
i

PROJECT SUMMARY

NASA TASK
ORDER 5
FINAL REPORT

TASK NO.: NNL11AB71T CONTRACT NO.: NNL09AA10B

PROJECT TITLE:
Propulsion related module development and vehicle integration
COMPANY:
TechnoSoft Inc.
info@technosoft.com
513-985-9877

ADDRESS:
11180 Reed Hartman Highway
Cincinnati OH 45242

SUMMARY:
This report documents the work performed during the period from May 2011 – October 2012 on the
Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment
based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling
Language (AML).
This report will focus on describing the work done in the areas of:
1. Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to

perform trajectory analysis.
2. Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for

tank resizing when multiple fuels and/or oxidizer are part of the configuration.
3. Vehicle scaling and closure strategies.

SUBMITTED BY:
Hilmi N. Kamhawi

Date:
October 31, 2012

ii

Integrated Design Engineering Analysis (IDEA) environment

Propulsion related module development and integration

Contract Number: NNL09AA10B

Report Prepared: October 2012

Prepared by:
TechnoSoft Inc.
11180 Reed Hartman Highway
Cincinnati OH 45242
info@technosoft.com
513-985-9877

This contract is sponsored by:
Vehicle Analysis Branch, MS 451
NASA Langley Research Center
Hampton, Virginia 23681-2199

1

Table of Contents

Introduction ... 1
Integration of propulsion data ... 2

Turbine Data ... 2
Scramjet Data .. 2
Rocket Data ... 3

Turbine Flowpath Geometric Representation ... 4
Closure Methodology.. 5

Vehicle Scaling ... 5
Tank sizing .. 5
Trajectory Analysis Automation ... 6
Rocket vehicle closure .. 7
Airbreathing vehicle closure ... 9

Closure Execution ... 9
Conclusion .. 10

1

Introduction
The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative
environment based on an object-oriented, multidisciplinary, distributed architecture using
the Adaptive Modeling Language (AML) as the underlying framework. IDEA has a
number of analytic modules that support the design and analysis of advanced rocket and
airbreathing propulsion-based vehicles. Figure 1 illustrates one such concept, a Two
Stage to Orbit (TSTO) configuration with a hypersonic airbreathing first stage and
rocket-based second stage. This TSTO concept has served as the initial focus for IDEA
development. This report will describe continued improvements to IDEA the areas of:

1. Integration of propulsion data: Data for turbines, rockets, and scramjets were
extracted from the appropriate sources and used by the trajectory module to
evaluate the performance of the vehicle.

2. Turbine flowpath geometric representation: Parametric geometry was developed
to represent the lowspeed flowpath. The user has access to a number of
parameters to control the shape of the low speed flow path and placement within
the vehicle. Geometry is connected to turbine data sheets for off the shelf
engines, using dimension and mass information where available.

3. Closure methodology: A set of algorithms for closing rocket-based and
hypersonic air-breathing based vehicles were developed and implemented.

4. Closure execution: A number of closure runs were executed to verify the validity
of the developed methodologies and to quantify closure process times.

Figure 1. Two stage to orbit reference configuration.

2

Integration of Propulsion Data

Turbine Data
Propulsion engineers at NASA Langley and NASA Glenn agreed that for turbine
performance data, the initial capability desired for IDEA was to develop an interface to a
set of dynamic spreadsheets. These spreadsheets contain propulsion data for different
turbine engines running different fuels, all generated offline with the Numerical
Propulsion System Simulation (NPSS) code, but which include the ability to perform
corrected airflow adjustments to allow for varying inlet and nozzle performance (if
available). These spreadsheets have been integrated within the IDEA environment
allowing the user to set input parameters via a graphical user interface and extract output
data that will be used by the packaging (configuration) and trajectory disciplines. Figure
2 illustrates the data extracted from the turbine engine spread sheets.

Figure 2. Example of turbine engine data extracted from data sheets.

