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a b s t r a c t

The hybrid kinetic model supports comprehensive simulation of the interaction between different

spatial and energetic elements of the Europa moon–magnetosphere system with respect to a variable

upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and

neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby

measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements

(including the surface and atmospheric compositions) for future missions. The simulations are based on

recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast

to previous approaches with MHD simulations, the hybrid model allows us to fully take into account

the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution

and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for

upstream background ions). Photoionization, electron-impact ionization, charge exchange and colli-

sions between the ions and neutrals are also included in our model. We consider the models with Oþ þ

and Sþ þ background plasma, and various betas for background ions and electrons, and pickup

electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population

(Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence

on the parameters of the upstream plasma and Europa’s atmosphere (model I, cases (a) and (b) with a

homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell

conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from

oceanic shell conductivity. This effect was estimated based on the difference between the observed and

modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an

inductive magnetic dipole and low oceanic shell conductivity).

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of the Jovian plasma torus with Europa and
other moons is a fundamental problem in magnetospheric physics
(see e.g., Goertz, 1980; Southwood et al., 1980; Southwood and
Dunlop, 1984; Wolf-Gladrow et al., 1987; Ip, 1990; Schreier et al.,
1993; Lellouch, 1996). The plasma environment near Europa was
studied by flyby observations during the Galileo prime mission

and the extended Galileo Europa mission (Kivelson et al., 1997;
Khurana et al., 1998; Kivelson et al., 1999; Paterson et al., 1999).

Europa, one of the icy moons of Jupiter, was encountered by
the Galileo satellite three times during its primary mission, seven
times during its Galileo Europa Mission (GEM), and once during
Galileo Millennium Mission (GMM). Europa is located at a radial
distance of 9.4RJ (Jovian radii, 71,492 km) from Jupiter and has a
radius of 1560 km (1 RE).

The interaction of Europa with the magnetized plasma of the
Jovian plasma sheet gives rise to a so-called Alfvén wing, which
has been extensively studied in the case of Io (e.g., Neubauer,
1980; Southwood et al., 1980; Herbert, 1985; Lipatov and Combi,
2006). Neubauer (1998, 1999) has shown theoretically how an
Alfvén wing is modified by an induced magnetic field, such as that
found at Europa (Kivelson et al., 2000). Observations by Kivelson
et al. (1992) show the generation of ultra-low frequency electro-
magnetic waves in Europa’s wake. These waves have frequencies
near and below the gyrofrequencies of the ion species in the
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plasma torus (e.g., ionized sulfur, oxygen, and protons). Ion
cyclotron waves grow when ion distribution functions are suffi-
ciently anisotropic, as occurs when ion pickup creates a ring
distribution of ions (in velocity space). The analysis of these
waves has been done by Huddleston et al. (1997) (Io), Volwerk
et al. (2001) and Kivelson et al. (2009) (Europa). They found
intensive wave power at low frequencies (near and below the
cyclotron frequencies of heavy ions) in Europa’s wake during the
E11 and E15 flybys. However, our current 3D hybrid modeling
cannot yet produce these waves due to insufficient spatial grid
resolution.

The most general and accurate theoretical approach to this
problem would require the solution of a nonlinear coupled set of
integro-MHD/kinetic-Boltzmann equations which describe the
dynamics of Jupiter’s corotating magnetospheric plasma, pickup
ions, and ionosphere, together with the neutrals from Europa’s
atmosphere. To first order, the plasma and neutral atoms and
molecules are coupled by charge exchange and ionization. The
characteristic scale of the ionized components is usually deter-
mined by the typical ion gyroradius, which for Europa is much
less than characteristic global magnetospheric scales of interest,
but which may be comparable to the thickness of the plasma
structures near Europa. Kinetic approaches, such as Direct Simu-
lation Monte Carlo, have been applied to the understanding of
global aspects of the neutral atmosphere (Marconi et al., 1996;
Austin and Goldstein, 2000). Plasma kinetic modeling is, however,
much more complicated, and even at the current stage of
computational technology requires some approximations and
compromises to make some initial progress. Several approaches
have been formulated for including the neutral component and
pickup ions self-consistently in models that describe the interaction
of the plasma torus with Europa.

There have been recent efforts to improve and extend the
pre-Galileo models for Europa, Io and Ganymede, in terms of the
MHD (Kabin et al., 1999; Combi et al., 1998; Linker et al., 1998;
Kabin et al., 2001; Jia et al., 2008), the electrodynamic (Saur et al.,
1998, 1999; Schilling et al., 2008), and hybrid kinetic (Lipatov and
Combi, 2006; Lipatov et al., 2010) approaches. These approaches
are distinguished by the physical assumptions that they include.
MHD and hybrid kinetic models cannot, at least yet, include the
charge separation effects which are likely to be important very
close to the moon where the neutral densities are large and the
electric potential can introduce non-symmetric flow around the
body. MHD models for Io either include constant artificial con-
ductivity (Linker et al., 1998) or assume perfect conductivity
(Combi et al., 1998). Comparisons of the sets of published results
do not indicate that this choice has any important consequences.
The MHD model of Europa developed by Kabin et al. (1999)
includes an exospheric mass loading, ion-neutral charge exchange,
and recombination. Further development of this model by Liu
et al. (2000) already includes a possible intrinsic dipole magnetic
field of Europa. Schilling et al. (2007, 2008) found that for the
conductivity of Europa’s ocean values of 500 mS/m or large
combined with ocean thickness of 100 km and smaller to be most
suitable to explain the magnetic flyby data. They also found that
the influence of the fields induced by the time variable plasma
interaction is small compared to the induction caused by the
time-varying background field.

