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TECHNICAL PUBLICATION

SUMMARY OF THE 2012 INDUCTIVE PULSED PLASMA THRUSTER  
DEVELOPMENT AND TESTING PROGRAM

1.  INTRODUCTION

 In fiscal year 2012, Marshall Space Flight Center (MSFC) conducted a program to incre-
mentally develop and advance technologies that would be needed to eventually employ an inductive 
pulsed plasma thruster (IPPT) for in-space propulsion. This work was conducted under NASA’s 
Office of the Chief Technologist, within the Game Changing Development Program, as part of the 
In-Space Propulsion Project. 

 The IPPT is an electrodeless space propulsion device where a capacitor is charged to an ini-
tial voltage and then discharged, producing a high-current pulse through a coil. The field produced 
by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the 
coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the 
electromagnetic Lorentz body force arising from the interaction of the induced plasma current and 
the magnetic field produced by the current in the coil. 

 Thrusters of this type possess many demonstrated and potential benefits that make them 
worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime 
and contamination issues associated with electrode erosion in conventional electric thrusters. Also,  
a wider variety of propellants are accessible when compatibility with metallic electrodes are no 
longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydra-
zine, and carbon dioxide, and there is no fundamental reason why they would not operate on other  
in situ propellants like water. It is well known that pulsed accelerators can maintain constant spe-
cific impulse (Isp) and thrust efficiency (ηt) over a wide range of input power levels by adjusting 
the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that  
an IPPT can operate in a regime where ηt is relatively constant over a wide range of Isp values (3,000 
to 8,000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, 
and by increasing the pulse rate, they offer the potential to process very high levels of power using  
a single thruster.

 This Technical Publication (TP) describes IPPT research conducted at MSFC during 2012. 
The tasks undertaken were performed to begin the process of addressing several critical IPPT devel-
opment issues. Specifically, the following tasks were performed and are documented in this TP:
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• Fabrication and performance measurements on a conical theta-pinch (CTP) device to address 
potential techniques to improve propellant utilization over flat-plate planar coil designs.

• Assembly of a capacitor charging system capable of supporting fast charging operations to permit 
repetition-rate operation of pulsed thrusters.

• Fabrication of a small-scale, flat-plate planar coil IPPT as a testbed for evaluation of lower energy, 
off-the-shelf, solid-state switch technologies.

• Design, fabrication, and initial testing of a prototype long-lifetime pulsed gas valve (PGV) like that 
needed to support a mission that might employ an IPPT system for propulsion.

• Initial subscale research and development of a high-voltage IPPT power processing unit (PPU) 
that could potentially be integrated into a thruster system and provide for repetitive capacitor bank  
recharging.
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2.  CONICAL THETA-PINCH THRUSTER RESEARCH

 There has been significant previous research on IPPTs designed around a planar coil (flat-
plate) geometry.1 The most notable of these was the pulsed inductive thruster (PIT).2 During the 
early investigations on the PIT geometry,3 testing with smaller scale planar coil thrusters revealed 
differences in propellant utilization efficiency between the cases where propellant was injected using 
a pulsed gas system and where the coil was situated within an ambient backfill environment with no 
pulsed gas injection employed. In these experiments, the latter cases outperformed the former. It was 
believed, based upon current density measurements, that the nonuniform propellant distribution in 
the pulsed gas injection cases resulted in poorer overall coupling between the coil and the plasma. In 
more recent low-energy (<100 J/pulse) experiments, an ambient backfill environment was employed 
and a separate preionization source was used to generate a seed-plasma before the application of the 
current pulse through the coil. In these tests, a plasma sheet was only produced by the current pulse 
through the coil when a sufficiently strong magnetic field was applied to divert the preionized plasma 
from the natural diffusion path along the centerline to a path over the coil face.4,5 

 An approach was proposed to alter the coil geometry such that it more closely aligns with 
the natural path followed by the injected propellant, potentially making the propellant distribution 
uniform and more easily preionizable. This strategy was the motivation for the experimental work 
on the CTP IPPT geometry detailed in the present section of this TP. Modeling of the acceleration 
process in CTP geometry thrusters was performed to gain additional insights into the scaling of per-
formance in these types of thrusters. Results of this modeling effort are discussed at the end of this 
section, where they are reconciled with the experimental measurements.

2.1  Conical Theta-Pinch Description

 The CTP thruster consists of a thruster coil, capacitor bank and switch, gas injection system, 
and preionization system. Each of these is discussed in turn in this section, with particular attention 
paid to documenting not only the final design iteration, but all methods attempted and the issues 
encountered during the development effort. 

2.1.1  Coils

 Three CTP inductive coils were constructed for performance testing (see example with labeled 
geometry in fig. 1). Two of the coils have length (lcoil) of 10 cm (4 in) and a minor radius (rcoil) of  
4 cm (1.6 in). The half-cone angles (θ) for these coils are 20° and 38°. The third coil has lcoil of  5 cm 
(2 in), rcoil of  4 cm (1.6 in), and θ of  60°. In all three cases, the inductance of the coil is 240 (±20) nH 
as measured using an Agilent 4285A precision inductance-capacitance-resistance meter. The 38° coil 
in figure 1 is shown prior to being encased in room temperature vulcanizing silicone (RTV), which 
serves to insulate the coil surface from the ionized propellant. This insulating layer was covered with 
aerosol boron nitride spray to prevent ablation of the RTV surface. 
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 (a) (b)

Figure 1.  38° CTP inductive coil showing (a) front view along the axis and (b) top view.

 The conducting traces comprising each coil were assembled in two layers. In all, the coil is 
formed from 16 separate Kapton®-insulated 22-gauge wires. Each wire completes a half-turn spiral 
going from the back end of the cone (smaller radius position) to the front and another half-turn 
spiral in the same azimuthal direction returning to the back end of the cone on the other side of the 
insulating sheet. The insulating sheet is comprised of two layers of 0.25-mm- (0.01-in-) thick Mylar® 
that provides the physical structure for the cone. When superimposed, the current passing through 
the windings creates a nearly azimuthal net current in the coil. The windings are electrically con-
nected in parallel to common current feed and return locations at the back of the cone. Each com-
mon connection consists of 2.5-cm- (1-in-) wide, 12-gauge-equivalent, flat copper speaker wire with 
an axial gap at one azimuthal location to interrupt any induced azimuthal eddy currents. 

2.1.2  Capacitor Bank and Switch

 The capacitor bank consisted of four 10 μF capacitors rated to 7.5 kV. These capacitors are 
vacuum-compatible, oil-filled metal cans with a series inductance of not more than 20 nH. The ter-
minations are side-by-side terminals of No. 8 threaded rod, insulated from the capacitor body using 
ceramic standoffs. The capacitors were connected in parallel, decreasing the inductance they pre-
sented to the driving circuit and increasing the total capacitance to 40 μF. Stripline constructed from 
2.5-cm- (1-in-) wide, 12-gauge-equivalent, flat copper speaker wire was used to connect the capacitor 
to a high-current switch and then to connect from the switch to the thruster. 

 Two different switching mechanisms were employed. In configuration 1, a simple mechani-
cal switch (shown in fig. 2(a)) is used to discharge the capacitor bank. The switch was designed to 
minimize inductance, adding less than 50 nH to the driving circuit. In configuration 1, the switch and 
capacitor bank were located external to the vacuum vessel, and stripline was used to feed the current 
pulse to the thruster. The mechanical switch was actuated manually. 
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(a) (b)

Pressurized Enclosure
in Vacuum Chamber
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Trigger Pulse

+

–
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Figure 2.  Photograph of (a) the configuration 1 capacitor bank and mechanical 
switch and (b) electrical circuit schematic for the configuration 2 thruster. 

 In configuration 2 (shown schematically in fig. 2(b)), the energy in the capacitor bank was 
discharged through a Perkin Elmer-triggered spark gap switch. The capacitor bank and switch were 
placed inside an atmospherically pressurized enclosure that was mounted on the thrust stand directly 
behind the thruster. This was done to minimize the stray inductance that was incurred in configura-
tion 1 by the mechanical switch and the stripline used to connect the externally mounted hardware 
to the thruster inside the vacuum vessel. 

2.1.3  Gas Injection

 Gas flow was controlled using an MKS metal-sealed type 1479A flow controller with a maxi-
mum flow rate of 10,000 sccm. Research-grade argon and xenon propellants were used for all work 
reported in this TP. A steady-state gas flow was employed in the CTP since the thruster was not 
designed to include a fast pulse valve. For configuration 1 testing, propellant was injected at a single 
point through a conducting tube located along the centerline of the thruster at the upstream end 
of the coil. Once injected, the gas diffuses axially downstream into the vacuum vessel, leading to  
a lower pressure at the downstream end of the coil as compared to the upstream end. In configura-
tion 2 testing, four insulating tubes were connected to a downstream manifold and aligned on the 
surface of the cone azimuthally equidistant from each other. Several holes were cut into the tubes at 
different axial locations to permit gas to flow into the thruster in the azimuthal direction. The change 
in propellant injection in configuration 2 was motivated by the desire to inject the gas as close to the 
coil face as possible, instead of relying on natural diffusion of the propellant from a single upstream 
point located on the axis to accomplish this goal. 

2.1.4  Preionization Techniques

 In some inductive accelerators like the PIT, the capacitor bank must first be charged to  
a high voltage and then discharged very rapidly through the inductive coil to ionize the propellant.2,6 
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Preionization can be employed in an IPPT to increase the conductivity of the propellant, making it 
easier for the current pulse through the coil to electromagnetically couple with and completely break 
down the gas and induce a current sheet.7 While it adds an additional subsystem to the thruster,  
an advantage of this technique is that the requirement of high voltage and the commensurate require-
ment of a high-current rise rate in the coil can be partly ameliorated by preionization, making it pos-
sible to use present off-the-shelf, state-of-the-art switches and capacitors for the main discharge pulse 
circuit. The use of preionization in conjunction with pulsed inductive plasma systems appears often 
in the literature, with applications ranging from spacecraft propulsion to fusion plasmas. Preioniza-
tion has been successfully employed in these applications by striking a glow discharge between two 
electrodes,8–10 sending a separate lower energy pulse through the same inductive coil used for plasma 
acceleration,11–13 and using radio frequency waves to generate plasma.4,5,14

 The system ultimately employed for preionizing the gas in the CTP was a glow discharge-based 
system. The discharge was produced between two electrodes that were placed at the upstream (nar-
row radius) and downstream (larger radius) ends of the coil, as shown in figure 3. The downstream 
electrodes were composed of copper and were segmented so as to avoid presenting a continuous 
azimuthal conductive path that could drain energy from the discharge through the coil by permit-
ting the flow of azimuthal-induced eddy currents. The upstream electrode was a 6-in-long section 
of 0.635-mm (0.25-in) stainless steel tubing located on the thruster centerline. As mentioned in the 
previous section, propellant was injected through this tube into the thruster during configuration 1 
testing. Prior to the initiation of a high-current pulse, the glow discharge was created using a fiber 
optic signal to enable a Glassman FJ-series 120 W high-voltage, low-current DC power supply set 
to 3–4 kV. An unfiltered 16 s exposure of the preionizer operating on 150 mg/s of argon is shown in 
figure 4. 

(a) (b)

Figure 3.  Photograph of (a) the downstream electrodes in the CTP thruster and 
(b) both electrodes installed in the CTP with the downstream electrode 
cover attached.
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Figure 4.  Preionized plasma produced in the CTP 
thruster by a glow discharge.

 It should be noted here that in configuration 1, preionization was required to permit the 
formation of an inductively coupled plasma during the primary current pulse. Without the use of 
preionization, no plasma would form and no measureable impulse bit would be observed when the 
capacitor bank was discharged. In configuration 2, the preionization subsystem did not appear to be 
required for the thruster to operate, and there was no apparent effect (within the error bars) on the 
measured impulse bit when testing was conducted without preionization.

 An electrodeless preionization technique explored during the course of testing involved the 
use of 2.45 GHz microwaves15,16 at power levels up to almost 3 kW of forward power (with about  
1 kW of reflected power in the best-tuned configuration). For that testing, neodymium disk magnets 
were installed in the thruster to produce a magnetic field at the coil face that would be  approximately 
875 G, which is commensurate with the field value required to produce an electron-cyclotron reso-
nance (ECR) discharge. Magnetic field modeling results showing the field strength in the thruster are 
presented in figure 5. A photograph of the resulting microwave-driven, continuous-wave ECR dis-
charge is presented in figure 6. This technique proved difficult to use for two reasons. First, to permit 
thrust measurements on a hanging pendulum thrust stand, the waves had to be launched into the 
thruster from the back end by an antenna not in contact with any part of the thruster. Second, the 
thruster itself  is not a resonant cavity for microwaves, so in most cases, the microwave energy beamed 
into the thruster from the antenna would pass right through the thruster channel without produc-
ing a discharge. Finally, the microwaves interacted with metal in the thruster, which presents many 
discontinuities to the field, causing arcs between current-carrying coils and damaging the insulation 
in sections of the thruster. For the purposes of expediency, this concept was abandoned during the 
project in favor of the simpler glow discharge method. 
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Figure 5.  Finite element magnetic field modeling results for the CTP thruster, with 
the ECR zones shown in yellow, green, and light blue. The thruster axis  
is represented by the black arrow and the structure is shown in black and 
white: (a) Perspective view and (b) front-looking aft view along thruster 
axis.

(a) (b)

Figure 6.  Microwave-driven ECR discharge produced in the CTP: (a) Side view and 
(b) front-looking aft view along thruster axis.

 While never fully integrated into a thruster, a second electrodeless preionization concept 
explored was the miniature inductively coupled plasma source.17 This source operated in the 500 to 
1,000 MHz range at input power levels from a few watts up to 50 W. The low power requirements 
and capability to integrate the inductive antenna into a future design make this source a promising 
candidate for future thruster iterations.
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2.2  Experimental Facility and Diagnostics

2.2.1  Vacuum Facility

 The vacuum facility is a 7.6-m- (25-ft-) long, 2.7-m- (9-ft-) diameter, stainless steel cylindrical 
vacuum chamber. The chamber can be evacuated to a base pressure (gauge calibrated on nitrogen 
(N2)) of 7.6 × 10–5 Pa (5.7 × 10–7 torr), maintained by either two 32-in, cold-trapped diffusion pumps 
with a combined unobstructed pumping speed of 65,000 L/s, or two 2,400 L/s turbopumps used in 
combination with two 9,500 L/s flange-mounted GHe cryopumps (all pumping speeds on N2). The 
diffusion pump cold traps are cooled using a recirculating Polycold® chiller.

2.2.2  Thrust Stand

 The hanging pendulum-type Variable Amplitude Hanging Pendulum with Extended Range 
(VAHPER) thrust stand, shown in figure 7, is used to perform thrust measurements in the TP. In gen-
eral, as a thruster is operating, the VAHPER stand directly measures thrust by monitoring the level 
of displacement of the pendulum arm from an equilibrium point as a function of time. Displace-
ment of the thrust stand arm is measured using a noncontact, light-based linear gap displacement 
transducer (LGDT). The thrust is obtained from the displacement data using a calibration of the 
thrust stand arm displacement acquired as a function of the application of known forces. The stand 
is capable of supporting thrusters with masses up to 125 kg that produce between 100 μN and 1 N of 
steady-state thrust. More information about the thrust stand in its steady-state configuration can be 
found in reference 18. An image of the thruster on the thrust stand is shown in figure 8.
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Figure 7.  VAHPER thrust stand schematic. 
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Figure 8.  60° IPPT mounted on the thrust stand.

