Woven TPS – Enabling Missions Beyond Heritage Carbon Phenolic

Mairead Stackpoole and Ethiraj Venkatapathy
NASA Ames Research Center

Jay Feldman
ERC Inc. at NASA Ames Research Center

IPPW 10, June 17-21, 2013 San Jose, California,
Outline

• Motivation
 – TPS from a Mission Constraint to a Mission Enabler
 – TPS Gap
• Woven TPS – The Concept
• Manufacturing and Testing
 – Thermal and Mechanical Performance
 – Arc-jet Testing
• Summary and Future Efforts
• **Science and Mission Design goals**
 – Maximize science payload, science return
 – Minimize mission risk, cost

• **Mission concepts currently baseline “heritage like” Carbon Phenolic (CP)**
 – CP is very capable, robust, flight proven
 – CP enabled Pioneer-Venus & Galileo

• **Carbon Phenolic is mission enabling, but trajectory constraining**
 Missions with CP + normal payloads result in:
 – Steeper trajectories, extreme g loads
 – Heat-flux, pressures exceed test capability

Historical TPS Mass Fraction by Heat Flux and Pressure

For typical Entry Systems Missions

at high heat fluxes (~ 7,000+ W/cm²), CP is an efficient TPS. Below ~ 2,000 W/cm², PICA and other ablators perform well.

There is no efficient TPS option in the gap!
Challenges with State of the Art TPS

Tape-wrapped & chop-molded carbon phenolic

- Challenges for using traditional CP
 - Heritage CP used for entry no longer available (Avtex)
 - New CP material would need to be certified
 - Chop-molded CP has not be used for NASA application since 1980s

Sustainability and Life Cycle Costs

AVCOAT

PICA MSL
Woven TPS Concept

• Automated 3D weaving technology is very flexible and customizable: there are MANY variables that can be changed within a single preform
 – Fiber composition (e.g. carbon, polymer, glass)
 – Fiber denier (fineness)
 – Weave density (fiber volume fraction)
 – Weave type (e.g. layer-to-layer, orthogonal)

• Resin infusion can also be tailored
 – No resin (dry weave)
 – Partial infusion &/or surface densification
 – Full densification

• Manufacturing flexibility allows for the optimization of a material for a given mission

• WTPS leverages a sustainable weaving technology (not NASA-unique)
How Tailorable is the WTPS Architecture?

The Woven Substrate
- Layer-to-Layer
- Through the Thickness
- 3D orthogonal

The Yarn
- Denier
- Continuous /Spun
- Carbon
- Polymer
- Oxide (silica)
- Blended

The Matrix
- Full/Partial Infiltration
- Phenolic
- Cyanate Ester
- Polyimide
- New resins
- No matrix

WTPS can optimize all aspects of architecture
Focus on WTPS Project Achievements

Advance 3D Woven TPS TRL from 2 to 3
Start date: 1/1/2012 End date: 2/28/2013

WTPS Project Overview: Vision, Scope and Tasks

Vision: Close TPS Gap & enable future missions with TPS that is not mission constraining but enabling

Background:

- Apr. 2011: Center innovation start-up funding for WTPS (IR&D)
- Sep. 2011: Woven TPS proposed to OCT GCD (BAA)
- Nov. 2011: Proposal selected for funding start in Jan.’12

Project Goal: Explore feasibility and establish manufacturing of TPS using Textile industry and Resin Infusion techniques. Demonstrate performance compared to heritage CP

Project Tasks:

- Manufacture a variety of WTPS materials
 - Different yarn compositions, weave constructions, levels of resin infiltration, etc.
- Obtain preliminary property database
- Perform arc jet tests on selected samples
 - Explore and establish heat flux capability range
 - Compare thermal performance to heritage CP
- Assess state-of-the art in performance predictive models and applicability for WTPS
- Prepare a TRL 3 – 5/6 maturation plan
Demonstrated feasibility of manufacturing low, mid, high-density WTPS

- Efficient ablator candidate for mid-density gap
- Potential replacement for highest density CP
Thermal Conductivity is Tailorable

- Thermal conductivity effectively controlled by weave architecture and yarn constituents
TTT Mechanical Performance

- Advantages of a layer-to-layer architecture in improving TTT strength observed

![Graph showing TTT Strength vs. Density with various materials and failure modes.]