Hybrid kinetic models can include the finite ion gyroradius
effects, non-Maxwellian velocity distribution for ions, and correct
flux of pickup ions along the magnetic field. Hybrid modeling of Io
has demonstrated several features. The kinetic behavior of ion
dynamics reproduces the inverse structure of the magnetic field
(due to drift current) which cannot be explained by standard
MHD or electrodynamic modeling which do not account for
anisotropic ion pressure. The diamagnetic effect of non-isotropic

gyrating pickup ions broadens the B-field perturbation and
produces increased temperatures in the flanks of the wake, as
observed by the Galileo spacecraft, but had not been explained by
previous models. The temperatures of the electrons which are
created and cooled by collisions with neutrals in the exosphere
and inside the ionosphere may strongly affect the pickup ion
dynamics along the magnetic field and consequently the pickup
distribution across the wake. The physical chemistry in Io’s
corona was considered in the paper by Dols et al. (2008). They
couple a model of the plasma flow around Io plus a multi-species
chemistry model and compare the model results to the Galileo
observation in Io’s wake.

Galileo flyby measurements E4, E6 (plasma only), E11, E12,
E14, E15, E19, and E26 demonstrate several features in the plasma
environment: Alfvén wing formation and an induced magneto-
sphere, possible existence of the dipole-type induced magnetic
field, and variation of the magnetic field in the plasma wake due
to diamagnetic currents. The measurements also demonstrate
mass loading of the plasma torus plasma by pickup ions and the
interaction of the ions with the surface of Europa. For an
interpretation of these data, we need to use a kinetic model
because of effects of the finite ion gyroradius.

Hybrid models have been shown to be very useful in studying
the complex plasma wave processes of space, astrophysical, and
laboratory plasmas. These models provide a kinetic description of
plasmas in local regions, together with the possibility of perform-
ing global modeling of the whole plasma system. Revolutionary
advances in computational speed and memory are making hybrid
modeling of various space plasma problems a much more effec-
tive general tool.

In this paper, we apply a time-dependent Boltzmann equa-
tion (a ‘‘particle in cell’’ approach) together with a hybrid kinetic
plasma (ion kinetic) model in three spatial dimensions (see, e.g.
Lipatov and Combi, 2006; Lipatov et al., 2010), using a prescribed
but adjustable neutral atmosphere model for Europa. A Boltz-
mann simulation is applied to model charge exchange between
incoming and pickup ions and the immobile atmospheric neu-
trals. In this paper, we discuss the results of the hybrid kinetic
modeling of Europa’s environment—namely the global plasma
structures (formation of the magnetic barrier, Alfvén wing, pickup
ion tail, etc.). The results of these kinetic modeling are compared
with the Galileo E4 flyby observational data. Currently, we are
working on the hybrid model of the E12 flyby. The remarkable
aspect of this flyby is a strong variation in the upstream plasma
density profile approximately from 400 cm�3 to 80 cm�3. The
results of this modeling will be discussed in future publications.

The paper is organized as follows: in Section 2 we present
the computational model and a formulation of the problem.
In Section 3 we present the results of the modeling of the plasma
environment near Europa and the comparison with observational
data. Finally, in Section 4 we summarize our results and discuss
the future development of our computational model.

2. Formulation of the problem and mathematical model

To study the interaction of the plasma torus with the ionized
and neutral components of Europa’s environment, we use a
quasineutral hybrid model for ions and electrons. The model
includes ionization (which in the Europa environment is domi-
nated by electron impact ionization, not photoionization) and
charge exchange. The atmosphere is considered to be an immo-
bile component in this paper.

In our hybrid modeling, the dynamics of upstream ions
and implanted ions are described in a kinetic approach, while
the dynamics of the electrons are described in a hydrodynamical
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approximation. The details of this plasma-neutral approach were
developed early for the study of the Io–Jovian plasma interaction
(Lipatov and Combi, 2006).

The single ion particle motion is described by the equations
(see, e.g. Eqs. (1) and (14) from Mankofsky et al., 1987)

drs,l
dt

¼ vs,l,
dvs,l
dt

¼ e

Mi
Eþ vs,l � B

c

� �
�menie

Mi
ðvs,l�UiÞ�

menie
Mieni

J�niovs,l:

ð1Þ
Here we assume that the charge state is Zi¼1. Ui, and J denote the
charge-averaged velocity of all (incoming and pickup) ions and
the total current, Eq. (5). The subscript s denotes the ion popula-
tion (s¼1,2 for incoming ions and s¼3,4 for pickup ions) and the
index l is the particle index. nie and nio are collision frequencies
between ions and electrons, and ions and neutrals that may
include Coulomb collisions and collisions due to particle–wave
interaction.

For a plasma, the thermal velocity, v0
a ða¼ i,eÞ, is assumed

greater than the drift velocity, so we take

na,o ¼ noso,av0
a, ð2Þ

where the cross section so,a is typically about 5�10�15 cm2 (see,
e.g., Eq. (17) from Mankofsky et al., 1987).