 The stand was recently modified through the addition of a pulsed thruster calibration sys-
tem,19 shown in figure 9. This system applies an impulsive (on the timescale of thrust stand motion) 
force to the thrust stand arm by passing a current pulse through a solenoid mounted to a fixed point 
located external to the moving thrust stand arm. The magnetic field produced by the current in the 
solenoid acts against a permanent rare earth magnet on the thrust stand arm, repelling it. This force 
is transmitted to the thrust stand arm through a piezoelectric force transducer, providing a direct 
measurement of the applied force as a function of time, which can be integrated with respect to time 
to provide a measure of the impulse bit. Under pulsed testing, the stand executes a damped sinusoi-
dal oscillation, and through calibration, all the coefficients associated with that motion can be exper-
imentally determined, permitting the determination of the unknown thruster-produced impulse bit 
through the measure of the thrust stand arm displacement history. This calibration setup can also 
be used in the case where the thruster is to be pulsed multiple times where the pulse period is less 
than the oscillatory period of the pendulum arm. Pulsing the calibration apparatus multiple times 
on timescales much shorter than the thrust stand oscillatory period permits the mimicking of the 
effect a repetitively pulsed thruster has on the thrust stand, allowing the determination of the average 
displacement as a function of average thrust. The force transducer measurements are captured using 
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a Lecroy 8-bit, 1 GHz LC564DL oscilloscope, while the LGDT measurements are recorded using  
a Lecroy 8-bit, 500 MHz LC554DL oscilloscope. 

Figure 9.  Thrust stand pulsed calibration apparatus.

2.2.3  Terminal Measurements

 The discharge current in the CTP thruster was measured using an air core Rogowski coil.  
A current feed from the capacitor bank was passed through the coil to yield the measured signal. The 
coil output was calibrated against a Pearson current transducer.

 The voltage on the capacitor bank was measured using a Tektronix® P6015A frequency- 
compensated, 1,000:1 high-voltage probe. Differential voltage measurements between the two com-
mon stripline connections at the upstream end of the thruster were performed using a Tektronix P5205 
frequency-compensated, high-voltage differential probe. The latter measurements, specifically aimed 
at measuring the fraction of the voltage that appeared across the coil terminals, were performed at 
atmospheric pressure and for lower capacitor charge voltages relative to actual CTP thruster operat-
ing conditions. All high-speed data are captured using a Lecroy 8-bit, 1 GHz LC564DL oscilloscope.

2.2.4  Imaging Tools

 Time-integrated photographs of the CTP thruster were captured using a Kodak Z812 IS SLR 
digital camera with an ISO setting of 64, a focal ratio of 8, and an exposure time of 1 s. The images 
are acquired unfiltered, and all image-altering functions of the camera, including white balance and 
automatic focusing, were disabled. The camera was pointed at the thruster, offset approximately 10° 
from the thruster centerline, and located 6 m (20 ft) downstream from the thruster exit plane. 
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 Time-resolved imaging of the discharge was performed using a Shimadzu HPV-2 model CCD 
camera. The camera is capable of recording up to 100 frames in a single pulse with an adjustable 
frame rate as fast as 1 Mfps. The exposure times are adjustable down to an eighth of the recording 
interval. 

2.3  Presentation of Data and Discussion

 The following is a presentation of data obtained during single-pulse operation of the CTP 
thruster. As the CTP thruster was not equipped with a PGV, all images and performance data pre-
sented in this section are for operation with a steady gas flow. Additional data obtained while operat-
ing in a repetition-rate mode are presented in section 3.4 of this TP. 

2.3.1  Voltage and Current Measurements

 Terminal voltage and current measurements for the CTP thruster are presented in figure 10. 
Configuration 1 capacitor bank voltage waveforms for charge voltages of approximately 3, 4, and  
5 kV are given in figure 10(a), with the corresponding coil currents found in figure 10(b). Similar data 
for configuration 2, obtained for a capacitor bank voltage of 5 kV, are found in figures 10(c) and (d). 
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Figure 10.  Measured configuration 1 (a) capacitor bank voltage and (b) current  
for charge voltages of approximately 3, 4, and 5 kV, and configuration 2 
(c) capacitor bank voltage and (d) current for charge voltage of 5 kV. 
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 Measurements of the capacitor bank voltage and voltage across the inductive coil (coil ter-
minal voltage) are presented for configurations 1 and 2 in figures 11(a) and (b), respectively. These 
data show that the closer proximity of the capacitor bank and the coil in configuration 2 significantly 
reduces the inductive voltage losses in the transmission line, permitting a greater fraction of the over-
all voltage on the capacitor bank to appear across the coil. One also observes that the impedances 
between the coil and capacitor bank in configuration 2 are relatively low, with the voltage on the coil 
much more closely coupled to the capacitor bank voltage than in configuration 1. In configuration 1,  
not only does more than half  of the voltage not appear across the inductive coil load, but the reac-
tance of the transmission line causes the coil voltage to appear partly out of phase relative to the 
bank voltage.
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Figure 11.  Measured capacitor bank voltage and coil terminal voltage for 
(a) configuration 1 discharged at 100 V and (b) configuration 2 
discharged at 5 kV. 

2.3.2  Visual Imaging

 Time-integrated images of the 38° CTP thruster operating in configuration 2 on argon and 
xenon propellants at a discharge voltage of 5 kV are presented in figures 12(a) and (b), respectively. 
The images show a visually intense discharge within the cone in both cases. The ‘halo’ seen outside 
of the discharge channel is believed to be gas outside of the cone being partially ionized through 
interaction with the magnetic field, which is solenoidal, extending outside of the cone and wrapping 
around to the back of the thruster. In earlier testing with this geometry, plasma was also formed on 
the outside surface of the cone. The continuous flow increased the background pressure within the 
chamber significantly during testing (high 10–5 to mid-10–4 torr). This permitted the highly oscillat-
ing field, acting in the presence of the plasma being formed in the thruster cone to ionize gas outside 
of the thruster as well. The back side of the thruster cone was filled with foam to interrupt the plasma 
pathways and provide a mechanism to collisionally quench any plasma currents induced there, but 
this was not implemented in front of the thruster, and as such, the halo persisted at higher pressures. 
This feature was not seen on all pulses and was dissipated with reduced flow rate. The authors refrain 
from encouraging one-to-one comparisons of the intensity and spatial extent of the luminosity here 
because detailed plasma measurements are not presently available to support such speculation.
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(a) (b)

Figure 12.  Time-integrated photographs of the 38° CTP thruster operating in 
configuration 2 at 5 kV capacitor bank charge voltage on (a) argon 
and (b) xenon propellant.

 Time-resolved images of the CTP thruster are presented in figure 13. These images were 
obtained at a framing rate of 1 MHz, with an exposure time of 250 ns. The images are monochro-
matic and unfiltered, with the recorded intensities representing all light collected from the discharge 
during the exposure time. A current waveform, obtained for a discharge at a capacitor bank charge 
voltage of 4 kV, is included with the frames to provide a temporal orientation showing when these 
images were obtained during the pulse.
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Figure 13.  Time-resolved (black and white) images of (a) the 38° CTP thruster 
obtained with an image gate time of 250 ns for the times indicated in the 
frames, and (b) the current waveform at 4 kV capacitor charge voltage.
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 The images presented show the light emitted by the plasma over the first two half-cycles of the 
discharge. For the record, the glow at the end of the first half-cycle is faint but continues beyond that 
shown to time (t) = 11 μs. Also not shown is a faint glow that appears in the first few frames of the 
third half-cycle. The plasma during each half-cycle initiates at the times where the coil current crosses 
zero, as these represent the times of greatest change in the coil current (greatest dI/dt), and conse-
quently the greatest value of the induced fields in the plasma. The light emission starts near the exit 
of the thruster at t = 1 μs (first half-cycle) and t = 16 μs (second half-cycle) and expands backwards 
towards the narrow end of the cone, growing in intensity until peaking a few microseconds into the 
half-cycle. There are visible nonuniformities in the light emission, but the emission grows to a very 
intense level (nearly saturating the camera) over the entire interior volume during the first half-cycle 
of the pulse. During the second half-cycle, the glow is less intense and shorter lived. This could be 
due either to the lower level of current during the second half-cycle or the reduction in gas near the 
coil as it may have been partially accelerated away from the coil during the first half-cycle. 

2.3.3  Thruster Performance Measurements

 Performance measurements on multiple CTP thrusters with different coil angles are presented 
in figure 14. Impulse bit measurements are presented in figures 14(a) and (b) for operation on argon 
and xenon, respectively. The maximum measured impulse bit was approximately 1 mN-s for both 
propellants and was only produced by the thruster with a 38° half-cone angle. When the mass flow 
rate was increased beyond the range for which data are presented in this TP, the base pressure in the 
vacuum vessel increased to values at which high-voltage arcing prevented performance measure-
ments. The impulse bit peaks faster for xenon propellant, and the performance is much improved on 
xenon at 20° relative to argon at the same angle. One can speculate that xenon, being a heavier gas, 
may remain nearer to the coil for a longer period of time. This would leave a greater mass of propel-
lant within the volume in which electromagnetic coupling between the coil and the plasma is possible, 
permitting better electrodynamic energy transfer.16
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Figure 14.  Measured impulse bit (with a typical error bar displayed) of the CTP as 
a function of steady-state mass flow rate for operation on (a) argon and 
(b) xenon, as well as estimated efficiency for operation on (c) argon and 
(d) xenon. All data obtained were for single-pulse operation at a charge 
voltage of 5 kV (500 J/pulse). 

 Since a steady-state propellant feed was used, an estimate of the mass bit (mbit) must be made 
to undertake calculation of an estimated efficiency. A characteristic length for gas injection is taken 
as the cone axial length (l). A characteristic time for gas injection is estimated as 

 tchar =
l
a

  , (1)

where a is the sound speed of the gas (at 25 °C). The mass bit is then further estimated as the amount 
of gas that would enter the thruster in this characteristic time

 mbit = tchar �m  , (2)
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where �m is the mass flow rate. This assumption is consistent with operation of a PGV that only per-
mits gas to flow into the thruster over the length of time tchar. The efficiency (η) is obtained using 
the measured impulse bit (Ibit), initial charge voltage (V0), bank capacitance (C), and the estimated 
mass bit: 

 � =
Ibit

2

mbitCV0
2   . (3)

 The estimated efficiency for operation on argon and xenon propellants is given in figures 14(c) 
and (d). It is observed that when estimated in this manner, the efficiency is only a few percent. Inter-
estingly, the efficiency calculated for operation on xenon at a cone angle of 20° is greater than that 
on argon at the same angle, but these trends are reversed at 38°.

 It should be noted that low-power planar (flat-plate) PITs were highly lossy, producing incom-
pletely formed current sheets (magnetically permeable with comparable magnetic convection and 
diffusion timescales) with a high degree of spatial variability. They were also tested in a ‘static’ gas 
fill configuration, and much of the inductive work was expended in entrainment of the gas, which is  
a highly inelastic process leading to inherently low efficiencies. For example, a 20-cm, flat-plate 
thruster only had an efficiency of a few percent in the static fill case.1 The authors expected similar 
gas profiles and entrainment losses in the CTP thruster employing continuous gas injection, so the 
low-efficiency results are unsurprising. By way of comparison, the PIT MkI and MkV, which were 
far better optimized in an electrodynamic sense and had pulsed propellant injection, only yielded 
efficiencies in the range of 15% to 30% on argon.

 The force vector in PITs is generally directed perpendicular to the coil. Unlike the planar 
PITs, the force vector applied to the plasma in the CTP thruster has a significant component in 
the radial direction, which, excluding any energy recovery mechanisms, does not contribute to the 
impulse bit. This might lead to the conclusion that the greater angle should perform better, but this 
is not shown in the impulse bit data where the 38° cone performed best. 

 In the present CTP thruster testing, direct comparison of performance measurements of 
thrusters with different cone angles is complicated by the energy expended on gas entrainment and 
the potential containment of gas provided by the smaller angle cones. Comparison of the results 
presented in this TP with results from previous experimental campaigns is complicated by the stray 
inductance remaining in the system for configuration 1 and, to a lesser but still significant extent, 
configuration 2. The data presented herein are not sufficient to deconvolve the acceleration picture 
beyond what has been speculated in the preceding discussion.

2.4  Conical Theta-Pinch Current Sheet Modeling

 Current sheet acceleration modeling was performed to gain understanding of the CTP 
thruster. There exists a one-dimensional IPPT acceleration model consisting of a set of circuit equa-
tions coupled to a one-dimensional momentum equation. The one-dimensional model was adapted 
for use on devices like the CTP thruster, where two-dimensional plasma acceleration was expected. 
This work is further discussed in reference 20.
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2.4.1  Two-Dimensional Inductive Acceleration Model

An IPPT can be electrically modeled as a circuit,2,20,21 shown in figure 15(a), where current 
I1 is in the driving circuit, while I2 is the current flowing in the plasma. The two currents are coupled 
like a transformer through a time-varying mutual inductance (M) between the external circuit and 
plasma. The circuit is completed with a capacitor bank having a capacitance (C), an initial (parasitic) 
inductance (L0), an acceleration coil inductance (LC), a plasma resistance (Rp), and an external resis-
tance (Re) in the driving circuit. 
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Figure 15.  Model of (a) general lumped-element circuit and (b) equivalent 
circuit of an IPPT. 

An equivalent circuit, shown in figure 15(b), can be drawn to permit the application of Kir-
choff’s law to each loop in the circuit. Rearranging the results and adding a statement for the time 
rate of change of charge on the capacitor yields 

dI1
dt

=
LCV �LCReI1 �MRpI2 + LCI2 +MI1( )dM dt

LC L0 +LC( )�M2
  , (4)

dI2
dt

=
M
dI1

dt + I1
dM

dt �RpI2

LC
  , (5)

and
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 dV
dt

= �
I1
C

  , (6)

where V is the voltage on the capacitor bank, initially charged to a voltage V0.

 If  the resistive elements can be neglected, then the series and parallel lumped inductive ele-
ments shown in figure 15(b) combine to yield a total inductance: 

 Ltot = L0 +LC �M
2

LC
  . (7)

 The total inductance in the system varies as a function of time only due to the mutual induc-
tance term, which varies as the relative positions of the current sheet and coil change. An expression 
for the total inductance as a function of current sheet axial and radial position has been empirically 
determined as 

 Ltot r ,z( ) = L0 +LC 1� exp �z / z0( ) r
rcoil

�

��
�

��

N	



�
�

�



�
�
  , (8)

where

 r  = average radial position of the current sheet 
 rcoil  = average radial position of the coil
 z = axial displacement of the current sheet 
 N = fit parameter found to be close to 2 for all cases studied here 
 z0 = axial decoupling distance. 

 This expression is set equal to the previous expression for total inductance (eq. (7)) and solved 
to yield the mutual inductance as a function of the axial and radial separation distance between the 
driving coil and the current sheet: 

 M = LC exp � z
2z0

�

��
�

��
r
rcoil

�

��
�

��

N /2

  . (9)

 The time derivative of equation (9) is 
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 If  the potential energy of a system is a function of position, then the force in the i-th direction 
can be obtained by calculating the partial derivative of the potential energy with respect to change in 
the i-th coordinate. For an IPPT, the force in the i-th direction is given as

 Fi =
I1

2

2
�L
�xi

  . (11)

 In the radial direction, this force is opposed by a gas-dynamic pressure force (P2) that increases 
as the current sheet moves toward the thrust axis. If  the current sheet is assumed to act as a normal 
shockwave, then the pressure ratio across the shock is given as

 
P2
P1

= 1+ 2�
� +1

M2 �1( )  , (12)

where 

 P1 = pressure upstream of the shock
 P2 = pressure of the gas downstream of the shock 
 γ = ratio of specific heats (taken here to be 5/3). 

 The local Mach number (M) upstream of the shock is 

 M = u
� kT1 / mi

  , (13)

where 

 u = shock velocity in the given direction 
 k = Boltzmann's constant 
 T1 = temperature of the gas upstream of the shock 
 mi = mass of an ion.

