L Mn estimates, respectively. In panel (c–d), the
RED estimates based on DelCCR2 and HadCRUT3v data from 1969 to 2008 are compared. The
gray bands around the RED estimates are 95% CI from a single tie-break simulation. All RED are
normalized to 1 in 1929 in panel (a–b) and in 1969 in panel (c–d)

Mx (where we do not observe a downward trend of any significance over the past
century). For example, RED-L Mn estimates in 2008 are not much different from
eighty years earlier with less obvious trend lines during this period. The RED-L
Mn doubled between the first three decades of the last century and the mid-1970s,
and between the mid-1970s and 2004 RED-L Mn estimates decreased by more than
half. This overall downward trend of RED-L Mn is consistent with findings from
other studies using global data (Karl et al. 1993; Easterling et al. 1997). The increase
in RED-L Mn since 2004 represents a cooling in terms of monthly averages, but it
merely goes back to the same level as in the base period.

The apparent doubling of RED-H Mx and RED-L Mn between 1929 (where both
RED are fixed at 1) and the 1970s (where both RED are about 2) is not inconsistent
with studies on extreme temperatures that in particular have not found evidence
of cold peaks in the 1960s and 1970s. Due to the unavailability of global data on
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extreme temperatures prior to 1951 (Jones et al. 1999)9 we can only compare our
RED estimates with previous studies in the post 1950 time periods. Hence when
we restrict our comparison to the 1950–1970 time period, we do not observe a
significant time trend in either RED-H Mx or RED-L Mn, which is similar to findings
from previous studies on extreme temperatures (Karl et al. 1993; Easterling et al.
1997). Moreover, directly comparing RED based on monthly data with findings from
previous studies using daily extreme temperature data is not straightforward. Note
that monthly data are constructed by averaging daily temperatures over the month
and the daily extreme temperature data are the highest (or the lowest) observed
daily temperature (over the course of a month). Hence the monthly RED-L is
based not only on the extreme cold temperature in a month but also on all the
other temperature observations in the month. Thus the two seemingly contradictory
findings, namely, that monthly RED-L increases from 1929 to the 1970s and that
there are no extreme-cold temperature peaks in the 1960s and the 1970s, perhaps
suggest that the cooling during this period may have occurred in a more persistent
manner that is not necessarily reflected in extreme cold temperatures.

In Fig. 1c–d, we present RED estimates based on HadCRUT3v and DelCCR2
data from 1969 to 200810 to check the robustness of our findings.11 The fact that
the 95% CIs fall within an extremely narrow band in Fig. 1a–b suggests that even
a single simulation is sufficient to effectively break ties. Hence a single random tie-
break is used to estimate RED for both HadCRUT3v and DelCCR2 in Fig. 1c–d.12

The patterns and magnitudes of RED estimates are similar across these data implying
that our original estimates are robust across these different data sources. The simple
correlation coefficients between RED estimates of HadCRUT3v and DelCCR2 are
indeed very high: .88 ∼ .96 for RED-H Mx and .82 ∼ .89 for RED-L Mn.

A second robustness check relates to the issue of spatial correlation of our tem-
perature data. We implicitly assume that temperature distributions are independent
across grids. However, temperature observations from neighboring grids can be
temporally correlated, and this correlation in turn can bias our RED estimates by
duplicating the same information. We test this spatial correlation hypothesis by
comparing RED estimates from different grid sizes. The idea is that if the grid
resolution is coarse enough, then temperature observations across grids are less likely
to be temporally correlated. We test this implication by estimating RED across more
coarsely gridded resolutions over the globe (in latitudes higher than 24◦S)—4◦ ×
4◦(1,209 grids), 6◦ × 6◦ (590 grids) and 8◦ × 8◦ (364 grids).13 As before, to construct

9Prior to the 1950s longer time series data on extreme temperatures are available only for a few
countries, including the US, Canada and the former USSR. In this limited geographic context (prior
to the 1950s) there is neither a strong upward nor downward trend, nor any uniform trends across
the different regions (Karl et al. 1984, 1991, 1993; Kumar et al. 1994; Weber et al. 1994; Bonsal et al.
2001).
10The comparison of DelCCR2 and HadCRUT3v (on landmass) from 1930 to 1969 is found in the
online supplementary material.
11For comparison purposes, we reconstruct the record high and record low indicators from the single
time-series for each month-grid pair in DelCCR2 as in HadCRUT3v.
12Implementing multiple simulations for random tie-breaks in temperature observations is compu-
tationally costly when the data set is an unbalanced panel.
13All estimates of RED are statistically significant at less than 1% level of significance even in the
case of the coarsest data set with 8◦ × 8◦ resolution.
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Fig. 2 Global annual estimates of RED by grid resolution from 1929 to 2008. RED-H Mx (in panel a)
and RED-L Mn (in panel b) across four different resolutions −2◦ × 2◦, 4◦ × 4◦, 6◦ × 6◦ and 8◦ × 8◦—
are presented

the annual time-series of record high and low temperatures, we select the maximum
and minimum monthly average temperature among the original grids included in
each expanded grid (e.g. maximum of 64 grids in the 4◦ × 4◦ case) to create the
record high and record low time series, respectively. Figure 2 shows that there
is no discernible differentiation in the 95% CI bands (based on 1,000 simulations
of random tie-breaks) across the four data sets with different resolutions.14 These
results suggest that even though spatial correlation of temperature data may not be
zero, its effect on RED estimates is minimal.