For massless electrons the equation of motion of the electron
fluid takes the form of the standard generalized Ohm’s law (e.g.
Braginskii, 1965)

E¼ 1
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where pe ¼ nme/v02

e S=3¼ nekBTe, and v0
e are the scalar electron

pressure and the thermal velocity of electrons, and the electron
current is estimated from Eq. (5).

The induction equation (Faraday’s law) has a form

1

c

@B

@t
þr � E¼ 0: ð4Þ

The total current is given by

J¼ Jeþ Ji, Ji ¼
X2
s ¼ 1

ensUs ¼ eniUi, ð5Þ

where Us is the bulk velocity of ions of the type s.
Since we suppose that electron heating due to collisions with

ions is very small, the electron fluid is considered adiabatic.
For simplicity, we assume that the total electron pressure may
be represented as a sum of partial pressures of all electron
populations

pep
ðben

5=3
i,upþbe,PIn

5=3
i,PI Þ

be

, ð6Þ

where be and be,PI denote electron upwind and pickup betas,
respectively. Note that be,k ¼ pe,k=ðB2=8pÞ, where k is a population
of electrons. We also assume here that ne,up ¼ ni,up, ne,PI ¼ ni,PI.

The neutral atmosphere of Europa serves as a source of new
ions, mainly by electron impact ionization from corotating
(or nearly corotating) plasma and also by photoionization. The
neutral atmospheric molecules also serve as collisional targets for
charge exchange by corotating ions. The impacting ions consist of
both upstream torus ions and newly implanted ions which are
picked up by the motional electric field.

In the current model, we assume that the background plasma
contains only the ions with molecular mass/charge of 8 and 16
corresponding to Oþ þ and Sþ þ , respectively.

We assume that Europa has a radius RE ¼ 1560 km. We have
also adopted a two-species description for the neutral O2

exosphere of exponential form (Shematovich et al., 2005)

nneutral,k � natmos,kexp½�ðr�rexobase,kÞ=hatmos,k�, ð7Þ

where natmos,k denotes the maximum value of the neutral density
extrapolated to the exobase (natmos,1 ¼ 3� 104 cm�3; natmos,2 ¼
8:5� 107 cm�3; rexobase,1 � 1700 km; rexobase,2 � 1560 km), and
index k denotes either non-thermal (k¼1) or thermal (k¼2)
species. Here the scale heights hatmos,1 ¼ 200 km and hatmos,2 ¼
30 km.

The production rate of new ions from the exosphere near
Europa corresponds to

Gexo,kpni,knatmos,kexp½�ðr�rexobase,kÞ=hatmos,k�, ð8Þ

where natmos,k denotes the value of the neutral component density
at r¼ rexobase,k and ni,k is the effective ionization rate per atom
or molecule of species k. ni,k includes the photoionization nph, and
the electron impact ionization by the magnetospheric electrons
ne,im. We assume that our model of the atmosphere mainly
consists of O2, and we use the effective photoionization rate 1:7�
10�8 s�1 (Johnson et al., 2009). We also adopt the effective
electron impact ionization rates of 2:4� 10�8 cm3=s (for 20 eV
electrons) and 1:1� 10�7 cm3=s (for 250 eV electrons) (see e.g.
Johnson et al., 2009). Since the hot electrons represent only 5% of
the total electron density (see Voyager 1 plasma science (PLS)
measurements analyzed by Sittler and Strobel, 1987; Bagenal,
1994) we use the same composition for computing the impact
ionization rate. We assume that the Sun is located in the direction
opposite the x-axis.

The interaction of ions with neutral particles by charge
exchange (see Eqs. (12)–(15) from Lipatov and Combi, 2006)
currently includes for the following reactions:

Oþ þ þO2-Oþ þOþ
2

Sþ þ þO2-Sþ þOþ
2

Oþ
2 þO2-O2þOþ

2 ð9Þ

The effective cross section for charge exchange ðsc,ex ¼ 2:6�
10�19 m2Þ was the same as that used in the hybrid modeling of
Io’s plasma environment (see Lipatov and Combi, 2006; McGrath
and Johnson, 1989). A more complete list of reactions will be
considered in future modeling. Of course, this also requires the
addition of Monte Carlo computations. However, this approach is
beyond the scope of this paper.

Our code solves Eqs. (1)–(9).
We discuss two models of the interaction between the Jovian

magnetosphere and Europa. In Section 3.1 we discuss the inter-
action model for the cases with different ions and electron betas,
different pickup ion production rates near the surface of Europa,
and homogeneous global Jovian magnetic field (model I, cases
(a) and (b)), whereas in Section 3.2 we consider the model II, case
(c) with realistic global Jovian magnetic field and the internal
dipole magnetic field placed in the center of Europa. To study the
interaction of the plasma torus with the ionosphere of Europa, the
following set of Jovian plasma torus and ionosphere parameters
were adopted in accordance with the Galileo Europa E4 flyby
observational data (Paterson et al., 1999; Khurana et al., 1998;
Kivelson et al., 1997, 1999): magnetic field, B0 ¼ 469 nT and
B¼ ð77:6,�140:7,�441:3Þ nT; torus plasma speed relative to
Europa (Paterson et al., 1999), U0 ¼ 105 km=s; upstream ion
densities, rOþ þ ¼ 10 cm�3; rSþ þ ¼ 10 cm�3 and ion temperature,
Ti ¼ 252100 eV (Paterson et al., 1999); electron temperature for
suprathermal population, Te¼20 eV (Sittler and Strobel, 1987);
ratio of specific heats, g¼ 5=3; Alfvén and sonic Mach numbers,
MA¼0.25, Ms¼3.66.

