An Alternative Flight Software Trigger Paradigm

Kelly Smith, Robert Gay, Susan Stachowiak
NASA Johnson Space Center
AIAA GN&C, August 19-22, 2013, Boston, MA
Introduction

• Orion is scheduled to fly an orbital test flight, Exploration Flight Test-1 (EFT-1), in late 2014

• Mission Profile:
 ▪ Launch from Kennedy Space Center aboard Delta-IV Heavy into LEO parking orbit
 ▪ After 1 orbit, Delta IV-H upper stage injects the vehicle into an elliptical orbit which intersects the Earth
 ▪ Orion flies high-speed guided entry, splashes down in Pacific Ocean west of Mexico
Introduction, cont.

- Once high-speed entry is complete, the vehicle must begin a parachute deployment sequence (PDS).
 - Jettison Forward Bay Cover (FBC)
 - Deploy Drogue Parachutes
 - Deploy Main Parachutes
Flight Software Triggers

• Typically, triggers are normally simple checks against thresholds:

  ```
  if (altitude <= 24000)
    deploy_parachute();
  ```

• When required, additional conditions are added to increase the specificity of the trigger:

  ```
  if (altitude <= 24000 && gps_is_available)
    deploy_parachute();
  ```

• When adding new conditions, the number of additional code paths increases, increasing code complexity.

• Code complexity increases software testing costs.

• Therefore, to minimize costs, simple flight software triggers are desired.
Motivation

• By design, deploy drogue parachutes no lower than 24,000 feet altitude, using GPS.

• If both GPS and the backup barometric altimeters are unavailable, then the navigated altitude may have large errors.
Motivation, cont.

- If PDS is still triggered based on navigated altitude in this scenario, many cases deploy too low or too high.

- An alternative trigger must be developed which uses a less error-prone signal.
Introduction to Logistic Regression

- A statistical technique used for fitting a curve to classify data into separate classes.

- Simplest version is binary logistic regression (2 classes of data)

- Fit a logistic function, also known as a sigmoid function (S-curve), to these two classes of data
Logistic Function

\[f(x) = \frac{1}{1 + e^{-x}} \]
Introduction to Logistic Regression

- The value of the logistic function is bounded between 0 and 1.
- Interpret the value of the logistic function to be the probability that the data x is in class $y = 1$.
- Fit a parameter vector θ to the training set to minimize model predictive error.
- Once converged, the model is ready to classify new data.

Hypothesis Function

$$P(y|x, \theta) = \frac{1}{1+e^{-\theta^T x}}$$
Logistic Regression Example

Fake Data: Size of Skin Mole vs. Malignancy

Disclaimer: This is not real data. Do not use for medical self-diagnosis.
Logistic Regression Example

Fake Data: Size of Skin Mole vs. Malignancy

Disclaimer: This is not real data. Do not use for medical self-diagnosis.
Applying Logistic Regression to Triggers

• It may be difficult to select a signal to trigger some action in software.

• Logistic regression can aid the designer in determining strong signals for triggers.

• Instead of guessing a trigger signal and tuning a threshold, let an algorithm determine the “best” trigger signals.
Implementation

• Gather training data & labels
 ▪ Training Data: Navigation output from Monte Carlo data
 ▪ Labels:
 – $y=1$ if truth altitude $< 25,000$ feet
 – $y=0$ if truth altitude $\geq 25,000$ feet

• Normalize each dimension of the training data to lie within $[-1, 1]$ domain (for numerical reasons).

• Fit a logistic function using gradient descent optimization.

• Once converged, the classifier/trigger is ready for use.
Flight Software Implementation

- **Store parameter vector as software parameter.**

```plaintext
function h = logistic(double[] theta, double[] x) {
    double h = 1 / ( 1 + exp(-transpose(theta)*x) );
    return h;
}

function deploy_command = parachute(PARAM, navStates) {
    double h = logistic(PARAM.THETA, navStates);
    boolean deploy_command = h > PARAM.THRESHOLD;
}
```
Performance Analysis

- Identify strong signals
- Combine strong signals
 - Multivariate Logistic Regression
- Performance Criteria:
 - Minimize altitude spread at parachute deployment initiation
 - Ensure minimum deployment altitude stays above 25,000 feet.
Results

• **Selected Navigation Parameters:**
 • Navigated altitude
 • Navigated relative velocity magnitude
 • Elapsed time since sensing 0.2Gs of aerodynamic acceleration
 • Sensed aerodynamic acceleration
 • Navigated Mach number
 • Navigated dynamic pressure

• Record altitude at trigger activation for each trajectory, varying activation thresholds.
Reduced total altitude spread by approximately 3,000 feet as compared to existing approach.
Lessons Learned

• Critical to monitor model fitting process
• May require variable transformations, requiring more designer insight.
• More challenging to understand why a particular trajectory state activated trigger.
• Provides insight into relative value of trigger parameters
Future Work

• Use Naïve Bayes Classifiers to develop triggers
 ▪ Inspired by use in email spam filters
• Preliminary results show large improvements over logistic regression approach.
Conclusion

• Logistic regression is a powerful tool for developing robust flight software triggers.