 Assuming that all the mass is initially entrained in the current sheet (no ‘snowplowing’ or 
entrainment of gas during the discharge), Newton’s second law can be written in the axial and radial 
directions using equations (11) and (12) as
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and
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where 

 mbit = total propellant mass in the current sheet 
 vz = axial current sheet velocity
 vr = radial velocity. 

 The axial z and radial r  positions are related to the velocities as 

 
dz
dt

= vz (16)

and

   dr
dt

= vr   . (17)

 The time evolution of the pressure P2 is given by the time derivative of equation (12): 

 dP2
dt

=
P12�
� +1

mi
� kT1

2vr
dvr
dt

  , (18)

bringing the total number of first-order coupled ordinary differential equations in the system to nine.

 Of the nine equations (eqs. (4)–(6), (10), and (14)–(18)), six are connected to the semiempiri-
cal relation for coil inductance as a function of current sheet location. No attempt has been made 
here to model the conversion of radial current sheet motion into axial momentum. In addition, this 
TP will focus only on thrust efficiency, with no attempt made to model factors that could be a func-
tion of the coil geometry, such as propellant utilization efficiency. 

2.4.2  Magnetic Field Finite Element Analysis

 The inductive coupling between coils and current sheets in various geometries were simu-
lated using finite element analysis to explore the range of validity of equation (8). The finite element 
modeling was used to compute the inductance as a function of radial and axial displacement of the 
current sheet from the coil. The coil geometry is shown and labeled in figure 16. The geometry will 
be designated in this section as a number and a letter (e.g., 5S). In this designation, the number repre-
sents the half-cone angle, and the letters ‘S,’ ‘M,’ and ‘L’ refer, respectively, to coils with lengths (lcoil) that are short (5 cm), medium (6–8 cm), or long (10 cm). All coils have a minor radius (rcoil) of 4 cm. 
One coil has no letter in its designation because it is a flat-plate with an angle of 90° and lcoil = 0. 
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Figure 16.  CTP thruster coil geometry.

 Using the calculated inductance data, a coil inductance (LC) and decoupling length (z0) were 
obtained by curve fitting equation (8) to the simulated inductance data for constant radial current 
sheet positions equal to rcoil . Inductance was then calculated using equation (8) over a range of 
radial and axial current sheet positions, with the results of these calculations shown as solid lines in 
figures 17–19. The simulation data for these geometries are plotted in the figures, with each different 
marker style corresponding to data at an individual fixed axial location. In these figures, the agree-
ment between the finite element results and equation (8) is good for half-cone angles from 20° to 55°, 
as seen in figure 18. The ability of the equation to accurately model the inductance begins to break 
down outside this range, as observed in figures 17 and 19.
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Figure 17.  Finite element modeling results (markers) and the semiempirical model of 
equation (8) (red lines) for inductance as a function of average radial current 
sheet position: (a) 5S, (b) 5L, and (c) 12S. Each different marker style corre-
sponds to simulation data at an individual, fixed axial location. 
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style corresponds to simulation data at an individual, fixed axial location. 
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 For coils with a half-cone angle below 12°, it is the axially varying part of equation (8) that 
begins to deviate from the modeled inductance. It was found that an error function is better than  
an exponential at modeling the axial variation of inductance in these situations. A comparison 
between the two functions is presented in figure 20. 
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Figure 20.  Comparison between an error function (blue) and  
an exponential function (red) fit to data for the 
inductance as a function of current sheet axial 
position (markers) in the case of a 5° cone.

 Plots of the inductance function, calculated using an exponential function in z (eq. (8)) and 
then using an error function in z instead of the exponential, are presented for comparative purposes 
in figure 21. The data clearly show that the error function does a better job fitting the data while the 
exponential deviates further from the data points as the angle is decreased. Recently, the error func-
tion was successfully used for the axial inductance function in work modeling a coilgun.22 
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2.4.3  Nondimemsionalization of the Model

 The equation set found in section 2.4.1 can be nondimensionalized by making the following 
substitutions:21 

 

I1
* = 1

V0

LC
C
I1 I2

* = 1
V0

LC
C
I2

V * = V
V0

M* = M
LC

vz
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L0C

z0
vz z* = z

z0

vr
* =

L0C

rcoil
vr r* = r

rcoil

t* = t
L0C

P* = P
P1

  . (19)
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 Applying these substitutions to equations (4)–(6), (10), and (14)–(18) yields the following 
nondimensional equation set: 
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 The terms α, L*, ψ1, ψ2, φ, λ, and Ξ are the relevant nondimensional scaling parameters of 
the system and are defined as 
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 (21)

 The parameters ψ1 and ψ2 are critical resistance ratios that provide a measure of the effects of 
current damping in the pulse. The term L* is a ratio of the initial (also called ‘fixed’ or inaccessible) 
inductance in the circuit to the accessible inductance (also known as the inductive ‘stroke’ or induc-
tance change as the current sheet moves to infinity). This ratio represents a measure of the fraction 
of input electromagnetic energy that can be transferred to inductive acceleration of the current sheet. 
The physical interpretations of these three parameters remain unchanged as compared to those of 
previous studies of IPPTs with flat inductive coil geometries, and more information on them can be 
found in reference 21.

 The term λ appears as a new parameter in this model, and it addresses the magnitude of the 
gas-dynamic pressure in opposing radially inward current sheet motion. Another new parameter is 
Ξ, which is a measure of the growth rate of the gas-dynamic pressure as the current sheet shock front 
undergoes radial acceleration. For the calculations contained in this TP, these parameters are fixed 
at the following values: L* = 0.18, ψ1 = 0.05, ψ2 = 0.01, λ = 7 × 10–7, and Ξ = 2.3 × 104.

 The parameter α is called the dynamic impedance ratio, and it can be expanded into a product 
of physically meaningful ratios,21,23 
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  , (22)

where �Lz = vz �Lz and L′z = LC /z0. The second ratio on the right-hand side represents the inverse of 
thrust efficiency, and the third term is the previously discussed inductance ratio. The final term rep-
resents a ratio between the characteristic ringing time of the driving circuit and the characteristic 
time over which the current sheet will increase the inductance of the circuit by one unit of L0 owing 
to axial motion. The latter is an effective measure of the time that the plasma remains electromag-
netically coupled to the driving circuit. Consequently, the parameter α is a measure of the dynamic 
impedance match between the natural period of the driving circuit and the inertial timescale on 
which the axially moving current sheet can accept energy from the circuit in the form of further 
axial current sheet acceleration. It has been shown in the one-dimensional modeling case that there 
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exists an optimum α for which the thrust efficiency ηt is maximized, corresponding to an IPPT that 
is dynamically impedance matched.21 The thrust efficiency can be written in terms of the nondimen-
sional parameters as

 �t =
vz

*2

2L*�
  . (23)

 While α appears in the axial equation of motion and pertains to inductive dynamic imped-
ance matching for an axially translating plasma, the parameter φ is new, appearing in the equation of 
motion for a radial translation. This parameter can be similarly expanded as
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2

  , (24)

where �Lr = vr �Lr and �Lr = LC / rcoil. The second term no longer represents thrust efficiency, but it  
is the inverse of the fraction of total input energy converted into radial kinetic energy. The fourth 
term is the ratio of the characteristic circuit time to the inertial timescale on which the radially mov-
ing current sheet can accept energy from the circuit in the form of further radial current sheet accel-
eration.

2.4.4  Model Results and Discussion

 Simulations were first undertaken permitting unrestrained axial acceleration for a fixed radial 
position. The efficiency as a function of α computed for these simulations is presented in figure 22. 
For the case where r = rcoil  throughout the simulation, the result of reference 21 yielding maximum 
thrust efficiency at a value of α between 1 and 3 is recovered. When the current sheet is arbitrarily 
moved to closer to the centerline (e.g., moved to a smaller radial distance from r = 0) and then held 
at that radial position throughout the simulation, one observes in figure 22 that the magnitude of 
achievable ηt is globally decreased, and the maximum value of ηt occurs at a higher value of α.
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Figure 22.  Calculated thrust efficiency as a function of α for 
different radial current sheet displacements.  

 A possible explanation for the shift in optimum values of α is that as the current sheet is 
radially displaced, the inductive coupling to the coil is weakened, and the rate of inductive energy 
transfer from the acceleration coil to the current sheet is reduced. However, information regarding 
this weakened coupling as a function of radial translation is not contained in α. Consequently, the 
effect is to demand a longer circuit timescale to maximize the energy transfer to axial motion of the 
current sheet, which leads to a greater α for maximum efficiency. However, the maximum energy 
transfer is globally reduced because no matter how the circuit is adjusted, the potential acceleration 
of the sheet has been reduced by initially displacing the sheet from the coil. 

 The efficiency for the case where the radial motion is allowed to evolve according to  
equation (20e) is also graphed as a function of α in figure 22. One observes that the effect is to lower 
the efficiency from the peak where the sheet is constrained to a radial position r = rcoil  and to shift 
the peak to a greater value of α. However, the overall effect is tempered to some extent relative to 
the cases where the calculation was started at an arbitrary, fixed radial current sheet position by the 
fact that, even though the sheet is free to move radially inward, it starts at the position r = 0, so it is 
initially well coupled to the coil. 

 As observed in figure 23, the effect on efficiency is more pronounced and detrimental as the 
value of φ is increased, which is indicative of faster electromagnetic decoupling owing to radial 
motion. In other words, a large value of φ corresponds to a case where the inertial timescale for 
the plasma to accept energy and convert it into radial kinetic energy is short. However, a change 
in inductance due to motion in either direction affects the overall electromagnetic coupling, so for  
a fixed α faster conversion of energy to radial motion (increasing φ) deprives the plasma of the time 
needed to acquire axial kinetic energy and subsequently lowers the ceiling on the axial kinetic energy 
that can be transferred. It can be concluded that, while maximizing the coupling of energy into axial 



32

motion is beneficial to thrust efficiency, coupling of energy into radial motion has a generally detri-
mental effect on thrust efficiency (in the context of this model, which has no radial-to-axial momen-
tum transfer mechanism). This would indicate a decreasing ηt for increasing values of φ, as observed 
in the contour plot of efficiencies presented in figure 24. One also observes that as φ is increased, 
the peak efficiency occurs at a higher value of α, which is expected based on the results in figure 22 
because the plasma accelerating more rapidly spends less time close to r = rcoil .

Figure 23.  Calculated thrust efficiency as a function of φ for radial 
motion governed by equation (20e) with α = 0.6.
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2.5  Summary Remarks

 In this section, measurements on several CTP IPPTs were presented, showing measured 
impulse bits and estimated efficiencies for several different cone angles and continuous mass flow 
rates. The data show a peak value of impulse bit and efficiency for the 38° cone angle. Modeling of 
IPPTs where radial motion is permitted seems to indicate that any radial motion is detrimental to 
thrust efficiency; however, caution must be exercised when applying these results to the data. First, 
there is no mechanism in the model to permit radial-to-axial momentum transfer, so any energy 
initially shunted into radial motion is essentially lost in the model. Second, the authors employed  
a normal shock relation to evolve the pressure as a function of time, but this may not be the proper 
model to use for this process. Third, and likely most important, the model was constructed assuming 
that all mass is initially in the current sheet, with no mass entrainment included. The snowplowing 
and entrainment of gas by the current sheet, and even the containment of the neutral gas within the 
cone volume, are not well quantified and captured within the model, but previous work has shown 
that mass entrainment can have a very large effect on calculated performance.21 Also, the inductance 
function, while working well for some cone angles, is not globally applicable to IPPTs with widely 
varying geometries. Finally, while the model accounts for momentum transfer in both the axial and 
radial directions, it does not include a self-consistent predictive model for the overall energy in the 
system as other recent works by Polzin et al.24 have contained (K.A. Polzin et al.: “Inductive Pulsed 
Plasma Thruster Model with Time-Evolution of Energy and State Properties,” J. Appl. Phys., to be 
published). Thus, while the modeling performed herein is insightful, it certainly has areas that would 
benefit from additional future refinement. 
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3.  REPETITION-RATE TEST APPARATUS

 Continuous, repetition-rated testing of an IPPT requires a high-voltage, high-power capacitor 
charge system. Such a system was assembled and used to accomplish repetition-rated operation of  
a CTP IPPT. This system, shown in figure 25, is located adjacent to the 2.75-m- (9-ft-) diameter elec-
tric propulsion vacuum testing facility at MSFC. An electrical schematic of the system is shown in 
figure 26, with the major components of the system described and testing results presented within this  
section. 

F22 (1334)

Figure 25.  High-voltage, high-power capacitor charge system located 
next to the 2.75-m- (9-ft-) diameter electric propulsion 
vacuum testing facility at MSFC.
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shown): (a) CCS power supply rack and (b) charge-control rack.

3.1  Power Supply Rack

 A custom high-voltage power supply to rapidly recharge capacitor banks was procured from 
General Atomics Electronic Systems in 2004. It consists of a bank of seven individual capacitor 
charging supply (CCS) series, high charge-rate power supplies (also made by General Atomics) 
installed in a single rack. The rack accepts 480 V/3∅ input power and has 120 VAC power (internally 
provided from the 480-V power by a step-down transformer), a fiber optic interface board (FIB) for 
remote control, and an interlock loop which shuts down the system if  the back panel is opened. 

3.1.1  Capacitor Charging Supply

 The CCS series (formerly designated CCDS) power supply, with specifications given in refer-
ence 25, is designed for rapid, efficient charging of capacitor banks. The CCS uses a series resonant 



36

inverter circuit topology, yielding efficiencies in excess of 85% with an average power factor 0.85. 
The supply incorporates fast overvoltage protection to prevent damage to the supply from an open-
circuit load condition. They also have a fast-inhibit function, which rapidly disables the high-voltage 
output for 100–200 μs after the load discharges. This feature makes them ideally suited to powering 
repetitively pulsed thrusters. The fast-inhibit may also be initiated by an externally supplied com-
mand if  the standard disable time is not suitable for the application.

 Each supply in the rack has a maximum output voltage of 40 kV and is capable of delivering 
an average of 16 kJ/s DC power when charging to the maximum voltage. The average power through-
put decreases linearly with the voltage setpoint, so at a charge voltage of 4 kV, the output power is 
1.6 kJ/s. For a 40 μF bank, this corresponds to roughly 320 J/pulse, which leads to a bank recharge 
time of approximately 0.2 s. The output current at a given voltage setpoint is constant, and is equal to 
roughly 0.8 A in this example. The equations governing the supply output and used in the calculation 
of this example are summarized in reference 26. 

 Control of the supply is performed remotely through a 25-pin connector on the back panel, 
labeled J901. The primary control signals are a ‘High-Voltage (HV) On’ command (4–24 V active 
high), an ‘HV Inhibit’ command (4–24 V active low), and an analog voltage adjust (0–10 V full-
scale). (The factory default for the ‘HV Inhibit’ command is ‘active inhibit high,’ meaning that  
a logical ‘high’ signal (4 V < VHV,inhibit < 24 V) applied to the relevant pin of the J901 connector will 
shut off  the high-voltage output while a logical ‘low’ (VHV,inhibit < 4 V) must be applied to enable the 
high-voltage output. The CCS at MSFC, however, are supplied with ‘option 92,’ also called ‘active 
high enable,’ which is the opposite of the default setting. Consequently, a logical high enables the 
high-voltage output while a logical low inhibits it. As the HV Inhibit function shuts off  the CCS 
output the fastest (within 33 μs), it is recommended that this be the first control used to disable the 
high-voltage output, followed in order of increasing delay by removing the HV On signal, opening 
the interlocks, and, as a last resort in emergency situations only, the removal of line power to the sup-
plies.) For voltage isolation and noise immunity, control signals and output voltage feedback (analog 
inputs and outputs) are communicated through an isolation amplifier while the logic signals (digital 
inputs/outputs) communicate through optocouplers. Each supply is also provided with an interlock, 
which is enabled by an external closure.

