Assessment of the structural integrity of 3-D woven carbon cloths that have undergone heating similar to Venus atmospheric entry conditions.

Objective

Based Woven Thermal Protection Materials

Background

Investigate the causes of embrittlement and reduction in load bearing capacity due to aerothermal heating

Observations

- Additional fabric testing to statistically verify mechanical property reductions
- Brittle failures in post-exposure fabrics
- Reduction in mechanical properties correlated with exposure duration
- Post-exposure strength exceeds flight requirement

Mechanical Testing

- Instron 5569, \(\varepsilon = 1\) mm/min
- Fabric and yarns, pre and post aerothermal exposure

Mechanical Tests

- BLAM Testing
- Pretest
- Pretest, sizing removed

Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Warp (N/cm)</th>
<th>Weft (N/cm)</th>
<th>Exposure Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>136</td>
<td>1310</td>
<td>35</td>
</tr>
<tr>
<td>B2</td>
<td>97</td>
<td>660</td>
<td>135</td>
</tr>
<tr>
<td>B3</td>
<td>97</td>
<td>1310</td>
<td>139</td>
</tr>
</tbody>
</table>

Forward Work

- Evaluation of the structural integrity of 3-D woven carbon cloths that have undergone heating similar to Venus atmospheric entry conditions

Conclusion

- Reduction in mechanical properties, embrittlement
- Additional fabric testing to statistically verify mechanical property reductions
- Brittle failures in post-exposure fabrics
- Reduction in mechanical properties correlated with exposure duration
- Post-exposure strength exceeds flight requirement

Acknowledgements: This work was funded through the NASA ACP and ADEPT programs.

Objective

△ Implement game changing technology of adaptable, deployable entry placement technologies (ADEPT)

△ Low ballistic coefficient

△ More benign entry conditions

BLAM Testing

- Novel 3-D woven, flexible carbon cloths
- Tailorable weave patterns and properties
- Interwoven weave architectures provide structural load and heat shield TPS
- One such architecture imaged on right
- Structural and thermal layers below

△ Bi-axial load aerosol mechanical (BLAM) testing

△ Evaluate woven TPS under entry conditions

Thermal Protection System

△ Planetary Science Decadal Survey expresses interest in Venus

△ NASA proposes Venus Intrepid Tessera Lander (VITAL) mission

△ Implement game changing technology of adaptable, deployable entry placement technologies (ADEPT)

△ Requires novel thermal protection system (TPS)