A Satellite-Based Multi-Pollutant Index of Global Air Quality

Matthew J. Cooper, Randall V. Martin, Aaron van Donkelaar, Lok Lamsal, Michael Brauer, and Jeffrey R. Brook

Dalhousie University, Halifax Nova Scotia, Canada. B3H 3J5
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, 02138, United States
Universities Space Research Association, Columbia, Maryland 21044, United States
Atmospheric Chemistry and Dynamics Laboratory, Earth Sciences Division, NASA Goddard Space Flight Center, Maryland 20771, United States
University of British Columbia, Vancouver, British Columbia, Canada. V6T 1Z3
Air Quality Processes Research Section, Environment Canada, Toronto, Ontario, Canada. M6B 2S7

Air pollution is a major health hazard that is responsible for millions of annual excess deaths worldwide. Simple indicators are useful for comparative studies and to assess trends over time. The development of global indicators has been impeded by the lack of ground-based observations in vast regions of the world. Recognition is growing of the need for a multipollutant approach to air quality to better represent human exposure. Here we introduce the prospect of a multipollutant air quality indicator based on observations from satellite remote sensing.

A variety of air pollution indices exist around the world. The air quality index of the U.S. Environmental Protection Agency at a given time and place is based on the highest concentration relative to the ambient air quality standard for PM2.5, PM10, O3, NO2, SO2, and CO. The Canadian Air Quality Health Index is a multipollutant index based on the sum of PM2.5, NO2, and O3, weighted by their contribution to mortality in daily time-series study across Canadian cities. Gurjar et al.1 proposed a multipollutant index for megacities based on the sum of annual concentrations of total suspended particulates, NO2, and SO2, weighted by their deviation from World Health Organization (WHO) guideline. These indices require observations from air pollution monitors. Yet most of the global population lives further than 100 km from monitors of even the most densely monitored pollutants, such as PM2.5.

Satellite remote sensing of air quality has advanced markedly over the past decade. The two pollutants for which global ground-level concentrations have been derived from satellite remote sensing are PM2.5 and NO2. Satellite-based estimates of PM2.5 and NO2 serve as a useful starting point for a global long-term multipollutant index. PM2.5 is a robust indicator of mortality and other adverse health effects. NO2 likely serves as a marker of other short-lived products of atmospheric combustion sources that increase the toxicity of the air pollution mixture.2 Thus we propose a satellite-based multipollutant index (SAT_MPI) in which we scale the local PM2.5 concentration by its ambient NO2 concentration:

 SAT_MPI = \frac{\text{PM}_{2.5}}{\text{AQG}_{\text{PM2.5}}} \left[1 + \frac{\text{NO}_2}{\text{AQG}_{\text{NO2}}} \right] \tag{1}

Following Gurjar et al.4 we reference PM2.5 concentrations to the WHO Air Quality Guideline (AQG) of 10 \mu g/m^3 and NO2 to the AQG of 40 \mu g/m^3. This equation represents a starting point for discussion. Several variations on this concept can be considered, including additional pollutants and area or population weighting for ranking of cities. Ground-level concentrations are taken from van Donkelaar et al.3 for PM2.5 and from Lamsal et al.4 for NO2. Both studies used a chemical transport model (GEOS-Chem, www.geos-chem.org) to relate satellite observations of the atmospheric column to ground-level concentrations. The lack of observational estimates of global ground-level O3 is lamentable, however global mortality estimates for PM2.5 are 5 times larger than for O3.5

Figure 1 shows the resultant SAT_MPI. Regional enhancements in the eastern U.S., Europe, northern India, and China reflect regional anthropogenic sources of PM2.5. Broad enhancements across northern Africa and the Middle East are driven by wind-blown mineral dust. Local enhancements over urban areas are due to the combination of NO2 and PM2.5. The bottom-left inset contains SAT_MPI for selected cities. Most of
the effect is driven by PM$_{2.5}$, however the addition of NO$_2$ does change the relative ranking (e.g., Shanghai and Beijing). The top inset illustrates the spatial structure in the index, using Moscow and East China as examples. In both cases, the addition of NO$_2$ indicates the influence of local combustion sources that increase the contrast between urban and rural locations. This index provides observational information about the worldwide distribution of pollution from local and global sources.

AUTHOR INFORMATION

Corresponding Author
E-mail: cooperm2@dal.ca

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Rick Burnett from Health Canada for stimulating discussion. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

REFERENCES