A.S. Lipatov et al. / Planetary and Space Science 77 (2013) 12–2414



Author's personal copy

Initial conditions: Initially, the computational domain contains
only supersonic and sub-Alfvénic plasma torus flow with a
homogeneous spatial distribution and a Maxwellian velocity
distribution; the pickup ions have a weak density and spherical
spatial distribution. The magnetic and electric fields are B¼ B0

and E¼�U0 � B0. Inside Europa the electromagnetic fields are
E¼ 0 and B¼ B0, and the bulk velocities of ions and electrons are
also equal to zero. Here the x-axis is directed in the corotation
direction, the y-axis is directed toward Jupiter, and the z-axis is
directed to the north, as shown in Fig. 1. In model I, cases (a) and
(b) we use a homogeneous magnetic field for the initial and
boundary conditions (see paragraph above). In model II, case
(c) we use an extrapolation of the magnetic field profile along E4
trajectory (see, Kivelson et al., 1999, 2009) onto the computation
domain for the initial and boundary conditions. The effect of
global variation in the magnetic field in the rest of Europa was not
taken into account directly in the modeling but it was included in
to the modeling as an internal magnetic dipole (see, Schilling
et al., 2007, 2008).

At t40 we begin to inject the pickup ions with a spatial
distribution according to Eq. (8). Far upstream (x¼�15 RE), the
background ion flux is assumed to have a Maxwellian velocity
distribution.

Boundary conditions: On the side boundaries (y¼ 7DY=2 and
z¼ 7DZ=2), periodic boundary conditions were imposed for
incoming flow particles. The pickup ions exit the computa-
tional domain when they intersect the side boundary surfaces
y¼DY=2�5� Dy, y¼�DY=2þ5�Dy, z¼DZ=2�� Dz, z¼�DZ=

2þ5� Dz. Thus there is no influx of pickup ions at the side
boundaries.

At the side boundaries, we also use a damping boundary
condition for the electromagnetic field (see e.g., Lipatov and
Combi, 2006; Umeda et al., 2001). This procedure allows us to
reduce outcoming electromagnetic perturbations, which may be
reflected at the boundaries.

Far downstream ðx¼ 12REÞ, we adopted a free escape condition
for particles and the ‘‘Sommerfeld’’ radiation condition for the
magnetic field (see e.g., Tikhonov and Samarskii, 1963) and a free
escape condition for particles with re-entry of a portion of the
particles from the outflow plasma.

At Europa’s surface, r¼ RE � 1560 km, the particles are
absorbed. In model I, there is no boundary condition at Europa’s
surface for the electromagnetic field; we also use our equations
for the electromagnetic field, (see, Eqs. (2), (4) and (9) from
Lipatov and Combi, 2006) inside Europa but using the low
internal conductivity (Reynolds number, Re¼0.5) and very small
value for bulk velocity that are calculated from the particles.
In model II, we also use an inductive magnetic dipole

ð0,0,�72:5Þ nTR3
E for the boundary condition at Europa’s surface

that simulates the effect of nonstationarity of Jovian magnetic
field at the position of Europa. In this way, the jump in the electric
field is due to the variation of the value of the conductivity and
bulk velocity across Europa’s surface (note that the center of
Europa is at x¼ 0,y¼ 0,z¼ 0).

The three-dimensional computational domain has dimensions
DX ¼ 27RE, DY ¼ 30RE and DZ ¼ 30RE. We used mesh of
301�301�271 grid points, and 5�108 and 5�108 particles
for ions and pickup ions, respectively, for a homogeneous mesh
computation. The particle time step Dtp and the electromagnetic
field time step DtEB satisfy the following condition: vmaxDtpr
minðDx,Dy,DzÞ=8 and vmaxDtEBrminðDx,Dy,DzÞ=256.

The global physics in Europa’s environment is controlled by a

set of dimensionless independent parameters such as MA, bi, be,
Mi=Mp, ion production and charge exchange rates, diffusion lengths,

and the ion gyroradius E¼ rci=RE. Here rci ¼U0= ðeB=MicÞ ¼
MAc=opi and the ion plasma frequency opi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=Mi

p
. Mi

and Mp denote the ion and proton masses. For real values of the
magnetic field, the value of the ion gyroradius is about 80 km,
which is calculated from the local bulk velocity. The dimension-
less ion gyroradius and grid spacing have the values E¼ 0:05 and
Dx=RE ¼ 0:1.

In order to study ion kinetic effects (e.g. excitation of low-
frequency oscillations ðo5ObÞ by the mass loading), we must
satisfy the condition Dr ð10�20Þc=opb, where Ob and opb denote
the gyrofrequency and the plasma frequency for upstream ions
(Winske et al., 1985). The above estimation of the plasma
parameters shows that we have good resolution for the low-
frequency waves (see also Lipatov et al., 2012).

There is another problem—numerical resolution of the gyro-
radius on the spatial grid. It becomes very important near
Europa’s surface where the MHD model cannot to be used and
we have to use a kinetic model to study a trajectory of the heavy
ions and their interaction with the surface of Europa. Our current
model still does resolved the last effect and we expect to
improved the model by use a spherical system of coordinates in
future research.