- 2D CP (shingled or tape wrapped) exhibits ply separation in the AEDC wedge testing
- As a 3D material, Woven TPS is not prone this failure mode
IHF Arc Jet testing Summary

- 1670 W/cm², 1.3 atm
- 2” dia. flat face model
- Duration
 - Fully dense: 20 s (11 models)
 - Low–Mid dense: 7 s (6 models)
- Backface TC or lightpipe
 - Model configuration not well-suited for temp. comparison (sidewall heating)
IHF Arc Jet testing: Fully-Dense WTPS

3-D Carbon Phenolic Variants
Lower recession & mass loss compared to 2DCP (MX4926)
• TWCP MX4926N (20° shingle) reference mtl
• CMCP from industry, funded by NASA

Significance: 3-D WTPS CP variants performed comparable (or better than) traditional 2-D CP
Fully Dense IHF Model

- Fine weave at top for surface-roughness control
- Coarse weave below ablation zone for efficient weaving cost & time

Pre-Test
- Model edge condition was more severe
- Higher ablation exposed coarse weave at edges
- Layer to layer weave is robust - transition from coarse weave to fine weave did not result in unusual ablation

Post-Test
IHF Arc Jet testing: Surface Densified and Mid-Dense WTPS Variants

- Lowest recession was for surface-densified woven CP at 0.56 g/cm³
AEDC Arc Jet Post Test Images of Select Samples

Traditional Carbon Phenolic

- 12 different Woven TPS types
- Chop molded and tape wrapped carbon phenolic tested
- Tested at DoD standard conditions used to evaluate traditional 2D CP materials at AEDC (turbulent with high shear)

Significance: Feasibility of a dual layer WTPS concept
WTPS Summary

• Exciting new approach to TPS development
• Sustainable manufacturing approach
 – Leverage domestic 3D weaving industry
 – Key manufacturing processes are common (not NASA-unique)
 – High production-volume constituent fibers evaluated
• Successful demonstration of large variety of 3D woven materials
 – Flexible, dry woven TPS (carbon or carbon/phenolic yarns)
 – Low-loading resin infiltrated and surface densification
 – Full densification with various resin types
• High confidence that 3D Woven TPS will prove to be superior in performance and robustness, and help fill the TPS Gap
• A CP alternate that is not just a replacement but an enabler is needed
 – Current missions have no choice but to live with the constraints of “heritage like” CP (efficiency, sustainability)
 – We believe WTPS can change the way we develop and design with TPS.
Acknowledgments – it takes a village!

Bally Ribbon Mills

NASA ARC:
Ron Chinnapongse, Don Ellerby Jerry Ridge, Mike Olson, Greg Gonzales, Grant Rossman, arc jet crew, Adam Beerman, Keith Peterson, Tane Boghozian, Erika Rodriguez, Vince Qu, David Kao, Matt Switzer, Jose Chavez-Garcia, Matt Gasch, Y-K Chen, Frank Milos

Other NASA Centers:
Mike Fowler, Anthony Calomino, Steven Del Papa,

AEDC:
Hank Moody, Mark Smith, arc jet crew

NASA GRC polyimide group, Compositex, Southern Research Institute

NASA Game Changing Development Program & Space Technology Program
Evolution of WTPS – FY’13 & Beyond

Jan, 2012

Woven TPS CIF
FY11, $84K
Preliminary feasibility studies weave design and resin infiltration

Composite Yarn (Carbon+Phenolic)

Impregnated 3-D Woven CP

1cm

Woven TPS GCT BAA
FY12, $1,125K
Weave design
Resin Infusion
Material Property Testing
Arcjet Testing

HEEET Formulation

June, 2012

Integration on MPCV Compression Pad for FY17 Lunar Return Flight Test

3-D Woven Multifunctional Ablative TPS (3D-MAT)
Phase 1: 6 month, $450K (FY12-13)
Phase 2: 12 months, $1,500K (FY13-14)
Candidate material for MPCV compression pad for beyond LEO missions.

August, 2012

Heatshield for Extreme Entry Environment Technology (HEEET)
Development to enable Science Robotic and Human missions
• Venus and outer planets
• Human return from beyond lunar

Post Arcjet Tested Coupons Resin Infiltrated

100 sec., ~600 W/cm²; 625 psf pressure (JSC Arcjet Test in Dec’11)