4.2 Regional and seasonal analysis

Disaggregated analyses of RED provide some new information about climate change
especially when compared with mean-based results (Jones and Briffa 1992). Here
we estimate RED-H Mx and RED-L Mn across four regions (by latitude) and two
seasons (winter/spring and summer/fall in the Northern Hemisphere (NH)). In Fig. 3
(regional breakdowns) and Fig. 4 (seasonal breakdowns), we show the five-year
moving averages of the mean RED from 1,000 simulations of random tie-breaks,
and the five-year moving averages of the mean LSAT as deviations from the mean
temperature between 1961–1990.

In the regional comparison (Fig. 3), mean LSAT suggest that warming is some-
what less severe in the tropics (latitudes between 24◦S and 24◦N) compared with
other regions (latitudes higher than 24◦N): increases of .58◦C and 1.05◦C, respec-
tively, from 1929 to 2008 are based on the difference between the first and last
5 years’ mean LSAT. This is consistent with previous findings in the literature
(Hunter et al. 1993; Trenberth et al 2007). In contrast, RED-H Mx in the past decade
compared to the first three decades a century ago show more than a 16-fold increase

14The exception is RED-L Mn for 2007 and 2008 where it is higher in the 8◦ × 8◦ grid resolution than
it is across the other grid resolutions.
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Fig. 3 Annual estimates of RED by latitude from 1929 to 2008. The five-year moving-averages
of RED estimates (RED-H Mx in panel a and RED-L Mn in panel b) and the five-year moving-
averages of mean temperatures in panel (c) are presented

in the tropics and only about a 7-fold increase in the extratropics. The apparent
discrepancy of RED-H Mx and the mean LSAT across regions can be explained as
follows. The fact that absolute changes in mean temperature are smaller in the tropics
relative to the extratropics could simply imply that the underlying base temperature
distribution in the tropics has a relatively smaller variability. However, note that any
regional RED estimate is a measure of how that regional distribution evolves over
time. Hence the higher RED-H Mx estimates in the tropics say, roughly speaking,
that the right tail of the temperature distribution in the tropics became relatively
“thicker” to its own base distribution compared to the right tail of the temperature
distribution in the extratropics.15

15In more technical terms, recall that a RED-H Mx estimate of 16 in the tropics means that the
transformed distribution is generated by taking the maximum of 16 draws from its base distribution,
and a RED-H Mx estimate of 7 in extratropics means that the transformed distribution is only from
a maximum of 7 draws (See Eq. 1).
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Fig. 4 Annual estimates of RED by season in the Northern Hemisphere from 1929 to 2008. The
five-year moving-averages of RED estimates (RED-H Mx in panel a and RED-L Mn in panel b)
and the five-year moving-averages of mean temperatures in panel (c) are presented

Periods since 2002 might indicate the action of opposing surface temperature
forcings, as anthropogenic warming was counterbalanced by reduced solar irradiance
and a generally negative phase of the PDO and ENSO cycles, compared to the time
periods 1976–1998 (See Fig. 1 in Lean and Rind 2009). Moreover, the historical
pattern of response to these two forcings suggests that the solar effect on mean
temperature is greatest outside of the tropics, while the PDO/ENSO is greatest in
the tropics (Lean and Rind 2008). Therefore the general congruence between the
increase in RED-L Mn between 2002–2008 in subtropical/tropical regions (Fig. 3b)
and a generally negative phase of the PDO and ENSO cycles during this period
relative to time periods 1976–1998 suggests that the Pacific Ocean temperature
variability might be primarily responsible.

In the seasonal comparison (Fig. 4), we find that RED-H Mx are not different
between winter/spring and summer/fall in the Northern Hemisphere. However, mean
LSAT shows that warming has been greater in winter/spring than summer/fall:
increases of 1.09◦C and .66◦C, respectively, from 1929 to 2008. This difference across
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seasons in mean LSAT is also found in the literature (Gordon 1992; Hunter et al.
1993; Zhang et al. 2000; Bonsal et al. 2001; Lund et al. 2001; Trenberth et al 2007) and
may be related to the higher RED-L Mn in summer/fall compared to winter/spring
(Fig. 4b).