Scramjet Data
Scramjet data can be generated either by running SRGULL through the SRGULL
interface classes within IDEA, or by obtaining response surface equations that can be
imported directly into IDEA as long as they conform to an agreed upon format. The
SRGULL interface classes allow the user to generate an SRGULL deck given a keel line
and cowl geometries. The generated deck can then be used to run SRGULL, and the
output data can be extracted from the run. The main issues with this approach are that the
data generated is only applicable to a single on-design flight condition and that automated
execution of IDEA would require SRGULL to run successfully a majority of the time
without user intervention, which is extremely challenging at certain flight conditions.

3

The second approach requires the propulsion engineers to perform Design Of
Experiments (DOE) study running tens or maybe hundreds of SRGULL cases offline and
from that generate a set of response equations that can be used for the different speed
regimes (ram vs. scram), and fueling schemes. Once the response equations are

generated and the associated keel line model is loaded,
IDEA can then use this data to build a 3D vehicle and
provide the propulsion performance data to trajectory
discipline to evaluate the vehicle’s integrated performance.
Figure 3 illustrates the directory structure and data needed
to build the SRGULL response data model branch.
Different response equations are used based on the flight
conditions specified by trajectory. For keel line designs
that employ variable geometry, this setup allows the user
to schedule the geometry as desired or to input a range of
allowable values that can be used by trajectory as an
independent variable in optimizing performance in flight.

Figure 3. Model tree (left) and directory structure (right) used to generate the SRGULL
response data model.

Rocket Data
For liquid rocket engines, a number of codes and spreadsheets have been integrated into
the IDEA environment allowing the user to generate the data needed by the configuration
and trajectory disciplines. The user can choose from an existing database of over 40
engines, ranging from the
Saturn F-1 down to
attitude control jets. The
user can also create new
“rubber” engines, with
choices of over thirty-five
fuels and half a dozen
oxidizers, along with full
control over the engine
cycle and other design
parameters. A screenshot
of the liquid rocket engine
design interface is shown
in Figure 4.

Figure 4. Screenshot of liquid rocket engine design interface.

4

Turbine Flowpath Geometric Representation
A set of classes has been developed and implemented to represent the lowspeed flowpath
for the purposes of internal packaging. The overall geometric dimensions of the flowpath
are extracted from the turbine engine data sheets described previously. The user has
control over assigning different unit weights to the inlet and nozzle sections for mass
properties purposes. The weight of the turbine itself is imported from the performance
data in the spreadsheet. A set of lowspeed flowpath modules stacked side by side can be
instantiated by the user, or the user can choose to model each flowpath separately. The
propulsion data for the engine modules is represented as a single engine data set for use
by the trajectory object, and IDEA handles any required scaling of the performance data
given scale factors set either by the user or during a closure process (if the turbines are
allowed to scale during closure). Figure 5 represents the lowspeed flowpath integrated
into the vehicle, and constructed by linking the lowspeed flowpath geometry instance to a
turbine engine data spreadsheet. The inset image in Figure 5 shows the lowspeed internal
inlet and nozzle trimmed to the vehicle OML. Figure 6 shows an enlarged view of a
single untrimmed lowspeed flowpath.

Figure 5. Lowspeed flowpath design interface. Image shows flowpath installation in
airbreathing stage, with inset image showing inlet and nozzle trimmed to OML.

Figure 6. A zoomed in view of an untrimmed lowspeed flowpath.

5

Closure Methodology
A set of closure algorithms for closing rocket and airbreathing vehicle configurations was
developed and implemented. Closure describes the process of modifying and/or resizing a
vehicle to meet a specific set of mission requirements. In order to perform automated
closure, methodologies had to be developed in several areas, including geometric scaling,
automated internal packaging and performance analysis. Each of these is described
below. Once these methods were in place, the analysis procedure (i.e. order of analyses to
be performed) was implemented. Lastly, simple Newton-Raphson type iterative methods
were then implemented to guide vehicle scaling in order to achieve closure.

