Enabling Microliquid Chromatography by Microbead Packing of Microchannels

Goddard Space Flight Center, Greenbelt, Maryland

The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life.

In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200-proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads.

Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

This work was done by Shivshankar Sundaram, Balabhaskar Prabhakarpandian, Kapil Pant, and Yi Wang of CFD Research Corp. for Johnson Space Center. Further information is contained in a TSP (see page 1). In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:

CFD Research Corp.
215 Wynn Dr.
Huntsville, AL 35805
Phone No.: (256) 726-4800
E-mail: bio_web@cfdr.com
Refer to MSC-24375-1, volume and number of this NASA Tech Briefs issue, and the page number.

On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF

NASA’s Jet Propulsion Laboratory, Pasadena, California

Various machines have been developed to address the need for countermeasures of bone and muscle deterioration when humans operate over extended time in space. Even though these machines are in use, each of them has many limitations that need to be addressed in an effort to prepare for human missions to distant bodies in the solar system.

An exercise exoskeleton was conceived that performs on-demand resistivity by inducing force and torque impedance via ElectroRheological Fluid (ERF). The resistive elements consist of pistons that are moving inside ERF-filled cylinders or a donut-shaped cavity, and the fluid flows through the piston when the piston is moved. Tests of the operation of ERF against load showed the feasibility of this approach.

The inside of the piston consists of parallel electrodes with alternating po-

larity that increase the ERF viscosity when activated. This increase leads to the formation of a virtual valve inside the piston creating impeding force to the piston motion. The cross-sectional area of the piston is mostly hollow to allow low piston resistance to the motion when the electrodes are not activated, and produce high impedance when the electrodes are activated. A balanced volume is created on the two