RADIOGENIC INGROWTH OF 40CA FROM DECAY OF 40K PROVIDES A POWERFUL TRACER FOR UNDERSTANDING THE ORIGINS OF FELDIC MAGMAS

MILLS, Ryan D.¹, SIMON, Justin I.¹, DEPAOLO, Donald J.², and BACHMANN, Olivier³, (1) Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research, NASA, Johnson Space Center, Houston, TX 77058, ryan.d.mills@nasa.gov, (2) Earth and Planetary Science, University of California, Berkeley, 301 McCone Hall, Berkeley, CA 94720-4767, (3) Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, NW E 83.3, Zurich, 8092, Switzerland

Over time high K/Ca continental crust produces a unique Ca isotopic reservoir, with measurable 40Ca excesses compared to Earth’s mantle ($\varepsilon_{Ca}=0$). Thus, values of $\varepsilon_{Ca_i}>1$ indicate a significant crustal contribution to a magma. Values of $\varepsilon_{Ca_i}(<1)$ indistinguishable from mantle Ca indicate that the Ca in those magmas is either directly from the mantle, or is from partial melting of newly formed crust. So, whereas 40Ca excesses clearly define crustal contributions, mantle-like 40Ca/44Ca ratios are not as definitive. Here we present Ca isotopic measurements of intermediate to felsic igneous rocks from the western United States, and two crustal xenoliths found within the Fish Canyon Tuff (FCT).

The two crustal xenoliths found within the 28.2 Ma FCT of the southern Rocky Mountain volcanic field (SRMVF) yield ε_{Ca} values of ~4 and ~7.5, respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. However, the FCT ($\varepsilon_{Ca_i} \sim 0.3$) is within uncertainty of the mantle 40Ca/44Ca. Together, these data indicate that little Precambrian crust was involved in the petrogenesis of the FCT. Nd isotopic analyses of the FCT imply that it was generated from 10-75% of an enriched component, and the Ca isotopic data appear to restrict that component to newly formed lower crust, or enriched mantle. However, the Ca isotopic data do permit assimilation of some crust with low Ca/Nd; decreasing the 143Nd/144Nd without adding much excess 40Ca to the FCT. Several other large tuffs from the SRMVF and from Yellowstone have ε_{Ca_i} indistinguishable from the mantle. However, a few large tuffs from the SRMVF show significant 40Ca excesses. These tuffs (Wall Mountain, Blue Mesa, and Grizzly Peak) are likely sourced from near, or within the Colorado Mineral Belt.
New isotopic measurements of Mesozoic and Tertiary granites from across the northern Great Basin show a range of εCa, from 0 to ~3. In these samples εCa is generally correlated with εSr, and is broadly negatively correlated with εNd. However, for granites with similar εNd, at a given general location εCa can vary significantly (1 to 2 epsilon units). In rocks where low εNd could also be due to melting from enriched reservoirs in the mantle lithosphere, the combination of high εCa with low εNd clearly identifies crustal melts.

Meeting: 2013 GSA Annual Meeting in Denver: 125th Anniversary of GSA (27-30 October 2013)
Session Type: Topical/Theme
Selection: T218. Illuminating Felsic Origins: Using Novel Multiple-Method Approaches to Investigate the Birth of Silicic Magmas
Title: RADIOGENIC INGROWTH OF 40CA FROM DECAY OF 40K PROVIDES A POWERFUL TRACER FOR UNDERSTANDING THE ORIGINS OF FELSIC MAGMAS
Key Words: calcium isotopes, radiogenic isotopes, magma genesis, ignimbrites, plutonic rocks
Presentation Format: Oral
Discipline Categories: Petrology, Igneous, Geochemistry, Volcanology

Scheduled For:
Presentation Date: Sunday, 27 October 2013
Presentation Time: 8:05 AM