3. Results of Europa’s environment simulation

3.1. Effects of plasma betas on the plasma wake structure

In order to study the effect of plasma parameters on the
structure of the plasma wake and the Alfvén wing, we have
performed a modeling (model I) for two cases (a) and (b) with
different values of the upstream background ion temperatures,
pickup electron temperatures, and value of the pickup production
rate near the surface of Europa.

The following plasma parameters are chosen the same for both
models: full magnetosphere corotation speed is U0 ¼ 105 km=s;
upstream densities are rOþ þ ¼ 10 cm�3, rSþ þ ¼ 10 cm�3; mag-
netic field is B0 ¼ 469 nT; B¼ 77:6,�140:7,�441:3 nT; Alfvénic
Mach number MA¼0.25; magnetosonic Mach number Ms¼3.66.
The model of O2 atmosphere was taken from Cassidy et al. (2007),
Shematovich et al. (2005) and Smyth and Marconi (2006). In
model I, cases (a) and (b), Europa’s interior is represented as low
conducting body with Reynolds number Re¼0.5.

Model I , case (a): Upstream ion temperatures are TOþ þ ¼
25 eV; TSþ þ ¼ 25 eV and upstream electron temperature is
Te,0 ¼ 20 eV. Temperatures of electrons connected with non-
thermal and thermal Oþ

2 pickup ions are Te,non-thermal ¼ 20 eV;
Te,thermal ¼ 20 eV.

* 06:40 UT

* 06:50 UT

* 07:00 UT * 07:10 UT

Fig. 1. Europa’s environment and system of coordinates.
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Model I , case (b) (reduced density for thermal O2 by factor 60
near surface and higher electron temperatures; increased upstream
ion temperatures, TOþ þ ¼ 100 eV; TSþ þ ¼ 100 eVÞ: upstream

electron temperature is Te,0 ¼ 20 eV; temperatures of electrons
connected with non-thermal and thermal Oþ

2 pickup ions
Te,non-thermal ¼ 200 eV; Te,thermal ¼ 200 eV.
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We have performed a several hybrid modeling with different
ions and electron betas, and different rate productions for Oþ

2

pickup ions but we discuss here only the modeling, which can fit
the observations.

The initial thermal velocities of Oþ
2 non-thermal and thermal

ions are chosen as the following: vth,non�thermal ¼ 3:0 km=s (2 eV)
and vth,thermal ¼ 0:5 km=s (0.05 eV). The initial bulk velocity of Oþ

2

pickup ions is about 1 km/s. Eq. (8) gives the following total
pickup ion production rate: QOþ

2 ,thermal ¼ 0:825� 1028 s�1 and
QOþ

2 ,non-thermal ¼ 1:95� 1026 s�1.
Let us consider first the global picture of the interaction of the

plasma torus with Europa. The results of this modeling are shown
in Figs. 2–4. Figs. 2 and 3 demonstrate 2D cuts for non-thermal
and thermal Oþ

2 pickup ion density profiles. One can observe the
asymmetrical distribution of the pickup ion density (top, case (a))
and (bottom, case (b)) in the x–y, y–z ðx¼ 5REÞ and z–x planes.
The pickup ion motion is determined mainly by the electromag-
netic drift. The motion along the magnetic field is due to the
thermal velocity and the gradient of the electron pressure. A more
wider density profile of the pickup ions was observed in the case
(b), Figs. 2 and 3 (bottom).

The figures demonstrate a strong structuring in the non-
thermal and thermal Oþ

2 ion density profiles. While case
(a) produces a much higher peak in the thermal Oþ

2 ion density
as was seen in E4 observations, case (b) produces much better
agreement with observation for the thermal Oþ

2 ion density as
shown in Figs. 2 and 3.

The modeling also demonstrates the asymmetrical distribution
of the background Oþ þ ion density in the x–y, y–z ðx¼ 5REÞ and
z–x planes, Fig. 4. The asymmetrical distribution of the back-
ground ions in the x–y plane may be explained by the existence of
a strong Bz component in the upstream magnetic field. One can
also see an increase in the plasma density near Europa due to the
formation of a magnetic barrier (not shown here). In case (b) this

effect is stronger than in case (a). The density profiles for SOþ þ

background ions are close to the density profiles for Oþ þ ions.
The inclination of the magnetic field results in an asymme-

trical boundary condition for ion dynamics (penetration and

-15 -10 -5 0 5 10
-15

-10

-5

0

5

10

15

1

-15 -10 -5 0 5 10
X/L

-15

-10

-5

0

5

10

15

Y
/L

N(O++)

1

-15

-10

-5

0

5

10

15

Y
/L

-15

-10

-5

0

5

10

15

Y
/L

-15 -10 -5 0 5 10
-15

-10

-5

0

5

10

15

0.
5

0.
5

-15 -10 -5 0 5 10
X/L

-15

-10

-5

0

5

10

15

Y
/L

N(O++)

0.5
0.5

-15

-10

-5

0

5

10

15

Y
/L

-15

-10

-5

0

5

10

15

Y
/L

-10 -5 0 5 10 15

0.6

0.6

-10 -5 0 5 10 15
Z/L

N(O++)

-10 -5 0 5 10 15

0.6

0.6

-10 -5 0 5 10 15
Z/L

N(O++)

0.6

0.6

-15 -10 -5 0 5 10

-10

-5

0

5

10

15

1
-15 -10 -5 0 5 10

X/L

-10

-5

0

5

10

15

Z/
L

N(O++)

1

-15 -10 -5 0 5 10

-10

-5

0

5

10

15

0.20.6

0.6

-15 -10 -5 0 5 10
X/L

-10

-5

0

5

10

15

Z/
L

N(O++)

0.20.6

0.6

0.0

0.2

0.4

0.6

0.8

1.0
N

Fig. 4. 2D cuts of the background Oþ þ ion density profiles. Model I, case (a) (top) and case (b) (bottom). x�y cuts (left column) are located at z¼0, y�z cuts are located at

x=RE ¼ 7, and x�z cuts (right column) are located at y¼0.