Vehicle Scaling
In IDEA, two instances of the vehicle outer mold line geometry exist. The first, “as-
drawn” geometry, is the version of the geometry that the user modifies to establish the
initial vehicle shape and dimensions. The second, “scaling” geometry, is a rubberized
version of the as-drawn and is the version modified by the closure routine. Each
dimensional parameter used to establish the vehicle geometry (wing span, fuselage
length, etc.) is associated with an X, Y or Z directional scaling factor. Additionally, the
user can specify for each parameter whether it should be allowed to scale or not during
sizing, as well as to set a minimum and/or maximum allowable value during scaling.
This is useful, for instance, in the case of the upper stage where the payload is a fixed
dimension size, but the vehicle is required to scale down in order to close. The user can
set a minimum fuselage width and fuselage height constraint to maintain proper clearance
for the payload. As the vehicle scales down (initially photographically, with X, Y, and Z
scale factors all the same), it may reach one or more of those constraints. In such a case,
the appropriate scale factor will stop decreasing, while others will continue until closure
is achieved. Thus, it is important that all analyses be executed on each closure iteration,
as non-photographic scaling is possible with this type of closure approach.

Tank sizing
A tank sizing option was added to the packaging system to allow for the automatic sizing
of propellant tanks. This capability facilitates the automated re-packaging of tanks within
the OML given updated propellant usage information, usually from trajectory analysis. It
is the responsibility of the user to add the appropriate tank sizing relationships and
instances. A tank’s propellant fraction required (PFR) is computed based on the
propellant usage of engines associated with the tank. This allows multiple engines to
draw from, and in turn affect the sizing of a single propellant tank. There are two tank
sizing classes:

1. dm-packaging-tank-sizing-based-on-pfr-pfa-type-1-class: An instance of this
class requires the user to pick a forward tank and an aft tank, useful for instance in
the sizing of main propellant tanks (fuel and oxidizer). The system will size the
forward (fwd) and aft tanks until the ratio of available propellants in the tanks
(fwd-pfa/aft-pfa) is equal to the ratio of required propellants (fwd-pfr/aft-pfr)
within the specified tolerance.

2. dm-packaging-tank-sizing-based-on-pfr-pfa-type-2-class: This class allows the
user to select a primary tank and a secondary tank. For this class, the secondary
tank is sized until the ratio of available propellants in the primary tank relative to

6

the secondary tank (primary-pfa/secondary-pfa) is equal to the ratio of required
propellants in the primary and secondary tanks (primary-pfr/secondary-pfr) within
the specified tolerance. This class is useful in sizing pressurant tanks, as well as in
cases of more than one primary fuel type (as may occur on a dual fuel
airbreathing concept).

The ability to group tanks containing common propellants has also been added to the
system. This feature allows the user to package multiple tanks into a vehicle (which may
be advantageous given a certain shaped vehicle or particular structural layout) to
accommodate all of the necessary fuel, but to treat those tanks with common propellants
as a single tank tied to a particular engine in POST2. This feature maintains the
packaging system compatibility with the POST2 “vehicle component weight model”
feature.

Trajectory Analysis Automation
Several advanced features have been added to the trajectory interface to facilitate the
automated closure process. One such feature is the ability to dynamically link one
trajectory module to another, allowing trajectory branching. This feature is extremely
useful in modeling the TSTO problem. A deck modeling the orbiter ascent from stage
separation to orbit can be dynamically connected to the mated ascent simulation. Here,
the orbiter simulation will take as its initial state the exact separation conditions achieved
by the mated system. With this dynamic link, changes to the mated trajectory phase will
automatically be propagated to other flight phases, and vice versa. This capability will
ultimately allow trade studies and optimization to be performed on the entire TSTO
concept, with impacts from all disciplines and flight phases included, in a more
automated fashion. Trade study and optimization results should also be more accurate
when performed with this capability, as a complete and exact set of state information will
be transferred from flight phase to flight phase. With so much information being passed
and multiple models to update, it is quite easy for errors to creep into the process when
these types of analyses are performed manually.