 The required input voltage for the system is 480 V/3∅, wired in a four-wire delta configura-
tion, with the maximum input power for each supply equal to 25 kVA. Each supply in the rack is 
protected with its own circuit breaker, which can be switched to the ‘off’ position to isolate those 
supplies which are not in use. The output polarity of the supplies is positive relative to the return 
(negative terminal), and the return is connected to the chassis ground. Each chassis is connected to 
the (local) chassis ground of the rack. The output power is conducted to the charge-control rack 
(described below) through an RG-8 cable, with the center conductor being positive and the braid at 
the potential of the local chassis ground. To charge a capacitor bank at a high rate, but at a lower 
voltage than the maximum, several supplies can be ganged in parallel. Any number of the seven sup-
plies may be so connected using the provided jumper cables (RG-8 high-voltage coaxial cable). 
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3.1.2  Fiber Optic Interface Board

 The FIB is located in the power supply rack and accepts 120 VAC power generated from 
the 480-V power feeding the rack. The FIB mediates two-way communication between the power 
supply rack and an external test control system, using serial commands to communicate with  
a companion board that interfaces with the control system through a serial-to-fiber-to-serial link. 
The FIB converts serial command data to the analog voltage and logical inputs required to con-
trol the CCS and converts analog and logical feedback from the CCS into serial data for trans-
mission to the external control and monitoring system. The serial command protocols used by 
the FIB are described in reference 27. The FIB also has two fiber optic receivers for receipt of the  
HV On and HV Inhibit commands. These are logical signals that are received by the FIB, buffered, 
and then passed to the individual CCS. Each supply communicates with the FIB through its own 
individual cable.

3.2  Isolation Transformer

 The power supply rack is presently powered through a 25-kVA, 3∅ isolation transformer 
(Del Electronics, model AD6391, serial No. 153096), which provides up to 60 kV of transient volt-
age isolation between the primary and secondary windings. A fused disconnect was installed on the 
transformer for manual shutdown of the system. The disconnect employs 30-A time-delayed fuses so 
as to accommodate the initial in-rush current when the disconnect switch is closed. The connection 
from the outlet to the transformer and from the transformer to the power supply rack is completed 
using SO-8 cable.

 The isolation transformer permits floating of the entire charge system if  it is desired to oper-
ate the thruster isolated from the facility ground. Use of the isolation transformer, however, limits 
the available input power to the supply to 25 kVA and consequently limits the CCS output power to 
16 kW. For higher power operation, it would be necessary to either acquire a higher power isolation 
transformer or to directly power the supply rack without using the intermediate isolation trans-
former, the latter option eliminating the possibility of floating the charge system. 

3.3  Charge-Control Rack

 For safe and reliable capacitor charging, a charge-control and interface system is needed to 
connect and disconnect the power supply to the load on demand. This system must protect the 
power supply during a series of discharges where the load and supply are electrically connected, and 
it must also permit the safe removal of the energy stored in the capacitors in the event that normal 
discharge operation is not possible or desired. The components for these functions are housed in  
a separate rack shown in figures 25 and 27. This rack is located adjacent to the power supply rack.  
An electrical circuit schematic of the electrical connections between the power supply and the 
thruster (minus mechanical isolation switches) used for simulation purposes is presented in figure 28. 
The components of this system are described in this section. 
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Figure 27.  Charge-control rack. 
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3.3.1  Protection Circuitry

 To safeguard the power supply from voltage reversals, the manufacturer recommended using 
circuitry consisting of a high-voltage protection diode stack in parallel with the power supply output 
power resistors of 10 Ω (Rprot 1) and 1 Ω (Rprot 2) in series with the output.25,28 If  a voltage reversal 
should occur at the load, the reversed current flows through the diode stack rather than the supply. 
The diode stack consists of nine International Rectifier SD553C45S50L fast recovery diodes (FRDs) 
connected in series. The voltage rating of these diodes is 4.5 kV for a total maximum voltage rating 
of 40.5 kV. The maximum forward current for each diode is 560 A. Each diode has a 1-MΩ resistor 
connected in parallel to uniformly grade the voltage across the entire diode stack.

3.3.2  Output Capacitor

 As a capacitive load is required at all times for stable operation, a 1.67-μF capacitor (Cload), 
(which consists of three 5 μF–4 kV capacitors connected in series) was installed in parallel with the 
diode stack at the output of the supply. Note that the ‘output capacitor’ is a permanent fixture in the 
charge-control rack and is distinct from the capacitor bank load to be charged. The voltage rating 
on the present output capacitors have a voltage rating that will permit operation of the supply up to 
8 kV while maintaining adequate margin for voltage reversals. The output capacitors have a 30 MΩ 
bleed resistor across the unit (10 MΩ across each capacitor) to ensure the capacitors are discharged 
when not in use. For higher voltage operation (higher than 8 kV), the output capacitor should be 
replaced with capacitors that have a higher voltage rating. 

3.3.3  Isolation Circuitry

 The isolation circuitry is used to further protect the power supply from transients during 
repetition-rated operation, serving to significantly reduce the current to which the protection diode 
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stack could be exposed. A high-power 10 Ω (±10%) resistor (manufactured by Kanthal) is used for 
the series isolation resistance (Riso). The resistor is rated for a peak voltage of 75 kV, an average 
power of 150 W, and a single-shot energy limit of 75 kJ. This resistor is capable of handling the dis-
sipated power at the low charge rates explored in this TP, however, for higher charge rates (higher 
charge voltages and current levels), forced air cooling of the resistor may be required. Five high-
power 18 μH inductive chokes (manufactured by Ohmite) are used for the series isolation inductance 
(Liso). The insulation on these inductors was damaged in places, so they were painted with two coats 
of Viking high-voltage insulation varnish and then covered with a layer of Kapton® tape to prevent 
arcing.

3.3.4  Mechanical Switches

 The power supply output is switched to the load through a Ross relay (rated for operation 
up to 40 kV) configured in the normally open position. In repetition-rated operation, this ‘charge 
relay’ is energized closed to keep the supply and load connected. After operation, the load and sup-
ply are disconnected by opening the charge relay. Any energy remaining in the capacitor bank after 
the charge relay is open is shunted to ground through a resistive load consisting of two high-power 
resistors in parallel (total resistance of 4.3 kΩ). The connection to ground through the resistors is 
completed through another Ross relay. This relay is called the ‘dump relay,’ and is configured in  
a normally closed position such that it must be energized open during repetition-rate operation. Two 
resistors are used for redundancy in case one fails. Each resistor is capable of dissipating up to 10 kJ 
per pulse. For higher energy capacitor banks, a water resistor is also available. Both the charge and 
dump relays are fiber optically controlled from the control system. The locations of these relays in 
the charging circuit are shown in figure 26. 

3.3.5  Voltage Monitor

 A fiber optic coupled voltage monitor is used to remotely measure the power supply voltage. 
This monitor is a 10,000:1 voltage divider installed across the output capacitor (Cload). The sense 
voltage on the lower leg of the divider is connected to a fiber optic modulator/transmitter link that 
transmits a frequency modulated light signal (via a POF-type fiber) to a receiver/demodulator in the 
control system. The frequency modulation on the data makes it less sensitive to drift and noise. The 
demodulated signal may be read into a digitizer for display by LabVIEW™ or it may be directly mea-
sured using a handheld voltmeter or oscilloscope. The voltage monitor was calibrated by applying 
voltages in the range of 0 to 8 kV to the output capacitor and measuring the voltage at the receiver/
demodulator (VFO Rx). Using this calibration, the scaled bank voltage is given by 

 Vbank = a + bVFO Rx  , (25)

where 

 a = 73 ± 4 V
 b = 9,430 ± 20. 
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3.3.6  Interlock System and Ground Isolation

 A safety interlock circuit for the power supply consists of an interlock control box with  
a latching enable switch, an ‘interlock engaged’ switch, and an E-stop button at the operator’s sta-
tion. In addition, there is a remote E-stop button on the platform adjacent to the vacuum facility. 
The interlock loop may be expanded with more E-stop buttons as needed. When the interlock condi-
tion is met, steady-state light is transmitted on two separate fibers (POF-type). One fiber is routed to 
the charge-control rack while the other goes to the test control system.

 The interlock function of the charge-control rack is fiber optically controlled and centralized 
in a panel at the bottom of the charge-control rack, seen in figure 29. When the fiber optic signal 
from the interlock loop is received, power is enabled to both the charge and dump relays, and only 
then is actuation of the relays possible. Power is also enabled to a separate relay which closes the 
interlock circuits of the individual CCS power supplies. In the event that the interlock loop is inter-
rupted, either when one of the E-stop buttons is pressed or if  power to the building is lost, the charge 
relay will open, the dump relay will close, and the power supplies will be disabled. 

Figure 29.  Charge-control interlock panel showing fiber optic receivers, 
interlock relays, ground isolation relay, and grounding cable.

 The charge-control rack and the power supply rack operate on separate electrical service.  
An isolation transformer for the charge-control rack is available if  it is ever necessary to float  
the charge system. The building ground is typically connected to the chassis ground of the charge-
control rack (and to the power supply rack through that connection as well) with 00-gauge cable 
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wired to a high-voltage, normally closed Ross relay. This ground isolation relay is controlled by  
a fiber optic cable from the test control system and is provided to permit floating of the system. This 
relay is not interlocked, so the system can be kept floating even if  the interlock function has been 
activated. 

3.3.7  Repetition-Rated Operation Design Considerations and Thruster Modeling

 Prior to this program, the CCS power supply had only been used to charge a capacitor bank 
for single-pulse operation. Continuous, repetition-rated operation presents complications not expe-
rienced during single-pulse operation. Specifically, during single-pulse trials, a mechanical switch 
can be opened to electrically isolate the supply from the pulsed discharge. During repetitive pulsing, 
mechanical isolation switches are not fast enough to open and close to permit recharging between 
pulses, so the pulsed load and supply remain electrically connected during the discharge. This has 
the potential to expose the power supply output to the ringing voltage on the capacitor bank as it is 
discharged, which could be destructive to the supply if  it is not properly protected. 

 The thruster and power supply protection circuit were modeled using Intusoft’s ICAPS Simu-
lation Program with Integrated Circuit Emphasis (SPICE) electrical circuit simulation software to 
determine the likelihood and magnitude of the voltage reversal problem and explore avenues to mini-
mize the voltage appearing at the power supply output. The circuit schematic for this simulation is 
shown in figure 28. The power supply is modeled as a constant voltage source with a generic diode at 
the positive output terminal to serve as a substitute for the internal high-voltage rectification diodes. 
The thruster is modeled as a simple inductive-resistive-capacitive (LRC) circuit. While the values of 
the thruster inductance, resistance, and capacitance correspond to a particular thruster (specifically 
the flat-plate IPPT of sec. 4), the resulting discharge characteristics are sufficiently general for the 
purposes of this design exercise. The thruster is modeled with a capacitance of 10 μF, a coil induc-
tance of 650 nH, a stray inductance of 200 nH, and a series resistance of 10 mΩ. A generic soft-
switch model is used to represent either a spark gap or a thyristor, which discharges the capacitor 
bank through the inductive coil. The switch is programmed to close every 50 ms (repetition-rate of 
20 Hz), with the entire simulation lasting for 500 ms. The capacitor in the thruster circuit discharges 
with every switch closing, and once the bank is discharged, the power supply recharges it. The result-
ing voltage output is a sawtooth waveform. 

 Without any other circuitry between the power supply and the thruster (i.e., no ‘isolation 
circuitry’), the model predicted a large ringing voltage at the power supply output, as well as a large 
unipolar current through the protection diodes in excess of 500 A, close to their rated current limit. 
This gave rise to the additional isolation circuitry consisting of a series resistance of 10 Ω and a series 
inductance of 90 μH between the power supply output and the load. 

 The results of the SPICE simulation are shown in figure 30, with the view expanded to show 
the waveforms that result from one discharge of the thruster circuit at t = 50 ms. The charge voltage 
in this case is 4 kV. The voltage at the thruster capacitor (node 6) rings, while the isolation circuitry 
keeps the voltage from ringing at the load capacitor (node 4) and causes the value of the voltage to 
quickly drop to 0. The peak current in the thruster circuit is just over 12 kA, but the current in the 
protection diode stack is no more than 70 A, which is well below the rated limit. 
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Figure 30.  Outputs from the SPICE model showing (a) the voltage at 
nodes 4 and 6 (as indicated in fig. 28), (b) the current in the 
thruster circuit, and (c) the current in the protection diodes. 

 The SPICE simulation indicates that for a 4-kV charge voltage, inclusion of a series resistance 
and inductance can adequately isolate the protection diodes and the power supply with minimal 
impact on the performance of the charge system. The 10-Ω resistors will only dissipate 10 to 500 W  
over the entire operating range of the charge system, representing a small fraction of the overall 
power delivered to the load by the CCS. It should be noted that for much higher voltages, or very dif-
ferent load characteristics, it would be wise to perform additional SPICE simulations to ensure that 
current in the protection diodes does not exceed the specifications. 
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3.4  Testing of the System

 The fast-charge system was tested in repetition-rated mode with the CTP IPPTs described 
in section 2 of this TP. Problems were encountered with the remote control of the CCS. Subse-
quent investigation has shown that the power supplies themselves are operating properly, indicating 
a potential failure in the FIB.

 To expedite testing, an older CCDS model with manual front panel controls was employed. 
Other than the front panel, the CCDS model is the same as the CCS. The voltage level was adjusted 
manually, but it was enabled remotely using a dedicated internally fabricated controller that inter-
faced to the supply through the back panel connector. A voltage trace of the capacitor bank voltage 
during a repetition-rated test of the thruster is shown in figure 31(a). The charge system performed 
as desired, recharging the thruster capacitor bank after every discharge. The internally fabricated 
controller was also used to control one of the CCS, verifying that they were operating properly and 
that remote control was possible. An LGDT waveform from a test with the 38° CTP IPPT (described 
in sec. 2) is displayed in figure 31(b) for operation at 5 Hz for 5 s. During pulsed operation, the thrust 
stand oscillates about a displaced position, with the difference between the displaced neutral position 
and 0 corresponding to the average thrust imparted by the thruster.19
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Figure 31.  Test of the 38° CTP IPPT, 5-Hz, 5-s repetition-rated: (a) Voltage wave-
form and (b) LGDT signal.

 The average thrust as a function of mass flow rate for 5-Hz operation of the 38° CTP IPPT 
is presented in figure 32 for three separate capacitor charge voltages. During repetition-rate testing, 
there were issues with the high-voltage insulation on the charge and pulse lines short-circuiting at  
5 kV. The trend in these data, specifically the 4-kV charge data, shows an increasing level of 
thrust as a function of mass flow rate, mirroring the single-pulse data presented in figure 14. 
The authors compare the single 5-kV data point in figure 32 with the corresponding data point 
in figure 14, observing that the average thrust operating in repetition-rate mode is greater than 
simply calculating five times the single-shot impulse bit. This suggests better gas acceleration in 
the pulsed mode, but the exact mechanism for this improvement remains an open question for  
future study. 
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4.  FLAT-PLATE THRUSTER WITH PULSED GAS INJECTION

 Apart from the data reported in the previous section, all testing of IPPTs has been performed 
in single-discharge (single-shot) mode, while no testing has been performed in the repetitive opera-
tion mode that an actual thruster would use. Testing of IPPTs has also not been performed using 
solid-state switching components, with almost all development to date, including the current IPPT 
state-of-the-art PIT MkV/MkVa, using triggered spark gaps to discharge capacitors through the 
acceleration coil.2 Although it was recognized that a practical thruster would require solid-state 
switches, the requisite performance and reliability in such switches did not exist at the time. Within 
the last decade, high-power, solid-state switches (thyristors and insulated-gate biopolar transistors) 
that meet the requirements of an IPPT have become available, their development driven mostly by 
the needs of the power and rail industries. Such switches have been used most notably in the small-
scale development testing for later generations of the PIT, again with all testing performed in single-
discharge mode.29 The apparatus described in this section was aimed at integrating into an IPPT the 
capability of repetitive (multiple-discharge or repetition-rate) operation switched using solid-state 
components with propellant injected using a PGV, integrating all these aspects into a single thruster 
for the first time. At the time of this TP’s publication, a fully integrated version of this thruster has 
not yet been tested.