N(O++)

-15 -10 -5 0 5 10
X/Re

0

20

40

60

80

100

N
(c

m
^-

3)

N(O++)

-15 -10 -5 0 5 10
X/Re

0

5

10

15

20

N
(c

m
^-

3)

Fig. 5. 1D cuts of the background Oþ þ ion density profile. The cuts are located at

y¼0, z¼0. Model I, case (a) (top) and case (b) (bottom).

A.S. Lipatov et al. / Planetary and Space Science 77 (2013) 12–24 17



Author's personal copy

reflection) in Europa’s ionosphere and an asymmetrical Alfvén
wing.

Note that the background ion flow around the effective
obstacle that is produced by pickup ions and the ionosphere.
The pickup ions flow from the ‘‘corona’’ across the magnetic field
due to electromagnetic drift, whereas the motion along the
magnetic field is determined by the thermal velocity of ions and
the electron pressure.

Fig. 5 demonstrates the 1D cuts (y¼0, z¼0) of the background
density Oþ þ for case (a) (top) and case (b) (bottom). Strong
jumps in the plasma density with NOþ þ ,max ¼ 80 cm�3 (case (a))
and NOþ þ ,max ¼ 17 cm�3 (case (b)) are observed on the day-side of
the ionosphere, whereas a reduction in the plasma density is
observed in the plasma wake. Note that the jump in the plasma
density profile is stronger in case (a) than it is observed in case (b).
Both jumps are located near the surface of Europa.

Fig. 6 shows 1D density profiles of the background and pickup
ions along the E4 trajectory of the Galileo spacecraft. One can see
a strong plasma void in the center of the plasma wake. There is
also a sharp boundary with an overshoot in the density profiles on
the side of the plasma wake in the Jupiter-direction, and a smooth
boundary layer on the side in the anti-Jupiter direction, Fig. 6
(top). The density profile for Oþ þ is similar the density profiles
for the Sþ þ upstream ions. Fig. 6 (middle and bottom) also shows
the density profiles for the non-thermal (top) and thermal
(bottom) Oþ

2 pickup ions. One can see the split structure of the

plasma tail. The effect of splitting of the plasma tail was also
observed in the hybrid modeling of weak comets (see, e.g., Lipatov
et al., 1997; Lipatov, 2002). The general feature of this plasma
density is due to the effect of the finite heavy gyroradius. The total
ion density profile observed in E4 pass is shown in Fig. 6 (bottom).
The observed value of the density in these peaks is lower than in
modeling and it may be explained by an overestimated density of
Oþ

2 pickup ions for case (a). In the case (b), disagreement is not as
strong, an improvement of the atmosphere model is still required.

The modeling gives the following total fluxes for the Oþ
2

pickup ions (case (a)): 1:4� 1022 mol=s (non-thermal) and 1:75�
1025 mol=s (thermal); (case (b)): 0:8� 1022 mol=s (non-thermal)
and 1:0� 1025 mol=s (thermal) across the back boundary
x¼ 12RE.

Let us consider a global distribution of the electric and
magnetic field in Europa’s environment. Fig. 7 shows Bx, Bz
magnetic and Ey electric field profiles for case (a) (left) and case
(b) (right). The y�z cuts (top and middle) are located at x=RE ¼ 7,
and x�y cuts (bottom) are located at y¼0. The figure demon-
strates perturbations in the magnetic Bx and electric Ey field
profiles, which are due to the formation of an Alfvén wing.
The increase in the magnetic field Bz indicates the formation of
an asymmetrical magnetic barrier, Fig. 7 (bottom).

The asymmetry of the modeling distributions in B appears to
be caused by the finite gyroradius effects of incoming and pickup
ions. A weak perturbation of the magnetic field was observed near
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the ionosphere of Europa: compression of the upstream magnetic
field and decompression in the plasma wake.

The modeling also shows the formation of an Alfvén wing in
the direction of the main magnetic field. The formation of the
Alfvén wing in a sub-Alfvénic flow near Europa is similar to a
formation near Io, which was first studied analytically by
Neubauer (1980). The pickup ions play important role on the fine
structure of the Alfvén wing due to effects of mass loading. In
particular, the scale of the front of the Alfvén wing must be
determined by the gyroradius of pickup ions. Unfortunately, in
our 3D hybrid kinetic simulation we cannot yet resolved this
spatial scales.

3.2. Effects of inductive Europa’s magnetic field

In the first set of models (Section 3.1, model I, cases (a) and
(b)), we used a homogeneous global magnetic field as an initial
condition. These models do not produce agreement between the
simulated and observed magnetic fields.