An automated “crash” recovery feature has been added that allows the user to guide
POST2, during automated execution, regarding what changes to make to the model to
recover from an initial non-feasible starting solution. This type of situation occurs often
when a large perturbation is applied to the vehicle (e.g. significant increase in mass), and
trajectory optimization is attempted with a starting solution based on the previous, non-
perturbed vehicle. For example, the orbiter ascent trajectory is typically guided by a table
of pitch angle versus velocity. If vehicle mass is increased substantially, this profile will
not provide sufficient lift and upward thrust vector to allow the vehicle to achieve orbit. It
will typically crash back to Earth, and the run will terminate. The recovery feature allows
the user to link a trajectory constraint to a trajectory input parameter. For the orbiter
example, the user could create a constraint that the flight path angle at engine cutoff has
to be positive. When the vehicle crashes, that constraint will not be met. The recovery
feature would allow the user to connect that constraint with the pitch angle profile. When
the case crashes, IDEA would identify that the linked constraint was not satisfied and
increment the pitch profile by a user-specified amount. This adjustment will eventually

7

raise the flight profile enough that orbit can be attained, yielding an initial feasible
solution for optimization to begin.

Additionally, an advanced run feature has been added that will execute POST2 in
targeting mode prior to running optimization. This mode will allow POST2 to find a
trajectory solution that satisfies all of the constraints prior and thus provides a feasible
starting solution for optimization. This method has been found to aid optimization in
achieving a solution more quickly.

Rocket vehicle closure
Currently, the closure process for the rocket-based vehicle class involves
photographically scaling the vehicle, subject to scaling constraints described earlier. In
the future, the closure process will likely include modification of certain design
parameters based on the
results of the aero, structural,
and trajectory analysis codes
to not only meet mission
performance requirements
but to also meet secondary
performance objectives (e.g.
take-off or landing speed). A
data flow diagram of the
closure process for the
rocket-based vehicle class is
shown in Figure 7.

The following is an outline of the closure process used to close the rocket-based vehicle
with a single primary fuel and a single primary oxidizer:

1. An advanced trajectory run is executed. This involves turning off the
optimization, running the trajectory in targeting mode only until all of the
trajectory constraints are met, and then running the trajectory code with
optimization on given the feasible starting solution. If all constraints are met after
optimization is complete, then the closure loop continues. Otherwise, the vehicle
closure has failed and the loop is terminated.

2. If structural analysis or TPS analysis are to be run as part of the closure process,
then they are executed at this point. (Please note that structural analysis was not
fully functional at this point, so mass estimating relationships were used to
estimate the weight of the structures).

3. Propellant Fraction Required (PFR) is extracted from the trajectory object.
4. Propellant Fraction Available (PFA) is computed from the configuration instance,

given updated TPS and structural weights computed from Step 2.
5. If PFR and PFA are roughly equal then there is no need to update the

configuration’s PFR (each engine within the packaging branch maintains its own

Figure 7. Data flow diagram for rocket-based vehicle
closure.

8

PFR, which are collected and used to size propellant tanks); else the
configuration’s PFR is updated using the one obtained from the trajectory object.

6. If the configuration’s PFR is updated then a new PFA is computed.
7. The vehicle is rescaled based on the PFA and PFR.
8. If the new vehicle scale factor is roughly equal to the previous vehicle scale factor

then the closure loop is done.
9. If the new vehicle scale factor is not roughly equal to the previous vehicle scale

factor then trajectory is rerun, and a new PFR is extracted from the trajectory run.
If all constraints are met then proceed to next step, else the closure loop
terminates and generates a message that it failed to close and stop.

10. The closure loop stops if the maximum number of iterations has been reached, or
when PFA from configuration instance is roughly equal to PFR from trajectory
object. If the conditions above are not met then loop back to step (1).

11. Once the closure loop is done, the system checks whether the vehicle closed or
not by making sure that all the constraints specified in the trajectory object have
been met and that PFA from configuration instance is roughly equal to PFR from
trajectory object.

Figure 8 illustrates the closure form associated with the rocket-based configuration. As
seen in the figure, the user can control the number of allowable closure iterations, the
PFA to PFR closure tolerance, as well as the maximum number of scaling iterations per
closure iteration. There are two check
boxes that allow the user to control
whether or not TPS sizing and
structural analysis should be executed
during the closure run. Additionally,
the user can control the tolerance on
TPS and structural unit weights
(results of analyses can be converted
back to combined unit weights; the
user can control how tightly they
would like unit weights to be tracked).
Finally, the user can set the PFA-PFR
tolerance that will trigger TPS and
structural analysis. This is useful
when, for instance, the initial vehicle
scale (PFA) is vastly different than the
mission requirements (PFR), allowing
the vehicle to scale one or more
iterations prior to executing the more
computationally expensive TPS sizing
and structural analysis methods.
 Figure 8. Model tree and the closure form

associated with the rocket based configuration.