4.1  Design Considerations

 To meet the goals described above, an IPPT was designed that would permit thrust stand test-
ing of a repetitively operated, solid-state switched thruster with relatively little investment in time and 
expense. The design target for the thruster is a jet power (Pjet) in the range of 2 to 5 kW, with Isp in the 
range of 3,000 to 6,000 s. The target conditions are in the range of those that would be required for 
certain missions,30 while at the same time, a thruster operating at these conditions could be feasibly 
tested in the 2.75-m- (9-ft-) diameter electric propulsion vacuum testing facility at MSFC. Although 
only quasi-steady-state testing is planned for the immediate future, the design could permit the even-
tual evolution to continuous testing. The mass flow rate for the target parameter range is 1 to 10 mg/s, 
which corresponds to throughputs of 53–533 Pa-L/s (0.4–4 torr-L/s) for argon, or 133–1,330 Pa-L/s  
(1–10 torr-L/s) for ammonia. The maximum throughput of the vacuum facility operating on dif-
fusion pumps is roughly 2,670 Pa-L/s (20 torr-L/s), implying that steady-state operation should be 
possible without an unacceptable increase in the chamber base pressure. For condensable propel-
lants, such as ammonia, a cold-wall inside the chamber could further improve the throughput for 
long-duration, steady-state testing.

 A flat-plate coil design, as used with the PIT and later in the Faraday Accelerator with Radio-
Frequency Assisted Discharge (FARAD), was selected for ease of fabrication.2,4,5 As was the case in 
FARAD, the coil leads are connected in parallel and driven with a single capacitor bank and switch. 
The structural components are primarily Lexan, phenolic, and fiberglass rod. These materials could 
not necessarily be used in a flight unit or for a long-duration, ground test article where thermal  
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management of the device during continuous operation is an important consideration. In those 
cases, refractory materials such as alumina or boron-nitride would be required for many of the key 
components. For quasi-steady operation, however, brief  bursts of up to 100 pulses should be possible 
without significant heating affecting the structure. A partial assembly of the thruster, as it stands at 
the writing of this TP, is shown in figure 33.

Figure 33.  Front view of coil form showing the Archimedes spiral-shaped 
grooves in which the leads lie. The coil form is fabricated from  
a Lexan sheet 1.3 cm (0.5 in) thick and has an outer diameter  
of 35.5 cm (14 in). 

4.2  Design, Fabrication, and Assembly

 The thruster consists of five major components: the acceleration coil, capacitor bank, switch 
assembly, preionizer, and the PGV/propellant delivery system. All five subassemblies are mounted 
on a structural frame consisting of two 1.3-cm- (0.5-in-) thick Lexan plates, adjoined by four 1.6-cm- 
(0.625-in-) diameter fiberglass threaded rods. The major components are modular and can be easily 
removed from the frame to implement any repairs, modifications, or later upgrades to the thruster. 

4.2.1  Acceleration Coil

 The coil consists of six leads in parallel, wound on the Lexan coil form. Each lead begins on 
the front side of the coil form at an inner radius (rin) of 5 cm and spirals out in one complete turn  
(2π radians) to an outer radius (rout) of 15 cm. Each lead passes through a hole in the coil form, 
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emerging on the opposite side to spiral back inwards on the back side in the same sense as the top 
windings, completing another full turn before returning to the starting angular and radial position. 
The starting and ending points of the six leads are arranged around the coil form at 60° intervals. 
The formula for the path of each lead is that of an Archimedes spiral, given for θ in radians as

 r = rin +
rout � rin( )

2�
�   . (26)

 The leads consist of copper wires, laid in grooves that are machined in the coil form. An illus-
tration of the coil form showing the multiple offset Archimedes spiral paths is shown in figure 34. 

Figure 34.  Front view of coil form showing the Archimedes spiral-shaped 
grooves in which the leads lie. The grooves on the front of the form 
are shown with solid lines and the back side grooves are shown with 
dotted lines. The dark circles at the outer radius where the two meet 
are transitions from the front side of the form to the back side. 
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 The inductance of the coil was calculated using QuickField™, a two-dimensional axisym-
metric magnetic field solver. Although the coil is not axisymmetric, it is possible to model it in this 
manner if  the azimuthal current density over the face of the coil is approximately uniform. This 
condition is met with the six-lead configuration of the present thruster. The six two-turn leads are 
modeled as twelve one-turn leads, the location of each can be visualized if  a cross-sectional radial cut 
is taken across the coil face and a circular conductor is placed at every location in the r-z plane where 
the cut intersects the coil. Front and back leads are paired in series as shown in figure 35(a) just as 
the leads intersecting the cut-plane would be paired, yielding six coil pairs that all have comparable 
self-inductances.

 An annular disc-shaped slug, 5 mm thick and with a resistivity of 4 × 10–8 Ω-m (equal to that 
of 6061 aluminum), represents the plasma in the QuickField model. When the plasma is near the coil, 
it acts to exclude magnetic flux, lowering the effective inductance (Leff ) of the coil as measured at the 
terminals (where all six parallel coil sets converge to single conducting entrance and exit points). The 
magnetic field was calculated using the AC-magnetics mode of QuickField. A voltage oscillating at 
a frequency of 50 kHz was applied to the coil pairs to approximate the discharge frequency at which 
the thruster would operate. The model is shown in figure 35(a), and the resulting flux contours from 
one such calculation are shown in figure 35(b). 
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Lead 6

Slug (plasma)

CI z

z = 14.17 cm

z = 12.5 cm

z = 10.83 cm
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z = 5.833 cm

r = ±–0.3675 cm

r
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Figure 35.  QuickField model of (a) coil arrangement for QuickField calculation and 
(b) calculated flux contours for one particular location of the slug (plasma). 
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 The resulting currents, magnetic fields, and magnetic field energies were calculated over the 
entire domain. From these data, the value of Leff was calculated using the formula for magnetic field 
energy: 

 WB =
Leff Itot

2

2
  , (27)

where Itot is the total current in all six sets of leads. The slug was advanced in axial position z
 
away 

from the coil face, and Leff was calculated at every step to yield the data shown in figure 36. 
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Figure 36.  Leff as a function of z as calculated with QuickField, with a 
calculated uncertainty of ±10 nH. The solid curve is a fit to 
the results of the calculation performed using equation (28). 

 These QuickField results were then fit with a curve of the form

 Leff = LC 1� k0
2 exp � 2z

z0
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�
�
  , (28)

where 

 LC = self-inductance of the coil 
 k0 = coupling coefficient
 z0 = electromagnetic decoupling distance for the coil, also known as the electromagnetic 
stroke length. 
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 The uncertainty on Leff was taken to be ±10 nH (based upon the criteria for solution ‘conver-
gence’ in the analysis program). The fit parameters for the curve plotted with the data in figure 36 are 
LC = 729 (±2) nH, k0 = 0.903 (±0.003), and z0 = 6.3 (±0.1) cm. The goodness of the fit is given by the 
reduced χ2 error, defined as χ2/ν, where χ2 has its usual definition from curve-fitting statistics. For the 
term ν=N – p – 1, N is equal to the number of points (78), and p is the number of fit parameters (3). 
For the curve fit of Leff, the value of χ2/ν was 0.66, which is less than unity indicating a good fit. 

 In fabricating the coil, it is imperative that the coil leads be well insulated so that they do not 
electrically short when the high-voltage pulse is applied to the thruster. As the top and bottom wind-
ings need to be close to one another to minimize stray inductance, the coil form must be fabricated 
from a material with good insulating properties and a high voltage holdoff. The coil form consists of 
a 1.3-cm- (0.5-in-) thick disk of optical-grade (transparent) Lexan with an outer diameter of 35.5 cm 
(14 in) and an inner diameter of 7 cm (2.75 in), which not only has good insulating properties, but is 
also mechanically strong and readily machinable. Channels for the coil leads possessing a 4.75-mm 
(0.1875-in) square cross section were machined into the form using a Sherline 2000 tabletop CNC 
milling machine. The walls and floors of the channels will be painted with Viking high-voltage insu-
lation varnish to fill and/or cover any microcracks that may have been produced during machining. 
The coil leads consist of No. 10 enamel-coated magnet wire. Once the coil is wound in the grooves, 
the channels will be filled with RTV-560 (a high-voltage, vacuum-compatible, silicone insulating 
compound supplied by Momentive Inc.) for additional electrical insulation.

 The current feed for the coil consists of two coaxial cylindrical bus-plates, fabricated from 
a 1.02-mm- (40-mil-) thick, alloy 110 copper sheet. The cylindrical plates are separated by a Lexan 
tube with an outer diameter of 7.6 cm (3 in) and a wall thickness of 3.2 mm (0.125 in), which is 
glued to the coil form. The bus plates are three times thicker than the skin-depth in copper at a fre-
quency of 50 kHz to minimize the additional resistance they add to the circuit. Both cylinders have 
an approximately 6.4-mm (0.25-in) azimuthal gap to prevent eddy currents from being induced by 
the discharge flowing through the coil. The connection to the coil leads will be made by soldering 
them to the plates. The cylinder surfaces are insulated with Kapton tape while the ends are insulated 
with high-voltage, vacuum-compatible RTV silicone (RTV-560, supplied by Momentive Inc.). Cop-
per tabs (110 alloy, 1.02-mm- (40-mil-) thick) are soldered to the current feed at the end opposite the 
coil, and these are insulated from one another with a 1.3-cm- (0.5-in-) thick Lexan sheet possessing 
an outer diameter of 17.8 cm (7 in). The bus plates that connect the switch assembly and capacitor 
bank (discussed later) to the coil assembly are held against the copper tabs on the cylindrical copper 
current feeds with Lexan clamps. The coil assembly and cylindrical copper current feeds are shown 
with one of the Lexan clamps in figure 37. The entire coil assembly can be removed from the thruster 
as a unit. 
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Figure 37.  Coil assembly (partially assembled), showing the coil 
form (without leads), coaxial current feed plates, and 
one of the Lexan clamps. 

4.2.2  Capacitor Bank

 The capacitors used to store the energy for each discharge were obtained from CSI Capaci-
tors. They are vacuum-compatible, oil-filled metal cans each possessing a capacitance of 10 μF. The 
maximum charge voltage for these capacitors is 7.5 kV, while the series inductance is not more than 
20 nH. The terminations are side-by-side terminals of No. 8 threaded rod, insulated from the capaci-
tor body using ceramic standoffs. Flexibility was desired in the thruster’s parameters, so the bank 
was designed to use from one to three capacitors, making it possible to test at 10, 20, or 30 μF. 
Up to three capacitors can be simultaneously mounted on a frame, fabricated from LE-grade and  
XX-grade phenolic, which is held stationary to one side of the thruster using threaded rods. 

4.2.3  Switch

 The capacitor bank is discharged through the coil using a PT85QWx45 pulse power thyristor 
switch manufactured by Dynex™. It is configured in a flat ‘hockey puck’ package and has the fol-
lowing properties: maximum holdoff voltage of 4.5 kV, RMS current of 1,225 A, surge (nonrepeti-
tive) current of 30 kA, and maximum dI/dt of  22 kA/μs. The thruster circuit was designed so that 
the initial current rise rate would stay below the dt/dl limit of the switch. Ideally, the current would 
be shut off  at the first zero-crossing of the current (after the first half-cycle of the discharge). This 
can be accomplished with an FRD. The FRD recommended for the thyristor used in the thruster 
is the DSF21545SV (also manufactured by Dynex), which has a maximum current rating of 20 kA. 
Although this is the fastest FRD that could be obtained and that could handle the requisite current, 
its recovery time of 7 μs may still be too slow for the purpose of interrupting the discharge after 
the first half-cycle. However, since this is an unknown, it was deemed worthwhile to test the FRD 
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to quantify its performance in the thruster. The switch and diode together will be referred to as the 
‘switch-stack.’

The electrical connections to the switch are completed using copper tabs. For proper opera-
tion, the switch-stack must be sandwiched between these tabs with a force of 40 kN (about 9,000 lb) 
within ±10%. This is accomplished using a mounting yoke fabricated from two 2.6-cm- (1-in-) thick, 
CE-grade phenolic slabs. The switch-stack, taken together with the copper tabs and the yoke, are 
referred to as the ‘switch assembly.’ G-10 would have been preferable for the yoke, as it is stronger, 
however, phenolic was chosen as it is easier to machine. The compressive force is provided by several 
bolts azimuthally spaced around the circumference of the switch-stack and loaded in tension that 
squeeze the assembly. The slabs deform somewhat under load, and the resulting crowning would 
lead to a nonuniform pressure applied to the switch and diode. To counteract this, 1.3-cm- (0.5-in-) 
thick stainless steel disks are inset into the slabs so as to distribute the compressive force applied to 
the switch-stack. The slabs are held together and compressed with six 5.5-in-long, 1/ 2-13 stainless 
steel bolts encased in phenolic tubes for electrical insulation. The bolts are locked down with Bellville 
washers that are each compressed to a flat-load of roughly 6.6 kN (1,500 lb) so the six bolts can pro-
vide the required 40 kN (9,000 lb) of compressive force. A side view of the switch assembly is shown 
in figure 38.

Clamping Blocks

Bus Plates

Thyristor

Diode

�10.4 cm
(4.1 in)

21.6 cm
(8.5 in)

 

Figure 38.  Side view of the switch assembly.

Initially, so as to mitigate any potential for electrical shorting across the switch-stack and 
to minimize the structural mass, the authors contemplated using strong high-temperature plastic 
Torlon® or glass-filled Ultem® bolts. While potentially useful in follow-on work, these items were 
cost-prohibitive for this particular project. Instead, the authors attempted to compress the switch-
stack using glass-filled 3/ 4-11 polyurethane bolts. The torque-yield curve for these bolts had to be 
determined empirically, as no data were available. Testing showed that they could provide the requi-
site force; however, once under tension they would yield, relieving the compressive force by as much 
as 30% over time. This was deemed unacceptable, and the polyurethane bolts were rejected in favor 
of the 1/ 2-13 stainless steel bolts used in the final assembly. 
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 Connections between the coil assembly, switch assembly, and capacitor bank are completed 
by compressing the bus-plates together with Lexan clamps. Where bus-plates join, the copper will 
be silvered with Cool-Amp paste. Silver gaskets having a thickness of 0.25 mm (10 mil) are used 
between the copper tabs of the switch assembly and the switch-stack to lower the contact resistance 
further. All exposed metal surfaces in the switch assembly will be insulated using RTV-560 where 
possible and by Kapton tape in all other locations.

 The thyristor will be activated using a fiber optic coupled trigger circuit. Such a circuit could 
be mounted to the thruster inside the vacuum chamber. It would, however, require its own dedicated 
and isolated low-voltage power supply and would have to be electrically potted to prevent arcing. 
Since trigger circuit integration into the thruster is not pertinent to the goals of the present test pro-
gram, it will instead be remotely located immediately outside the vacuum chamber, powered using  
a battery, and connected to the thyristor using twisted-pair wire. 