In the second set of modeling, we take into account the
gradient of the global Jovian magnetic field for an initial magnetic
field distribution. In the paper by Kivelson et al. (1999, 1997,
2000), it has been shown that the By component of the magneto-
spheric magnetic field has strong time variations at the position
of Europa. In the MHD-fluid approximation, the effects of such
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magnetic field variations are estimated in Schilling et al. (2007,
2008). The initial plasma density and bulk velocity distribution
in our modeling were taken from the E4 flyby data (Paterson
et al., 1999).

We created the following model II, case (c), for simulation: the
density for thermal O2 is the same as for model I, case (b), and the
pickup electron temperature is lower than in model I, case (b).
The plasma density and bulk velocity distribution in our modeling
were taken from the E4 flyby data (Paterson et al., 1999):
full magnetosphere corotation speed U0 ¼ 105 km=s; upstream
densities are rOþ þ ¼ 10 cm�3; rSþ þ ¼ 10 cm�3; upstream ion and
electron temperatures, TOþ þ ¼ 100 eV; TSþ þ ¼ 100 eV; Te,0 ¼
20 eV. The temperatures of electrons connected with non-
thermal and thermal Oþ

2 pickup ions are Te,non-thermal ¼ 100 eV;
Te,thermal ¼ 100 eV.

In our hybrid kinetic modeling (model II) we use a simple
magnetic dipole model of the induced oceanic magnetic field
from the 10-hour corotation variation of the background Jovian
magnetic field at Europa (see paragraph ‘‘Boundary Conditions’’,

Section 2). And, finally, we fit the results of modeling to the
components of the measured magnetic field.

This is not yet a fully self-consistent approach but provides a
first approximation. Also, the ocean may not be exactly a spherically
symmetric conducting shell and may ultimately require a higher-
order multipole model for the induced fields.

Fig. 8 demonstrates the 2D cuts for non-thermal and thermal
Oþ

2 pickup ion densities. The figure does not show any extension
of the pickup ion profile in the y and z directions. The plasma
wake is narrower in y and z directions in compare with that was
produced by model I, cases (a) and (b). The reason of this effect is
due to lower temperature of electrons connected with pickup Oþ

2

ions than it was in a case (b) and lower pickup ions production
rate near the surface of Europa than it was in a case (a).

Fig. 9 shows the distribution of the Oþ þ ion density in the x–y,
y–z ðx¼ 5 REÞ and z–x planes. The narrow plasma wake may be
explained by smaller temperature of the electrons connected with
Oþ

2 pickup ions, and, hence, with a smaller polarization electric field
which is responsible for an expansion of Europa’s ionosphere.
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One can also see an increase in the plasma density near Europa
due to the formation of a magnetic barrier (not shown here).
The density profile for SOþ þ background ions is close to the
density profile for Oþ þ ions as in model I, cases (a) and (b).

Fig. 10 shows a 1D cut of the background Oþ þ density along
the x-axis ðy¼ 0,z¼ 0Þ. One can see jump in the background
plasma density with NOþ þ ,max ¼ 90 cm�3 (model II, case (c)) on
the day-side of the ionosphere and depletion in the plasma
density in Europa’s plasma wake. Note that the jump in the
plasma density profile is stronger in model II, case (c), than it is
observed in model I, case (a). The jump is located near the surface
of Europa as it was observed in model I, cases (a) and (b).

Fig. 11 shows 1D density profiles of the background and
pickup ions along the E4 trajectory of the Galileo spacecraft.
One can see a strong plasma void in the center of the plasma
wake. There is also a sharp boundary with an overshoot in the
density profiles on the left side of the plasma wake, and a smooth
boundary layer on the right side, Fig. 11 (top). The density profile
for Sþ þ is similar to the density profile for Oþ þ background ions.
Fig. 10 (middle) shows the density profiles for non-thermal and
thermal O2þ pickup ions. The total ion density profile observed
during the E4 pass is shown in Fig. 11 (bottom). Again, one can see
two peaks in the total ion density profile. However, the observed
value of the density in these peaks is lower than predicted by the
model; this may be explained by an overestimated density of Oþ

2

pickup ions for model II, case (c).
The modeling shows that the shaping of Europa’s global

plasma environment depends on a combination of the upstream
plasma parameters and pickup ions and electron parameters. For
example, the reducing in the temperature of electrons connected
with pickup ions results in the higher density of the thermal Oþ

2

pickup ions at the trajectory of a spacecraft, compare Fig. 6 (right)
and Fig. 11. This effect is connected with the polarization electric
field which is proportional to the gradient of the electron
pressure. The reducing in the temperature of the background
upstream ions results in the widening of the plasma wake,
compare Fig. 6 (left and right, top) and Fig. 11 (top). These effects
were earlier demonstrated in the 3D hybrid simulation of Io’s
plasma environment (Lipatov and Combi, 2006). We have found
the similarities between the plasma environments of these
objects. Indeed, Io and Europa have sufficiently thin exospheres
and strong magnetic fields resulting in a small value of the ion
gyroradius.

Let us consider the global distribution for the electromagnetic
field of model II, case (c). Fig. 12 shows 2D cuts for the magnetic
Bx, Bz and electric Ey field profiles. The distributions for the Bz,
Ey field shown in the figure are close to the distributions for
model I, case (b). However, there are significant differences
between the Bx profiles for model I, case (a) and case (b), and
model II, case (c). The differences between the Bx profiles for cases

(a) and (b), Fig. 7 (top) are due to much higher density of the
thermal O2þ pickup ions in the plasma wake, whereas the
differences between the Bx profiles for cases (b) and (c) are due
to the nonlinear interaction of the Alfvén wing with nonhomo-
geneous Jovian magnetic field in model II, case (c).