Therefore in terms of climate change impacts, changes in the tropics and sum-
mer/fall may be at least as important as the changes in the extratropics and
winter/spring. These results are not indicated by examining changes in the mean
temperature.

4.3 Comparison with mean temperature

The analysis so far shows that our RED estimates can behavior very differently
from the mean temperature. To investigate the relationship between RED and the
mean temperature we perform several simulation exercises. More specifically, we
generate a random data set where we can explicitly control the parameters of the
underlying distribution and hence the evolution of this distribution over time. In the
basic setup, we randomly draw 400,000 observations for each period from the normal
distribution. We interpret each of these observations as originating from a station.
We then pair two observations (i.e. two stations) from which we select the maximum
and minimum numbers to create the two time series of record highs and record lows,
respectively. This mimics the construction of our 2◦ × 2◦ grid data from the original
0.5◦ × 0.5◦ grid data (The simulation results do not change qualitatively when two
record time series are created from a single time series from each of 400,000 stations).
We repeat this random number generation process for 40 periods.

In order to understand the specific trend patterns we observe, we parameterize
a normal distribution over a 40 period as follows: from period 1 to 19 we fix the
mean at zero and increase the standard deviation throughout. Then from period 20
to 40 we increase the mean throughout and fix the standard deviation to the same
level as in period 19. More specifically, we set the mean, m = 0 for 1 ≤ t ≤ 19 and
(t − 19)/9 for 20 ≤ t ≤ 40, and the standard deviation, σ = (−2t2 + 105t)/1000 + 3.6
for 1 ≤ t ≤ 19 and 4.9 for 20 ≤ t ≤ 40. Our objective here is to generate data—by
carefully considering changes in the underlying distribution—that could mimic the
general observed trends in mean temperature, RED-H Mx, and RED-L Mn during
our period of study. Note that there are many different combinations of changes in
mean and standard deviation that can generate the observed trends, and hence this
is not an effort to pretend that these assumed changes correspond to reality.

Figure 5 shows the RED estimates based on simulated data. They clearly parallel
the observed trends in Fig. 1a–b: in the period 1–19 the mean is invariant but both
RED-H Mx and RED-L Mn are increasing—mimicking the 1929–1970 observed
time period—and in period 20–40 the mean is trending upwards, RED-H Mx are
increasing and RED-L Mn are decreasing—mimicking the post 1970s observed
period.

In conclusion, these simulation results clearly illustrate that the mean temperature
can be positively correlated with RED-H Mx and negatively correlated with RED-L
Mn (holding everything else constant), and that in principle, concurrent changes in
RED-H Mx and RED-L Mn can be associated with no changes in the mean. The
latter observation raises the question of whether there are in fact periods where we
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might observe concurrent increases (or decreases) in RED-H Mx and RED-L Mn
with no discernible trend in the mean.

To address this question we use regression analyses to uncover changes in climate
that may be hidden by simply looking at changes in mean temperature. Note that
RED-H Mx and RED-L Mn are only moderately negatively correlated—with a
simple correlation coefficient of −.37—suggesting potential periods of concurrent
increases (or decreases) in the frequencies of both extreme high and extreme low
temperatures. To identify periods where both RED-H Mx and RED-L Mn increase
or decrease significantly and mean temperature changes are insignificant, we do the
following exercise borrowed from trend analysis in the literature (Alexander et al.
2006; Choi et al. 2009). We run linear regressions (where autocorrelation in the error
term is corrected by Cochrane-Orcutt AR(1))16 of annual mean temperature and of
RED-H Mx and RED-L Mn (using mean value of 1,000 Monte Carlo simulations)
on a time variable that covers time-windows of length 5 to 25 years between 1929–
2008. Through this exercise we find time periods where the time coefficient in the
RED regressions for both high and low temperature have the same sign, and are
statistically significant at 10% (or lower) levels of confidence, and where the time
coefficient in the mean temperature regression is insignificant. In all cases, we require
that the R-squared values exceed 10% to ensure a reasonable fit.17

Applying these criteria we identify the time window 2002–2008 where both
RED-H Mx and RED-L Mn are increasing with almost no change in the mean