4.2.4  Preionizer

 A DC glow discharge preionizer will be used to provide initial ionization of the propellant 
gas. A stainless steel cap placed over the propellant outlet, which diverts propellant flow in the radial 
direction over the coil face, also serves as one electrode of the preionizer system. The other electrode 
consists of four stainless steel tubes rolled into arc segments and mounted at the outer radius of the 
coil. A capacitor, charged to a voltage between 1 and 3 kV and possessing an energy at this voltage 
of a few joules, is connected to the preionizer electrodes. When gas is puffed from the valve and flows 
over the coil face, it will ionize in the electrode gap, providing a connection between the two elec-
trodes. As the capacitor is discharged, a pulsed glow discharge will be produced, ionizing a fraction 
of the propellant. 

 The preionizer circuit, shown in figure 39, is electrically isolated from the coil circuit and 
is also separated from facility electrical service through an isolation transformer. The capacitor 
and high-voltage supply for the preionizer will be placed outside of the vacuum chamber so as 
to minimize high-voltage insulation problems that are not directly germane to the problem under  
consideration. 

Figure 39.  Preionizer circuit, including capacitor and high-voltage supply.
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4.2.5  Pulsed Gas Valve/Propellant Delivery System

A fast gas-puff valve, shown in figure 40, is used to inject the propellant in discrete incre-
ments. This task requires a valve capable of injecting 100–1,000 μg of propellant, operating at rates 
of up to 30 Hz. The authors employ the same kind of valve that was developed for the MSFC plas-
moid thruster experiment and was later used for the MSFC plasmoid thruster PT-1,10 specifically 
a modified Parker Pneutronics valve with a 12-V solenoid coil (model 990-000285-004). The valve 
was machined to eliminate the dead space downstream of the outlet, and a thin, drawn glass tube 
was glued into the inlet with Torr Seal® to create a plenum. When the poppet is lifted, the plenum 
is rapidly exhausted through the outlet, but only slowly replenished through the limiting orifice on 
the inlet. The valve was soft-soldered to a brass KF-16 flange so that it could be mounted on a test 
chamber for detailed characterization prior to installation in the thruster. To open the valve quickly, 
the solenoid is driven with a 320-V pulse. This results in a measured poppet opening time of 300 μs. 

Solenoid

Outlet
Inlet

Figure 40.  Modified Parker Pneutronics PGV; the flange diameter is 30 mm.
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 The single-pulse driver circuit previously used for the valve was modified for repetitive-pulse 
(repetitive-rated) operation (see fig. 41). This circuit is powered from an isolation transformer to 
electrically insulate it from the facility power and the other subsystems of the thruster. 

Puff Valve

DSEI 60
FRD

DSEI 60
FRD

DSEI 60
FRD

IXYS

Trig In

Red Blk
4 K

Power
ONHot

Neutral

120 VAC Fuse
3 A

320 VDC
**CAUTION!**

15 μF 15 μF

15 μF

4.7 K

500 K 

500 K 

Notes:
1.  IXYS is XTK21N100 1,400 V, 15 A HV MOSFET.
2.  Trigger in is 9 VDC minimum (12 V nom.).
3.  All capacitors rated 450 VAC.
4.  320 VDC drive voltage is lethal–use care!
5.  Recommend isolation transformer on AC input.
6.  Puff valve is modified Pneutronics 990-000285-004
    13.5 VDC, now obsolete (acquired by Parker). 

15 μF 15 μF

500 K

274 � 0.119 H

+

+

Figure 41.  PGV driver circuit for repetition-rated operation up to 30 Hz.

 A control board circuit schematic for the valve-driver is shown in figure 42 and has a fiber 
optic receiver for plastic optical fiber (POF) and a fast fiber optic transmitter. Upon receipt of the 
fiber optic command signal, the valve-driver circuit discharges into the solenoid, and the transmitter 
sends out a pulse that can be used to drive another control system or to directly trigger the thyristor 
trigger circuit. A picture of the valve-driver with the control board is shown in figure 43. 
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Figure 42.  PGV control circuit; a fiber optic output is also provided to drive an external 
pulse generator or to trigger the thyristor switch.

Figure 43.  PGV driver with control board and modified Pneutronics valve.
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 The valve is supplied with gas from a small, self-contained propellant delivery system, which 
will be mounted directly on the thruster. This will both minimize pressure drops in the propellant 
line which could hinder replenishment of the plenum and eliminate spurious nonthrust forces that 
could be exerted on the thrust stand by pressurized propellant lines. The propellant delivery system, 
shown schematically in figure 44, consists of a small gas reservoir (run-tank), a fill-valve for isolation 
from the gas supply outside the tank, a regulator for adjusting the pressure of the gas delivered to 
the PGV, a run-valve that connects the regulated pressure source to the PGV, a transducer for moni-
toring the pressure upstream of the limiting orifice, and a transducer for measuring the pressure in 
the run-tank. Also present (not shown in the schematic) is a thermistor for measuring the reservoir 
temperature. The volume of the run-tank and manifold is approximately 140 cc. The mass flow to the 
thruster can be determined from the pressure and temperature at the run-tank, which are read by the 
controller. A picture of the propellant delivery system is shown in figure 45. 

Run
Valve

Puff
Valve

Orifice

Regulator

Run-TankManifold

Fill
Valve

Gas
Supply

Pressure
Transducers

Figure 44.  Propellant delivery system.
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Figure 45.  Propellant delivery system with run-tank, regulator, 
and pressure transducers.

 The propellant delivery system and the valve-driver are controlled by a CuBloc single board 
computer (model Cubase 64T from COMFILE Technology), which is programmed in BASIC. The 
computer, shown in figure 46, is housed in a Hoffman box for electromagnetic interface shielding and 
is fitted with a four-line LCD display and manual user controls. It transmits a fiber optic command 
signal to the valve-driver, controls the fill- and run-valves, and reads and displays the transducer 
outputs from the propellant delivery system. The controller is programmed with four standard oper-
ating modes, each of which are manually selectable. The modes are single-shot and repetition-rated 
operations at fixed rates of 10, 20, and 30 Hz. The period and duty cycle may also be adjusted for 
customizable operation. The BASIC program used by the controller is provided in appendix A. The 
I/O port definitions are recorded in comments to the BASIC code. 
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Figure 46.  Propellant delivery system controller, using a 
CuBloc 64T computer. 

4.3  Pulsed Gas Valve Testing

A small vacuum chamber, shown in figure 47, was used to characterize the gas pulse output 
of the fast PGV to be used with the flat-plate IPPT. The valve was mounted at the end of the cham-
ber on a KF flange so any gas injected from the valve would have unimpeded access into the cham-
ber. The volume of the chamber was measured using a calibrated leak (Laco Technologies, model 
CM225.0-21008), which has a known leak rate at standard conditions of Γ = 4.79 × 10–2 atm-cc/s 
(0.0364 torr-L/s) into vacuum. The accuracy of the leak given in the manufacturer specifications 
is ±4%. The chamber was evacuated to a base pressure of less than 13 μPa (10–7 torr), and air was 
then admitted back into the chamber through the leak over a period of about 3 hr. The resulting 
pressure rise was measured with a baratron (capacitance manometer) gauge, measuring over the 
range of 0 to 1,330 Pa (0 to 10 torr) (gauge not shown in fig. 47). Using the ideal gas law and correct-
ing for temperature and atmospheric pressure (as opposed to standard temperature and pressure), 
the volume of the chamber was found using the relation Γ = V dp/dt to be 106 (±5) L. The back-
ground leak rate was also measured using the same method and was found to be 7.5 × 10–6 atm-cc/s, 
which is less than 0.02% of the calibrated leak rate. 
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Figure 47.  Vacuum chamber with PGV, calibrated leak, and 2-torr 
Baratron gauge. 

With a measure of the chamber volume in hand, the amount of propellant injected by the 
PGV could be quantified. The valve was operated in single-shot mode, opening a number of times 
to measure the mass bit (mass per pulse) injected by the PGV. The short interval between each pulse 
permitted the equilibration of the chamber pressure. For this test, argon gas was used at a line pres-
sure, and therefore, a valve plenum pressure of 157 kPa (22.8 psig). The temperature was measured 
with a type E thermocouple affixed to the chamber and was found to be 21.8 °C (295 K). The pressure 
in the chamber was recorded with an MKS model 626 baratron gauge having a range of 0 to 266 Pa 
(0 to 2 torr). Data from this incremental filling of the vacuum vessel through repetitive pulsing of the 
gas valve are shown in figure 48. 
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Figure 48.  Pressure rise recorded for multiple openings of the PGV 
in single-shot mode on argon. The plenum pressure was 
157 kPa (22.8 psig), and the temperature was 21.8 °C.

 For the data in figure 48, the average incremental increase in pressure for each pulse was 
0.36 ± 0.01 Pa (2.7 ± 0.1 mtorr). The mass per pulse, or mass bit, is given as 

 mbit = nVmAr = p
kT

�
��

�
��VmAr  , (29)

where

 n = number density 
 V = chamber volume 
 mAr = mass of an argon atom 
 p = pressure rise per pulse 
 T = temperature
 k = Boltzmann’s constant. 
 
 The mass bit measured in this way was 623 ± 54 μg/pulse.

 In a subsequent test, the valve was operated a number of times in repetition-rated mode. The 
test was conducted on argon at a plenum pressure of 157 kPa (22.8 psig) and lasted for a total of 
30 pulses at 10 Hz. The temperature recorded by the thermocouple was 22 °C (295.1 K). Between 
each burst of 30 pulses, a short interval was allowed to pass to permit equilibration of the pres-
sure in the chamber. The incremental pressure increase data from this test are shown in figure 49. 
The fall in pressure at the end of the data set is the result of the vacuum vessel being evacuated as 
it is reexposed to the vacuum pump system. The average measured pressure change per pulse dur-
ing this test is 0.76 ± 0.01 Pa (5.7 ± 0.1 mtorr). This corresponds to a total mass per sequence of  
30 pulses of 1,315 ± 90 μg. In figure 49, a sharp rise in pressure at the beginning of each sequence is  
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observed. This sharp rise is followed by a less rapid increase in pressure until that sequence of pulses 
is complete. The total duration of the rise is 3 s, as expected. The time response of the baratron 
is too slow to resolve the time-dependent pressure, and it is certainly too slow to permit a mea-
surement of the mass bit from a time-resolved pressure increment per pulse. However, an estimate 
of the mass bit can be attempted by assuming that the valve plenum is exhausted during the first 
pulse, and that replenishment of the plenum is restricted during subsequent pulses in the pulse 
train by the limiting orifice on the plenum inlet. If  this is the case, an amount of gas equal to the 
single-shot mass bit quantified in figure 48 (623 μg/pulse) is discharged during the first pulse and 
that the remainder of the pressure increase in the chamber occurs as propellant is exhausted at  
a uniform rate over the next 29 pulses. The mass bit for the remaining 29 pulses can then be estimated 
as mbit ≅ (1,315 – 623)[μg]/29 [pulses] = 24 ± 4 μg/pulse.

 Higher mass bits could be obtained by using a larger limiting upstream orifice. Increasing 
the plenum pressure would also increase the mass bit. Such effects typically make the calculation of 
the change in mass bit too complicated, but the test setup described in this TP is capable of rapidly 
quantifying and calibrating the propellant delivery system response over a wide variety of operating 
conditions.

 The closing time typical for valves of this kind is about 2 ms. While under typical 12-V 
operation, the opening time is expected to be on the same order; under the high-voltage initial pulse 
provided by the driver, the valve opens much more quickly. Current waveforms from the valve during 
two separate single-shot solenoid opening sequences are presented in figure 50. The curve ‘unloaded 1’  
is the current provided to the solenoid when there is no valve stem. This is the case when the  
electrical load presented to the valve-driver is due only to the inductance and resistance of the 
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Figure 49.  Incremental pressure rise recorded for multiple operations of  
the valve in repetition-rated mode on argon. For each discrete 
step, the valve was operated for 30 pulses at 10 Hz. The plenum 
pressure was 157 kPa (22.8 psig) and the temperature was 22 °C.
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solenoid and not due to the dynamic impedance of the moving valve poppet. This curve exhibits the 
shape expected for an overdamped LRC circuit. The ‘loaded’ curve represents the current provided to 
the solenoid when the moving valve stem and poppet are in place and a valve opening will discharge 
argon into the vacuum vessel. This was performed at a plenum pressure of 150 kPa (21.7 psig). The 
loaded curve exhibits a marked jog owing to the dynamic impedance of the poppet moving under the 
influence of the magnetic field of the solenoid.
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Figure 50.  Current waveforms for valve solenoid in the loaded 
and unloaded cases. 

 While it takes longer due to the initial differences in the two curves, the current in the loaded 
case reaches the same peak value as in the unloaded case. Initially, the poppet moves rapidly as it 
lifts off  the valve seat under the influence of the magnetic field, leading to a high dynamic impedance 
and hence, lower current. As the poppet is slowed by the restoring spring, the dynamic impedance 
decreases, and the current in the solenoid rises faster to its unimpeded value. The curve ‘unloaded 2’ 
is the same as unloaded 1, but time-shifted by 320 μs to align the peak current level with that of the 
‘loaded’ curve. Note that in late time after the peak current, the two curves are indistinguishable from 
each other. The opening time is taken as equal to this time-shift. The horizontal bar in figure 50 is 
provided to show the magnitude of the time-shift on the graph.
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5.  LONG-LIFETIME PULSED GAS VALVE 

 It is advantageous for gas-fed, pulsed electric thrusters to employ pulsed valves so propel-
lant is only flowing to the device during operation. The propellant utilization of the thruster will 
be maximized when all the gas injected into the thruster is acted upon by the fields produced by the 
electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical 
pulse can accelerate the propellant. Likewise, gas that is injected too late will miss being accelerated 
by the already completed electrical pulse. This requires that the valve must open quickly and close 
equally quickly, only remaining open for a short duration. In addition, the valve must have only  
a small amount of volume between the sealing body and the thruster so the front and back ends of 
the pulse are as coincident as possible with the valve cycling, with very little latent propellant remain-
ing in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster must 
cycle through at least 1010–1011 valve actuation cycles,30 setting the upper bound on the number of 
times a valve must open and close. 

 A PGV was designed and fabricated to have long lifetime and demonstrate the ability to rap-
idly open and close. The valve design and testing conducted under the present program are discussed 
in this section. 

5.1  Requirements

 The valve characteristics needed for the IPPT application requires a fast-acting valve capable 
of a minimum of at least 1010 valve actuation cycles. Since even 109 cycles is well above anything 
demonstrated, this value was selected as the design point. The valve seal must remain leak-tight 
throughout operation, and the body must maintain a low internal leakage at relatively high operating 
temperatures. The design requirements used for this program are given in table 1.

Table 1.  Long-lifetime pulsed valve design requirements.
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5.2  Design

 Opening of the valve is accomplished by use of a solenoid electromagnetic actuator. The 
valve is normally closed and will fail closed upon loss of electrical power. When current is applied 
to the solenoid coil, magnetic forces pull the plunger away from the valve seat, allowing fluid to flow 
through the valve. Removal of the electrical current permits the spring and fluid pressure to seat the 
plunger, thus stopping the flow of fluid.

 A flange-mounted interface is used between the valve and the PIT chamber. In the apparatus 
used for testing the valve, this interface contains both the supply and outlet ports to the valve and is 
sealed using two concentric O-rings. The test apparatus is illustrated in figure 51.

From Supply To Thruster

Plunger
Headplate

O-rings

Valve Mount

Figure 51.  Cross-sectional view of the long-lifetime PGV assembly.