Fig. 13 shows the magnetic field components (solid line) Bx, By,
Bz, and 9B9 along the E4 trajectory of the Galileo spacecraft. The
magnetic field components of the inductive magnetic dipole that
simulates the effect of the nonstationarity of the Jovian magnetic
field are shown by a dotted line (- - -). The circles ðJÞ denote
observational data from Kivelson et al. (1997) and the initial
Jovian magnetospheric field at the position of Europa (þþþ). The
simulation produces a satisfactory agreement with the observa-
tional data for the By magnetic field component, but not for the
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Bx and Bz magnetic field components. A multipole model for the
oceanic magnetic field may address this issue. We will need to
improve the model of the O2 atmosphere, the resolution of the ion
trajectory, and the gradient in the atmosphere/ionosphere density
profiles near the surface of Europa to obtain better agreement in
the Bx and Bz magnetic field components

4. Conclusions

Hybrid modeling of Europa’s plasma environment for E4
encounter with three ion species demonstrated several features:

� The modeling shows a strong phase mixing in the plasma
wake. The plasma wake demonstrates the formation of time-
dependent structuring in the pickup ion tails (see, e.g.,
McKenzie et al., 2001 for weak comet case) and the splitting
of the pickup ion tails. The splitting of the plasma wake has the
same nature as the splitting of the weak comet’s plasma wake
or the splitting of Titan’s plasma wake. Such finite gyroradius
effects were also observed in 2.5D hybrid and bi-fluid

modeling of a weak comet (see, e.g., Lipatov et al., 1997; Sauer
et al., 1996, 1997; Lipatov, 2002) and in 3D hybrid modeling of
Titan’s plasma environment (Lipatov et al., 2011, 2012). The
further investigation of these fine structure needs an addi-
tional modeling with much better resolution.

� The model shows the magnetic field barrier formation at the
day-side portion of the ionosphere. The formation of an Alfvén
wing in the plane of the external magnetic field was also
observed. Note that the Alfvén wing was earlier observed in a
hybrid simulation of the plasma environment of Io and Europa
by Lipatov and Combi (2006) and by Lipatov et al. (2010). An
MHD simulation of the plasma environment of Io and Europa
also produces the formation of an Alfvén wing (Saur et al.,
1999, 1998; Liu et al., 2000; Schilling et al., 2008).

� The ion and electron temperatures play an important role in
plasma structure formation, and in creating the ion fluxes
inside the ionosphere. These effects were observed earlier in a
3D hybrid simulation of Io’s plasma environment (Lipatov and
Combi, 2006). Hybrid model produces a correct pickup ion flux
along the magnetic field in opposite the MHD models which
operate with pickup ions with a Maxwellian velocity distribu-
tion. In the current paper, we have presented only three runs
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with different combinations of the upstream ion and pickup
electron temperatures.

� The model’s total ion density in the plasma wake does not
satisfactory match the observed density.

� The constant induced dipole moment (model II, case (c))
improves a fit the magnetic field By component to the E4
trajectory. However, a fit for the magnetic field Bx component
is still not satisfactory due to the not perfect model of the
atmosphere/ionosphere and not satisfactory numerical resol-
ving of the gyriradius on the grid cell.

� Use of an inhomogeneous background magnetic field provides
a good agreement between the observed and simulated
magnetic fields. However, we still need to improve the
resolution of the gradient in the atmosphere density, the
gyroradius of pickup ions, and the fields in the internal non-
conduction ice shell and conduction ocean layers of Europa.

In our future computational models, we plan to include a
nonstationary boundary condition for the magnetic field in order
to take into account the spatially inhomogeneous and nonsta-
tionary background Jovian magnetic field. This model will also

respect to a potentially nonspherical ocean shell. We also plan the
use of a varying atmospheric density, a varying electron tem-
perature (that plays key-role in the pickup ion dynamics), and
sputtering processes (Johnson, 1990; Johnson et al., 1998) at the
surface of Europa. We also plan to use a composite grid structure
using the ‘‘cubed sphere’’ technique (see, e.g. Koldoba et al., 2002)
to improve the resolution of the a small scales near the surface of
Europa and to increase the size of the computational domain.

The composite grid structure will allow us to estimate the
inductive magnetic field from the ocean as a part of the total
current closure that also includes the external plasma currents.
This technique will allow us to study wave–particle interaction
effects in the far plasma wake, such as ion cyclotron waves that
have been observed in the Galileo flyby mission (see e.g. Volwerk
et al., 2001; Kivelson et al., 2009). These models must include the
induced magnetic field from a putative subsurface ocean, and will
also include particle trajectory tracing for test particles, e.g.
electrons and high-energy ions.

Note that the larger computational domain allows us to use
the upstream parameters for the plasma and electromagnetic
field instead of the use of the ‘‘damping’’ boundary condition.
However, in the outer region of the computational domain (large
cell size) we have to use a drift-kinetic approach (see e.g. Lipatov
et al., 2005) for ion dynamics since we cannot approximate the
ion trajectory there. We can also use a complex particle kinetic
technique (see e.g. Lipatov, 2012) which provides a flexible fluid/
kinetic description and may significantly save computational
resources.
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