16Cochrane-Orcutt AR(1) regression (Cochrane and Orcutt 1949; Breusch and Pagan 1979) is simply
the generalized least-squares method to estimate the parameters in a linear regression model in
which the errors are assumed to follow a first-order autoregressive process AR(1). For the time
series of our RED, the partial autocorrelation for lags larger than one is generally not significant
and so we restricted it to an AR(1) process. Our procedure uses an iterative process to find the best
autocorrelation coefficient. A similar procedure is used in Wang and Swail (2001), which is applied
in Zhang and Zwiers (2004) for climate data.
17Note that the R-squared in Cochrane-Orcutt AR(1) cannot be compared with the counterpart in
the OLS since it comes from the transformed dependent variable on the transformed independent
variables.
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Fig. 6 Annual estimates of RED based on daily extreme temperatures from 1969 to 2004. RED-H
and RED-L estimates are shown in panel (a) and (b), respectively. The gray bands around the RED
estimates are 95% CI from a single tie-break simulation

temperature.18 Specifically, we show that the plateauing in global mean temperature
between 2002–2008 is associated with increases in the frequency of extreme high and
extreme low temperatures of 13.3% and 22% per annum, respectively. Although one
needs to be careful in generalizing this observation due to small sample sizes in this
time window, the basic result is consistent with an increase in the variance of the
temperature distribution in Europe, a conclusion based on heat waves during the
summer of 2003 (Schäl et al. 2004).

4.4 Comparison with RED for daily extreme temperatures

In Fig. 6 we present annual estimates of RED for the four indices—TXx, TXn, TNx,
and TNn—from 1969 to 2004 from the ETCCDI data set. For each of the four time
series we present both RED-H and RED-L to examine whether breaking record
high or record low temperatures dominates the trend for each time series since 1969.
The RED estimates here are based on a single simulation of random tie-breaks (the
gray bands around the RED estimates are 95% CI). RED estimates from 1969 to
2004 based on the monthly average temperature in DelCCR2 are also reproduced
for easy comparison.

In Fig. 6b, the RED-L for the four time series of daily extreme temperatures are
not distinguishable from each other, showing an overall decline from 1969 to 2004.
There is also no difference between RED-L for daily extreme temperatures and
RED-L Mn based on DelCCR2. In sum, the frequency of extreme low temperatures
for each index in 2004 is less than the level three decades earlier.

In Fig. 6a, RED-H for the four daily extreme temperature time series show
different magnitudes but the overall pattern of changes are similar. The RED-H
for the daily minimum temperatures (TNn and TNx) have increased in general

18This observation is robust when the time window is restricted to 2002–2007.
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more than the RED-H for the daily maximum temperatures (TXx and TXn). These
observations are consistent with what others have found (Zhang et al. 2000; Yan
2002; Alexander et al. 2006; Choi et al. 2009): more areas on global landmass show
significant increases in the daily minimum temperatures as opposed to the daily
maximum temperatures.19

As the time trends in Fig. 6 illustrate RED estimates from both monthly average
temperature and daily extreme temperature data are highly correlated. The simple
correlations between RED estimates from the monthly and daily data are .94 ∼ .98
for RED-H and .80 ∼ .96 for RED-L. However, note that the increase in RED-H Mx
based on DelCCR2 is generally greater than the increase in RED-H based on daily
extreme temperature data. As noted earlier (Section 4.1), the finding that monthly
RED-H increases are larger than daily RED-H increases suggests that the warming
indicated by the daily extreme temperature data is perhaps more “persistent”.

5 Conclusion

In this paper we have introduced a new metric to assess changes in the frequency of
extreme temperatures and thus provided a precise quantification of global warming
and cooling. Methodologically, our approach is capable of aggregating temperatures
from heterogeneous distributions and has a clear interpretation of the changes in the
temperature distribution. The inefficiency of our use of only record break informa-
tion in computing RED can be corrected by rank ordering the data. However, this
method is costly in terms of computational resources.

Substantively, while our RED estimates based on monthly average of land surface
air temperatures reproduced the general patterns of warming and cooling indicated
by changes in mean temperatures over the past century, it also provided new
information on the spatial patterns of this warming, including new insights into
climate changes, region and seasonal variability. In particular, while the tropical
mean temperature did not increase as much as mean temperature in the extratropics,
the number of high temperature record breaks was rising faster in the tropics
than in the extratropics. Moreover, the well-known characteristic of global warming
maximizing in the extratropics in winter was not reproduced in the pattern of high
temperature record breaks, which shows, if anything, greater effect in the tropics with
little seasonal variation. We also found congruence between the time series of RED
estimates for monthly average temperature and for daily extreme temperatures, and
the time evolution of these estimates are consistent with findings from previous
studies.

The RED metric can be applied more widely to study other climate components
such as sea surface temperature and precipitation where changes in the extremes
are likely to have major societal and ecological impacts. For example, increases
in extreme precipitation will impact not only people (Thibault and Brown 2008),
but also the survival of various species (Rittenhouse et al. 2010). RED estimates
from various climate components should be especially useful for comparison with

19This is also consistent with findings based on other indices. For example, days of warm summer
nights have increased while frosty days have decreased (Frich et al. 2002; Griffiths et al. 2005;
Alexander et al. 2006; Choi et al. 2009).
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observed biological climate change responses (Walther et al. 2002; Parmesan and
Yohe 2003; Rosenzweig et al. 2008) since they are more likely to be impacted by
changes in the extremes than by changes in the mean (Easterling et al. 2000).
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