 A secondary objective of the design was to minimize the valve size, making it not only appli-
cable to the IPPT application, but also making it useful for other thruster platforms (e.g., micro-
thrusters). The design was based solely on the use of analytical sizing calculations. Consequently, it 
does not represent a design optimized for mass and/or a given volume envelope. The valve envelope 
dimensions are shown in figure 52, with both a profile and a bottom view. The use of alternate mate-
rials combined with a more rigorous finite element analysis of the design could allow for a smaller/
lighter future design iteration of this valve. 
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Figure 52. Drawings of the long-lifetime PGV showing (a) a profile view of the overall valve 
and (b) a view from the bottom.

5.3  Physical Construction

 The valve, shown in detailed cross section in figure 53, is primarily fabricated from 304L cor-
rosion resistant steel (CRES) and 430 CRES. The 430 CRES material is used in the parts of the valve 
that form the magnetic circuit, such as the plunger housing and spool end pieces, which must have  
a high magnetic permeability. This material does not have optimum magnetic properties, but its cor-
rosion resistance permits incorporation in a design without requiring an additional plating process.

Core

Coil

Headplate

Housing

Insulation

Endplate

Spring

Spacer

Plunger

Seal

Retaining Ring Seat

Figure 53.  Cross-sectional view of the interior of the long-lifetime PGV.
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 A viton O-ring compound (Parker V0884-75) was used for the valve seat seal due to its 
mechanical strength at elevated temperatures. This seal material was installed into the plunger using 
a patent-pending process that eliminates the need for a separate seal retainer. The valve pressure 
boundary is sealed using electron beam welding at all valve joints as per AMS 2681.31 Inspection of 
pre- and postweld samples and proof pressure testing were employed to verify weld integrity.

5.4  Initial Test Results

 The testing performed at the time this TP was completed included a baseline evaluation 
of valve performance conducted before lifecycle testing. The tests were conducted at both 21 °C  
(70 °F) and 149 °C (300 °F) and included the following:

•  Pull-in voltage.
•  Dropout voltage.
•  Opening response time.
•  Opening plunger motion time.
•  Closing response time.
•  Flow rate.
•  Internal leakage.

 During initial checkout testing, several anomalies were encountered. The first anomaly 
occurred when the valve temperature was increased from room temperature to 149 °C (300 °F). As 
the temperature was increased, the flow rate observed from the valve outlet port decreased eventually 
to a point where the flow path was completely constricted. Further analysis showed that the designed 
stroke did not fully consider the effects of thermal swell of the viton seal material. The valve was dis-
assembled and a new plunger assembly was installed with an additional 89 μm (0.0035 in) of stroke 
to account for thermal swell at elevated temperatures.

 The second anomaly occurred during high-pressure, 1,034-kPa (150-psig) testing. During this 
test, internal leakage in excess of 10–2 sccs GHe was observed using a manometer. A review of the 
test configuration showed that the inner O-ring used to seal between the pressure supply and valve 
outlet ports did not contain any inner diameter supports. As a consequence of this lack of the inner 
diameter supports, the O-ring would roll inwards when this level of pressure was applied, producing 
a leakage path. In the test configuration, gas leakage at this O-ring gives a false-positive interpre-
tation as internal leakage. The valve was removed from the test fixture, and the inner O-ring was 
replaced. Testing has subsequently been limited to no more than 45 psig. Higher pressure testing is 
possible if  a test fixture modification to correct the O-ring support issue is implemented.

 After experiencing these two anomalies, the valve was tested producing a baseline evaluation 
of performance. These tests are summarized in table 2.
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Table 2.  Test data showing the baseline response of the long-lifetime PGV 
under a range of experimental conditions.

Parameter 21 °C (70 °F) 149 °C (300 °F) Requirement
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5.5  Summary

 In baseline testing, the PGV design has shown itself  capable of meeting the requirements 
for use in an IPPT providing primary propulsion for a mission. While requiring some minor design 
modifications that require further development, the valve meets the target performance metrics in 
beginning-of-life testing. Future testing after the valve has completed a large number of cycles will be 
used to evaluate the lifetime of this design and determine if  it could be capable of operating through 
enough cycles to complete a mission. 
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6.  HIGH-VOLTAGE INDUCTIVE PULSED PLASMA THRUSTER  
POWER PROCESSING UNIT DEVELOPMENT 

 An IPPT is an inherently unsteady device, with capacitor banks undergoing repeated cycles 
of charging and discharging. To operate the thruster in any type of repetition-rate mode, the 
bank must be recharged quickly to a high voltage of several kilovolts between pulses. This implies 
that the bus voltage from the spacecraft must be transformed in the PPU to a high-voltage, rel-
atively high-current level that can transfer the level of charge required for nominal operation in  
a relatively short period of time (fractions of a second).

 The specifications for the PPU design and development work conducted during the course of 
this TP were as follows. It was assumed that the thruster possessed a 40 μF capacitor bank and that 
this would be charged from 0 to 4 kV, and at full voltage, this would result in a discharge energy of 
320 J/pulse. It was assumed that the bus voltage feeding the PPU was 120 VDC (which corresponds 
to, among other things, the governing voltage on the International Space Station). The goal for this 
work was to investigate hardware that could recharge the capacitor bank at a rate that would permit 
operation on a timescale corresponding to a repetition-rate of approximately 30 Hz. 

6.1  Power Processing Unit Design

 The PPU designed in this project incorporates a coupled inductor topology of a flyback con-
verter, also known as a buck-boost converter. The converter circuit is shown schematically in figure 54.  
Inductive field energy is stored in the inductor when the metal-oxide semiconductor field-effect tran-
sistor (MOSFET) in line with the primary side of the transformer is closed. When the MOSFET is 
opened, current flow through the primary side of the transformer is halted, and the inductively stored 
energy is transferred to the secondary side of the transformer, subsequently charging the capacitor 
bank. Over a number of cycles, the voltage on the capacitor bank will increase until the desired bank 
voltage is achieved. Voltage regulation on the capacitor is performed using a voltage divider to mea-
sure the voltage and a comparator to determine if  the target bank voltage has been achieved. The 
operation for the coupled inductor power converter is illustrated conceptually in figure 55.
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 For a full 4-kV charge, a 1,000:1 voltage divider on the capacitor bank allows a comparator, 
referenced to 4 V, to determine when the charging sequence should be halted. A 50-kHz clock is used 
switch the flow of current through the transformer, controlling the charging sequence. This frequency 
was chosen because this bandwidth capability is readily available on the market, and it is a value that 
permits beneficial reduction in the transformer size and associated magnetic losses throughout the 
system. In the present design, the clock switches the current to maintain a 50% duty cycle. While the 
constant duty cycle was used in this design, further research may reveal that varying the duty cycle 
can permit better control of initial current transients. At a constant 50% duty cycle, the transformer 
is charged in 10 μs, and in another 10 μS, that energy is transferred to the capacitors. For a 120-VDC 
input, this results in 213 mJ of energy transferred per pulsed cycle, with 1,500 pulsed cycles over  
30 ms required to charge the bank to 320 J (40 μF at 4 kV). Once the charging cycle is complete,  
a switch is activated to electrically isolate the capacitor from the charging system/PPU, providing 
protection for the PPU during the pulsed discharge of the capacitor bank. 

 The design can employ both hardware and software controls on the capacitor charging 
sequence. The charging cycles are performed using hardware, but software can be used to monitor 
the system and also to provide a secondary avenue for the implementation of safety measures. A field 
programmable gate array can offer many of these advantages and provide adequate charging system 
control and safety measures in future iterations. 

6.2  Experimental Results

 The control system for the PPU operates on standard transistor‐transistor logic. The output 
to the capacitor bank is monitored, with the monitoring signal into the comparator scaled through  
a voltage divider to the 0 to 4 V range. The charging sequence is halted when the voltage into the 
comparator reaches or exceeds 4 V. The charge sequence should be completed in 30 mS, allowing 
3.3 mS to discharge the capacitor bank and allow the system to reinitialize before the next charging 
sequence commences.

 The coupled inductor charging supply concept shown in figure 54 was simulated using  
Personal Simulation Program with Integrated Circuit Emphasis (PSPICE) to determine the efficacy 
of the design. The PSPICE results shown in figures 56(a)–(c) are for a PPU design scaled to an input 
voltage of 1% of the design value (1.2 VDC input), resulting in a commensurate capacitor charge 
of 40 V. This simulation is representative of the first scaled-down test apparatus that was fabricated 
for the project (1/100-scale). A second prototype at 1/10-scale was also fabricated and tested. Results 
from testing with these two prototype systems are discussed in turn within this subsection.
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Figure 56.  PSPICE simulation ((a)–(c)) and experimental data ((d)–(f)) for a 1/100-scale 
coupled inductor PPU system. 

6.2.1  First Prototype—1/100-Scale

 In the 1/100-scale prototype, a 1.2-VDC input supplied power to the PPU, resulting in  
a charge voltage of 40 V. A charging sequence is shown in figures 56(d)–(f), with the voltage on the 
capacitor reaching 40 V in approximately 260 ms. This was slower than the PSPICE simulation sug-
gested, and upon investigation, it was determined the transformer started operation in a continuous 
mode and then it would transition to a discontinuous mode. In the continuous mode, energy remains 
on the secondary transformer coil at the end of a pulsed cycle, while in the discontinuous mode, the 
inductor is completely depleted, and all the energy is transferred to the capacitor bank by the end 
of a cycle. In the discontinuous mode, the current can be up to two to three times as large as in the 
continuous mode, providing for faster energy transfer. A major advantage is the smaller required 
mutual inductance that will, in turn, benefit the power converter by reducing magnetic losses. In 
the discontinuous mode, the higher peak secondary current and an associated large voltage spike 
at turnoff limits the selection of components for the system.32 While the discontinuous mode has 
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disadvantages when attempting to regulate current and voltage, this disadvantage does not directly 
affect the performance of the power converter described in this TP.

 An issue with operating on a 1.2-VDC input is that the components, such as MOSFET tran-
sistors, had turn-on voltages in the 2 to 4 V range. Consequently, the MOSFETs were mainly oper-
ating in the triode region instead of in saturation where the best results could be achieved. This 
problem will abate as the input voltage is increased. An additional problem that arose during testing 
was that the comparator circuit that terminated charging when the capacitor bank reached full volt-
age did not incorporate hysteresis. The consequence of this can be observed in figure 56(b), where 
instead of permitting the capacitor to fully discharge, the charge sequence would start as soon as the 
voltage measured by the comparator dipped below 4 V. 

6.2.2  Second Prototype—1/10-Scale

 The 1/10-scale prototype operated on an input voltage of 12 V, permitting the MOSFET tran-
sistors to operate in the saturation regime. The output charged a capacitor to 430 V over 80 ms. The 
comparator was set to halt the charging sequence at a voltage (measured using a 100:1 voltage probe) 
of 4.3 V, resulting in a slight overcharging of the capacitor above the target 400 V. The slight over-
charge ensured the desired voltage was achieved and would compensate for slight leakages that might 
arise. The overcharge did serve to increase the charge time, implying that an additional improve-
ment in time could be realized by setting the upper threshold voltage of the comparator hysteresis 
to 4 V. The lack of hysteresis in the 1/100-scale prototype system comparator was addressed in the 
1/10-scale system by incorporating a Schmitt trigger into the comparison circuitry, providing a wide 
hysteresis (0.8 V and 4.3 V) to prevent spurious or unplanned initiation of the charging sequence. 

 During testing, the charging sequence was activated with a control signal lasting 320 ms. The 
capacitor would charge in a much shorter timespan, testing the ability of the comparator to halt 
the charging sequence. A waveform showing the voltage on the capacitor bank during charging is 
presented in figure 57. Two sets of data presented in figure 58 show waveforms for the control signal 
that enables the charging system, the 100:1 voltage divider measurement on the capacitor bank, and 
the comparator signal (which goes to 0 when the full charge voltage is reached) to end the charge 
sequence. The transient portion of the data in figure 58(a) is enlarged for clarity in figure 58(b).
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 A minor issue was observed in figure 58 at the beginning of the charge sequence. The sepa-
rate pieces of equipment could not be properly synced during the first clock cycle of the charging 
sequence. Specifically, the data acquisition system operated at a frequency bandwidth of 20 kHz, 
while the power converter was operating on a 50-kHz clock, creating some aliasing problems result-
ing in improper control of the power converter. This had a minor impact since the circuit was not 
operating in the discontinuous regime throughout the charge sequence.

 The magnetic design has been shown even in the 1/10-scale prototype to be a key to the 
overall system performance. The losses due to inductive leakage and providing for optimal energy 
transfer from the transformer to the capacitor through operation in the proper regime (discontinu-
ous versus continuous) are critical in lowering the charge time in the system. In the prototypes,  
a low‐mu (low-permeability) core was used to permit higher power transfer, which is common in 
power supply design.

6.3  Additional Background and Insights

 In testing of the 1/100- and 1/10-scale prototypes, the PPU design demonstrated scalability 
and a reduction in charge time as the size was increased. While a full-scale design would require more 
robust components, potentially configured as stacks of components in series and parallel to handle 
the loads, the success of the prototypes suggests that a full-sized prototype is feasible. Improvement 
of the control equipment, specifically the frequency response of the data system, can help realize 
further improvement in PPU operation. 

 The magnetic design for the transformer has proven to be the critical component in the design 
for both the 1/100- and 1/10-scale prototypes. This design problem will be even more critical in  
a full‐scale PPU. The leakage inductance of the transformer, the magnetic permeability of the core, 
the configuration of the windings, and the slurry material comprising the toroid used for the trans-
former are all factors that require improvement to permit the fabrication of a full-scale system. It was 
suggested that a nanocrystalline core may help alleviate some of the transformer design concerns 
(M. Stangenes, Personal Communication, Stanges Industries, Inc.). 

 It was also suggested that a stack of diodes would be required to charge the capacitor bank  
(C. Chandler, Personal Communication, Southeast Power Components, Inc.). These diodes experi-
ence large swings of high initial current at low voltage during the charging pulses. Testing of diode 
stacks should be undertaken as part of any future work to extract data regarding the feasibility of 
this scheme.

 The transistor used on the primary side of the transformer must also be selected with care. As 
the PPU increases to full-scale, the voltage stress on the transistor may cause problems. A possible 
solution is to use a stack of transistors instead of the single N‐channel MOSFET currently used on 
the 1/100- and 1/10-scale prototypes. 
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7.  CONCLUSIONS 

 The contents of this TP have summarized IPPT development and testing performed at MSFC 
during the fiscal year 2012. This program was aimed at starting the process of identifying and address-
ing several critical IPPT development issues. During the course of this work, the following activities 
were completed:

• Several CTP IPPTs were fabricated, mounted on a thrust stand, and operated in a single-pulse 
mode in a large vacuum chamber, providing direct measurements of the impulse bit and permitting 
an estimate of the thrust efficiency.

• A capacitor charging system was assembled to provide for fast recharging of an IPPT capacitor 
bank, permitting repetition-rate operation. A CTP IPPT was subsequently tested at a repetition-
rate of 5 Hz, which at 5 kV on a 40 μF bank represents a power of 2.5 kW, which to the authors’  
knowledge is over an order of magnitude greater than any previous repetition-rate operated, pulsed 
plasma thruster. 

• Multiple components for a small-scale, flat-plate IPPT were fabricated. This device was different 
from the CTP in that it was equipped with the capability to employ pulsed gas injection and the 
capacitor bank was to be discharged with a solid-state switch. The assembly and integration pro-
cess for this thruster was not yet completed by the end of the present program.

• A prototype long-lifetime PGV was fabricated, and testing was initiated to quantify the response 
time and internal leak rate at the beginning-of-life. This valve will be tested in future work to quan-
tify the lifetime and changes in leak rate as a function of the number of times the valve is cycled.