• Logistic regression can help designer understand the problem space for developing triggers.
An Alternative Flight Software Paradigm:

Applying Multivariate Logistic Regression to Sense Trigger Conditions using Inaccurate or Scarce Information

NASA Johnson Space Center
Kelly Smith, Robert Gay, Susan Stachowiak
AIAA GN&C Conference
Boston, August 20, 2013
Introduction

• Orion is scheduled to fly an orbital test flight, Exploration Flight Test-1 (EFT-1), in late 2014

• Mission Profile:
 o Launch from Kennedy Space Center aboard Delta-IV Heavy into LEO parking orbit
 o After 1 orbit, Delta IV-H upper stage injects the vehicle into an elliptical orbit which intersects the Earth
 o Orion separates from upper stage after apogee
 o Orion flies high-speed guided entry, splashes down in Pacific Ocean west of Mexico
Introduction, cont.

- Once high-speed entry is complete, the vehicle must begin a sequence of parachute deployments.
 - Forward Bay Cover (FBC) Jettison
 - Drogue Parachutes
 - Main Parachutes
Motivation

- By design, the parachute deployment sequence (PDS) is to begin no lower than 24,000 feet altitude.
- When GPS is available, navigated altitude errors are small.
- If GPS is unavailable, navigation altitude will be informed by backup 3 barometric altimeters (less precise).
- If both GPS and the barometric altimeters are unavailable, then the navigated altitude may have large errors.
Motivation, cont.

- If navigated altitude contains large errors, the parachute deployment sequence (PDS) will not occur correctly.
- If PDS is still triggered based on navigated altitude in this scenario, many cases impact Earth before PDS.
- An alternative trigger must be developed which uses a less error-prone signal.
Flight Software Triggers

- Typically, triggers are normally simple checks against thresholds:
 - if (altitude <= 24000) { deploy_parachute(); }
- When required, additional conditions are added to increase the specificity of the trigger:
 - if (altitude <= 24000 && gps_is_available == true) { deploy_parachute(); }
- When adding new conditions, the number of additional code paths increases, increasing code complexity.
- Code complexity increases software testing costs.
- Therefore, to minimize costs, simple flight software triggers are desired.
Introduction to Logistic Regression

- A statistical technique used for fitting a curve to classify data into separate classes.
- Simplest version is binary logistic regression (2 classes of data)
- Fit a logistic function, also known as a sigmoid function (S-curve), to these two classes of data

Logistic Function

\[f(x) = \frac{1}{1 + e^{-x}} \]
Introduction to Logistic Regression

- The value of the logistic function is bounded between 0 and 1.
- Interpret the value of the logistic function to be the probability that the data x is in class $y = 1$.
- Fit a parameter vector θ to the training set to minimize model predictive error.
- Once converged, the model is ready to classify new data.

$$P(y|x, \theta) = \frac{1}{1+e^{-\theta^T x}}$$

Hypothesis Function
Logistic Regression Example

Fake Data: Size of Skin Mole vs. Malignancy

Disclaimer: This is not real data. Do not use for medical self-diagnosis.
Logistic Regression Example

Fake Data: Size of Skin Mole vs. Malignancy

Mole Size (millimeters)

Malignant 1
Benign 0

Disclaimer: This is not real data. Do not use for medical self-diagnosis.
Applying Logistic Regression to Triggers

• It may be difficult to select a signal to trigger some action in software.

• Logistic regression can aid the designer in determining strong signals for triggers.

• Instead of guessing a trigger signal and tuning a threshold, let an algorithm determine the “best” trigger signals.
Implementation

• Gather training data & labels
 o Training Data: Navigation output from Monte Carlo data
 o Labels:
 • $y=1$ if truth altitude $< 25,000$ feet
 • $y=0$ if truth altitude $\geq 25,000$ feet

• Normalize each dimension of the training data to lie within $[-1, 1]$ domain (for numerical reasons).

• Fit a logistic function using gradient descent optimization.

• Once converged, the classifier/trigger is ready for use.
Flight Software Implementation

• Store parameter vector as software parameter.

• Flight software should contain some function to evaluate logistic function:

```java
function h = logistic(double[] theta, double[] x) {
    double h = 1 / (1 + exp(-transpose(theta)*x));
    return h;
}

function deploy_command = parachute(PARAM, navStates) {
    double h = logistic(PARAM.THETA, navStates);
    boolean deploy_command = h > PARAM.THRESHOLD;
}
```
Performance Analysis

• Identify strong signals

• Combine strong signals
 o Multivariate Logistic Regression

• Performance Criteria:
 o Minimize altitude spread at parachute deployment initiation
 o Ensure minimum deployment altitude stays above 25,000 feet.
Results

- **Selected Navigation Parameters:**
 - Navigated altitude
 - Navigated relative velocity magnitude
 - Elapsed time since sensing 0.2Gs of aerodynamic acceleration
 - Sensed aerodynamic acceleration
 - Navigated Mach number
 - Navigated dynamic pressure

- Record altitude when trigger is first activated for each trajectory for a range of trigger activation thresholds.
Results

Reduced total altitude spread by approximately 3,000 feet as compared to existing approach.
Lessons Learned

• Critical to monitor model fitting process

• May require variable transformations, requiring more designer insight.

• More challenging to understand why a particular trajectory state activated trigger.

• Provides insight into relative value of trigger parameters
Future Work

• Use Naïve Bayes Classifiers to develop triggers
 o Inspired by use in email spam filters

• Preliminary results show large improvements over logistic regression approach.
Conclusion

• Logistic regression is a powerful tool for developing robust flight software triggers.

• Logistic regression can help designers understand the problem space for developing triggers.