9

Airbreathing vehicle closure
As seen in Figure 9, the airbreathing booster
that served as the model for the
development of the vehicle class in IDEA
contained a series of semi-conformal “box”
tanks that were laid in between primary
structural elements. In order to enable the
closure process for the hypersonic
airbreathing configuration, a set of classes
that allow the user to automatically create
sets of boxed tanks between specified
bulkhead ranges was developed. As the
substructures move, the tanks move and
resize. In addition, any propellant tank in
the system is able to identify the substructures associated with it, so as the tank is moved
and resized as a result of the tank resizing algorithm, so are the substructures associated
with it.

The closure of the airbreathing vehicle configuration is complicated by the existence of
multiple engines and operating modes, multiple fuel types and its unique internal
arrangement. The steps in the closure process, however, are similar to those described in
the previously for the rocket based vehicle. The one exception is that a tank sizing
algorithm is executed after each time the vehicle is resized. This is done to guarantee that
the various fuels and oxidizers in the vehicle meet the PFR extracted from the trajectory
code. The airbreathing configuration contains the tank sizing branches described
previously, where the user specifies the relationship between the primary and secondary
tanks.

Closure Execution
A number of closure runs have been executed for the TSTO system shown in Figure 1.
Closure runs were made with a 20,000 lbs and a 10,000 lbs upper stage payload mass.
The hypersonic airbreathing closure class can “reference” or “point to” a rocket based
vehicle closure instance, meaning that the upper stage will close first and act as a payload
to the first stage. It takes roughly six hours to close (with 20,000 lbs. payload) and reclose
the configurations (with 10,000 lbs.) running aero, propulsion, TPS sizing, and trajectory
analysis on a single CPU PC running the Intel’s Xeon processor. During each closure
attempt, a number of closure / sizing iterations occur. After each resizing of the vehicle,
all analyses are re-executed, including complete regeneration of the vehicle OML and
internal packaging, and vehicle performance is recomputed. This guarantees that when
closure is complete, all analyses have been executed on the “as-closed” vehicle. The
closure criteria used in this case was that the difference in propellant fraction available
and propellant fraction required after all analyses were executed was less than 0.1%.
Each stage typically takes two to four iterations to close. A single “analysis” pass of the
entire TSTO system takes about 50 minutes.

Figure 9. View of internal packaging of
reference airbreathing vehicle.

10

Conclusion
IDEA is a multi-disciplinary, multi-fidelity, geometry-centric environment that allows the
user to design, configure, analyze, and close rocket-based and/or airbreathing-based
vehicles in a timely manner using engineering and physics-based analysis codes. The
under laying framework (AML), Common Computational Model (CCM), dependency
relation network, and geometric reasoning features are key enabling technologies. An
initial design capability has been developed around a two stage to orbit launch vehicle
concept employing an airbreathing first stage and rocket second stage. A number of
aerodynamic analysis codes have been integrated into the system. Data needed by the
codes (including meshes, planform areas, etc.) are generated automatically. Propulsion
data for a configuration is generated based on the type of engines and fuels associated
with the configuration. Premin and Lanmin are used to generate the aerothermal
environment for use by the TPS sizing codes. EXITS is used at this stage as the TPS
sizing code. The data from TPS sizing code is used by the configuration discipline to
compute mass properties. Structural and subsystem masses are computed using mass
estimating relationships. The different disciplines are linked through the trajectory
discipline where the data from disciplines come together and are used to generatively
build the deck(s) needed to run the trajectory code. A fully automated system closure was
executed on a PC laptop resulting in a “time to close” on a single mission of roughly
three hours. A single “analysis” pass of the entire system (with no sizing) required just
under one hour.