• An investigation into the power systems needed for an IPPT was initiated under this program. 
Subscale 1/100- and 1/10-scale breadboard power supplies that could accept a low DC bus voltage 
input and provide a voltage to charge an IPPT capacitor bank were fabricated and tested to quan-
tify the response of the design. Many insights into the improvement of the power system response 
time and the types of components required were gained during the course of the present effort.
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APPENDIX A—BASIC CODE FOR CUBLOC 64T CONTROLLER AND PERIPHERALS 

'   EPVALVE Controller
     '   Program for Cubase 64T  RE  3/26/12 Comfile Cubloc BASIC
  '   V 5.0
  '
  '   This one works very well!
  '
     '   first version to use control panel to set parameters
  '   also use the LCD screen V1.0,  also now has comments
  '   mode 1,2,3 all work (10,20, 30 Hz, set to 5 Hz at startup)
  '   mode 4 allows you to program delay time between pulses, the "on"
  '   time  and the # of pulses,  goto mode 4 and set # pulses,  then return to
  '   mode 1 2 or 3 to change pulses
  '
  '   NOTE:  Cubase 64T has a board error,  for some reason when more than
  '   one input is active at a time,  then ALL 8 inputs in each common ground
  '   block are active.  this more or less precludes the use of sw1,sw2, an sw3
  '   Also I had to use a battery to power each button because if  the system power 
  '   is used on any 8 port group,  then the whole group lites up also. 
  '   Fortunately,  the battery only draws current when a button is being pressed
  '   so it should last a long time.  This was easier than starting all over with
  '   another board
  '   modified 12/12/11  to start up in single shot mode
  '
  ' 3/27/2012 
  '  ' This version uses 3 inputs...  the start button and the 2 POF fibers
  '   pressing the start button will start the sequence without "fill"  and
  '   "shutoff"  valve support.   Starting with the POF # 1 will initiate the
  '   sequence with flow valve open.   Activating POF #2  will fill the run tank
  '
  ' 6/4/12 
  '  'This version supports the display of the tank pressure (from AD5),  
  'the run pressure (from AD4),  and the temperature (from AD6) on the debug screen
  '
  'Ports:
  '
  'Outputs
  '
  'P24  Terminal F on FO board (see notes p11)
  'P25  Terminal E on FO board
  'P26  Terminal D on FO board
  'P27  Terminal C on FO board
  'P28  Terminal B on FO board
  'P29  Terminal A on FO board
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  'P30  FO POF XMTR 2 on FO board (T2)
  'P31  FO POF XMTR 1 on FO board (T1) fires the valve
  'P32-P39 Connector 15  (see notes p10)
  'P40-P47 Connector 16  (see notes)
  'P48-P55 Connector 17  (see notes)
  'Port 48  "fill" valve relay (1= open)
  'Port 49  "flow" valve relay (1 = open)
  'port 50 spare relay
  'port 51 spare relay
  'port 52 thermistor iso relay
  'port 53 tank press iso relay
  'port 54 run press iso relay
  'port 55 agnd iso relay
  '
  'Inputs
  '
  'P87 Enter Button (use to enter mode or set value)
  'P86 Status button press to see pressure and temp on debug screen RE 6/4/12
  'P85 Program Button (use to go into program parameter mode)
  'P84 Start Button (use to start a valve pulse sequence)
  'P83 cursor left button (use to select menu option) not used
  'P82 cursor right button (use to select menu option) not used
  'P81 Switch 3 can't use because of board error
  'P80 not connected
  '
  'P79-P72 connector 12 (see notes)
  'P71-P64 connector 11 (see notes)
  'P63-P56 connector 10 (see notes)
  '
  'Analog Inputs (these are 5.0 VFS, 10 bits, 5V=1023 cnts, 0V=0 cnts)
  '
  'AD0- Rotary Switch (see notes p 9) 4.481,3.812,2.713,1.362 volts (left to right)
  '       4.481 is INT 930 (Mode 1), 3.812 is INT 792 (Mode 2), 
  '       2.713 Is INT 563 (Mode 3) , 1.362 Is INT 281 (Mode 4)
  '
  'AD1- Enter Value Pot (see notes p. 9)fully CW 4.794 volts, fully CCW 0 0olts
  '     integer values 0 - 982
  'AD2- FO Receiver 1 (see notes p 11)  226 dark   268 light ... start with flow valve 
  'AD3- FO Receiver 2 (see notes p 11)  220 dark   268 light ...fill command
  'AD4- Run pressure 0-5V,  has 0.5 V offset, range (0-50 psig) 0.5-5 Volts=0-50
  'AD5- Tank pressure 0-5V,  has 0.5 v offset, range (0-200 psig) 0.5-5 Volts=0-200
  'AD6- Thermistor 0-5 V,12.06 K in series as divider, Omega #55016 12.5 K @ 20C
  'AD7- spare
  '
  ' *** Note AD4,5,6 are routed through relays as follows:  ***
  ' AGND=P32, (AD4)XDUCER2=P31, (AD5)XDUCER1=P30, (AD6)Thermistor=P29 to protect 
  ' the Cubloc controller during charge and firing of the thruster
  ' to read AD4,5,6  first make P32,31,30,29  high,  then make these low again before firing
  '
  '
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 Const Device = cb290
 '
 ' variables in Main program are all global variables
 '
 Dim TX1 As Integer, TY1 As Integer
 Dim I As Integer
 Dim jj As Integer
 Dim a0 As Integer
 Dim a1 As Integer
 Dim a2 As Integer
 Dim a3 As Integer
 Dim imode As Integer
 Dim ihz As Integer
 Dim ipulses As Integer
 Dim iperiod As Integer
 Dim isec As Integer
 Dim ipress As Integer
 Dim iton As Integer
 Dim ipro As Integer
 Dim ifirst As Integer
 Dim ifill As Integer
 Dim iflow As Integer
 Dim istat As Integer
 Dim RunP As Single ' run pressure (PSIG)
 Dim FillP As Single ' fill tank pressure (PSIG)
 Dim TTemp As Single ' fill tank temperature (C)
 
 Set Outonly On  'required for cb290
 

 '
 '  set for a clcd display using Cunet with address 0  and buffer size of 72 bytes
 '
 Set Display 2,0,0,72

  
 '
 ' write startup message
 '
 startup:
 '
 '
 '
 Delay 100
 Cls
 Delay 200
 Locate 0,0
 Print "Starting Up!"
 Delay 2000

  Locate 0,0
 Pause 100
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 Print "EP Valve Controller "
 Locate 0,1

  Pause 100
 Print "V4.0 press start! "
 Locate 0,2
 Pause 100
 Print "Single Shot Mode"

  'default parameters
 ifirst=1
 iperiod=205
 ihz=5
 isec=2
 iton=1
 ifill=0
 iflow=0
 'ipulses=ihz*isec
 ipulses=1
 getmode
 Pause 100
  Locate 0,3
  Print "# Pulses  ",Dec(ipulses)
 Do
 

 'set all the outputs low (outputs are 24 thru 55 on Cubase 64)
 ' 
 I=24

  Do Until (I > 55)
   Out I,0
  I=I+1
   Loop

 '
 '  test all the inputs (56 thru 87)
 '
 ' wait to press start button
 '
 Waitstart
 If  (iflow = 1 ) Then Out 49,1
 If  (iflow = 1 ) Then Pause 1000
 PulseValve ipulses, iperiod
 Out 49,0
 Pause 500
  Loop
   End

  
 Sub PulseValve(ipul As Integer,iper As Integer)
 '
 ' fire the valve ipul times at rate given by iper
 Dim II As Integer
 II=0
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 If  (iflow = 1) Then Out 49,1  ' use flow valve if  commanded by FO to start
 If  (iflow = 1) Then Delay 2000
 Do Until (II=ipul)
 High 31
 Pause 1
 II=II+1
 Low 31
 Pause iper
 Loop
 Out 49,0
 iflow = 0
 End Sub
 

Sub Waitstart()
'
' wait for start button to be pressed or for signal on FO receiver 1
'  if  program button is pushed change parameters and come back here
'  if  ad3 (FO2) is active then fill the run tank (ifill is made 1)
'  if  ad2 (FO1) is pulsed then open the flow valve and run the sequence (iflow =1)
'
'
Dim igo As Integer
Dim ir1 As Integer
Dim ir2 As Integer
Dim ibut As Integer
igo=0
ipro=0
ibut=0
ifill=0
iflow=0
Do Until (igo=1)
ir1=Tadin(2)  'ad2 Is the FO receiver ir1
If  (ir1 > 245) Then iflow=1
ir2=Tadin(3)  'ad3 is the FO receiver ir2 
If  (ir2 > 245) Then ifill=1
ibut= In(84)  'port 84 is the start button
ipro = In(85) ' port 85 is the program button
istat = In(86) ' Port 86 is the status button
If (ipro=1) Then ChangeParameter
If  (ifill=1) Then Fill
If  (istat=1) Then Status
If  ((ir1 > 245) Or (ibut =1)) Then igo=1
Loop
ibut=0
igo=0
End Sub

Sub ChangeParameter()
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''come here if  program button is pushed and parse buttons to change parameters
'
'global parameters  iperiod, ipulses, ihz, imode, isec, ipress, iton
'
getmode
If (ifirst=1) Then ipulses=30
If (ifirst=1) Then ifirst=0
If (imode=4) Then Goto setmode
If (imode=1) Then Goto mode1
If (imode=2) Then Goto mode2
'
' here if  mode 3 (30 Hz)
'
mode3:
'30 Hz
ADOFF
iperiod=30

  Delay 100
  Cls
  Delay 200

 Locate 0,0
 Print "Mode 3 Active!"

  Delay 2000
  Locate 0,0
  Print "EP Valve Controller "

 Locate 0,1
  Print " M3 press start! "
  Locate 0,2
  Print "valve out 30 Hz"
  Pause 100
  Locate 0,3

 Print "# Pulses  ",Dec(ipulses)
 Goto last2
'
' here if  mode 2 (20 Hz)
'
mode2:
'20 Hz
ADOFF
iperiod=47

  Delay 100
 Cls
 Delay 200
 Locate 0,0

  Print "Mode 2 Active!"
  Delay 2000

 Locate 0,0
  Print "EP Valve Controller "
  Locate 0,1
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  Print " M2 press start! "
  Locate 0,2
  Print "valve out 20 Hz"
  Pause 100

 Locate 0,3
  Print "# Pulses  ",Dec(ipulses)

 Goto last2
'
' here if  mode 1 (10 Hz)
'
mode1:
'10 Hz
ADOFF
iperiod=100
 Delay 100
 Cls
 Delay 200
 Locate 0,0

  Print "Mode 1 Active!"
  Delay 2000
  Locate 0,0

 Pause 100
  Print "EP Valve Controller "
  Locate 0,1
  Pause 100
  Print " M1 press start! "
  Pause 100
  Locate 0,2
  Print "valve out 10 Hz"
  Pause 100
  Locate 0,3

 Print "# Pulses  ",Dec(ipulses)
Goto last2
'
'here if  mode 4  (set mode parameters)
'
setmode:
'
' set period (Hz)
Cls
Pause 100
Locate 0,0
Pause 100
Print "Set Parameters "
Pause 100
Locate 2,0
Pause 100
Print "Set Period value"
ipress=0
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 Do Until (ipress=1)
  iperiod=Tadin(1)
  iperiod=iperiod/3
  ipress=In(87)
  Locate 0,3
  Pause 100
  Print "Period  ",Dec(iperiod),"  "
  Pause 300
 Loop

' set time on
Cls
Pause 100
Locate 0,0
Pause 100
Print "Set Parameters "
Pause 100
Locate 2,0
Pause 100
Print "Set On Time value"
ipress=0
Do Until (ipress=1)

  iton=Tadin(1)
  iton=iton/30
  If  (iton=0) Then iton=1
  ipress=In(87)
  Locate 0,3
  Pause 100
  Print "Time on  ",Dec(iton),"  "
  Pause 300
 Loop

' set number of pulses
Cls
Pause 100
Locate 0,0
Pause 100
Print "Set Parameters "
Pause 100
Locate 2,0
Pause 100
Print "Set # pulses"
ipress=0

 Do Until (ipress=1)
  ipulses=Tadin(1)
  ipulses=ipulses/3
  ipress=In(87)
  Locate 0,3
  Pause 100
  Print "Pulses ",Dec(ipulses),"  "
  Pause 300
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 Loop
Delay 100

  Cls
  Delay 200
  Locate 0,0
  Print "Starting Up!"

 Delay 2000
  Locate 0,0
  Pause 100
  Print "EP Valve Controller "

 Locate 0,1
  Pause 100
  Print "press start! "
  Pause 1000
  Locate 0,1
  Pause 100
  Print "Period ",Dec(iperiod),"   "
  Locate 0,2

 Pause 100
  Print "Time on ", Dec(iton),"   "
  Locate 0,3
  Pause 100
  Print "Pulses ", Dec(ipulses),"    Mode 4"

ipro=0

last2:
End Sub

Sub getmode()
'
'determine the operating mode from the rotary switch
'
' get mode
'imode and a0 are global
'
'Mode 1 is 10 Hz, Mode 2 is 20 Hz , Mode 3 is 30 Hz Mode 4 is set Hz
a0=Tadin(0)
'Debug "getmode ",Dec(a0),Cr
If(a0 < 900) Then Goto aa
imode=1
Goto last1
aa:
If(a0 < 700) Then Goto bb
imode=2
Goto last1
bb:
If(a0 < 500) Then Goto cc
imode=3
Goto last1
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cc:
imode=4

last1:
End Sub

 
 

Sub Fill()
 '
 ' Leave fill valve open until fill command goes low
 '
 Dim idone As Integer
 Dim ir2 As Integer
 
 idone=0
 Out 48,1  'Port 48 is fill valve ,port 49 is the flow valve
  Do Until (idone=1)
    ir2 = Tadin(3)
    If  (ir2 < 245) Then idone =1
  Loop
 Pause 1000  ' minimum fill time is 1 sec
 Out 48,0
 ifill=0
 idone=0

End Sub

Sub ADON()
'
'Enable the AD ports - do this only when High Voltage is OFF
'
Out 55,1  ' AGND
Out 54,1  ' Xduc2
Out 53,1  ' Xduc1
Out 52,1  ' Thermistor
End Sub

Sub ADOFF()
'
'Disable the AD ports to protect them from High Voltage
Out 55,0  ' AGND
Out 54,0  ' Xduc2
Out 53,0  ' Xduc1
Out 52,0  ' thermistor
End Sub

Sub Status()
Dim itankp As Integer
Dim irunp As Integer
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Dim itemp As Integer
Dim itanksum As Integer
Dim irunsum As Integer
Dim itempsum As Integer
Dim icnt As Integer
Dim tpr As Single
Dim rpr As Single
Dim ttr As Single
Dim ist As Integer
'
' Come here when status button is pressed and print out the Pressures and temperatures
' RunP  FillP  TTemp are real global variables for Fill press, Run press  and Temperature
'
ADON ' enable these channels

Out 48,1 ' fill valve
Out 49,0  ' flow valve
Pause 400
ist=0
Do Until (ist = 1)
itanksum=0
irunsum=0
itempsum=0
icnt=0

  Do Until ( icnt=50 )
   itanksum=itanksum+Tadin(5)
   irunsum=irunsum+Tadin(4)
   itempsum=itempsum+Tadin(6)
   icnt=icnt+1
  Loop

tpr=(200.0*((itanksum/10230.0)-0.5)/4.0)-1.15
rpr=(50.0*((irunsum/10230.0)-0.5)/4.0)-0.22
ttr=itempsum/50.0
Debug "Tank Press " , Float(tpr),Cr
Debug "Run Press ", Float(rpr), Cr
Debug "Temperature ",Float(ttr), Cr
Debug Cr
ist= In (86)
Pause 2000
Loop

ADOFF
Out 48,0
Out 49,0
Pause 400
End Sub
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