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ABSTRACT 
Aircraft community noise is a significant concern due to continued growth in air traffic, 
increasingly stringent environmental goals, and operational limitations imposed by airport 
authorities.  The assessment of human response to noise from future aircraft can only be afforded 
through laboratory testing using simulated flyover noise.  Recent work by the authors 
demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft 
and a future hybrid wing body aircraft concept.  This auralization used source noise predictions 
from NASA’s Aircraft NOise Prediction Program (ANOPP) as input.  The results from this 
process demonstrated that auralization based upon system noise predictions is consistent with, 
and complementary to, system noise predictions alone.  To further develop and validate the 
auralization process, improvements to the interfaces between the synthesis capability and the 
system noise tools are required.  This paper describes the key elements required for accurate 
noise synthesis and introduces auralization architectures for use with the next-generation 
ANOPP (ANOPP2).  The architectures are built around a new auralization library and its 
associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data 
required for auralization.  The architectures are designed to make the process of auralizing 
flyover noise a common element of system noise prediction. 

1. INTRODUCTION 
Auralization of aircraft flyover noise is the process by which source noise predictions, often 
performed in the frequency domain, are turned into audible sound at some distant observer 
location(s).  System noise prediction programs, such as ANOPP, are oriented toward generation 
of noise metrics and generally lack a built-in auralization capability of their own.  However, by 
combining synthesis and simulation tools with source noise predictions from ANOPP, 
auralizations of a reference state-of-the-art tube-and-wing aircraft and a conceptual hybrid wing 
body (HWB) aircraft were recently made possible.1  As a validated tool, auralization can be used 
to more effectively communicate the societal benefit of low noise concepts to stakeholders than 
can tabulated metrics alone.  Further, auralization provides a feedback mechanism to the 
technologists developing noise reduction concepts.  With this capability, it is now possible to 
assess human response to flyover noise by systematically evaluating source noise reductions 
within the context of a system level simulation. 
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The main elements of auralization include synthesis, propagation, and playback.  One 
possible implementation of these elements is shown in Figure 1.2  In the synthesis element, 
source noise predictions, e.g., from ANOPP, are performed a priori, and serve with other data as 
input.  The synthesis block generates a continuously evolving source pressure time history at the 
emission angles determined by the propagation path (straight or curved).  In the propagation 
element, the pressure time history output by the synthesis block is propagated to a ground 
observer through application of a time-varying time delay, gain and filter.  These operations may 
be performed on the entire record as shown, or buffer by buffer as part of the playback element.  
Simulation of a flyover in the context of an interactive virtual environment is made possible 
through the use of the Community Noise Test Environment (CNoTE)3 and a specialized real-
time audio processor.4  In such an environment, listener tracking data is passed to the real-time 
processor and multi-channel audio is passed back to the listener. 
 

 
Figure 1:  An auralization framework using system noise predictions as input.2 

While the recent study1 demonstrated the feasibility and benefits of a full aircraft
auralization using such a framework, it also identified the need for a more seamless connection 
between the prediction and auralization tools.   In particular, one-way data exchange from the 
ANOPP source noise prediction to the auralization processes was performed manually using 
Network Common Data Form (NetCDF)5 files.  This cumbersome data exchange, in combination 
with bookkeeping necessary to track applied noise control treatments, manual preprocessing for 
source noise de-dopplerization, and duplicative input to the source noise prediction and the 
auralization elements, made the process both labor intensive and error-prone. 
 In recognition of these limitations, it was decided to develop a more integrated approach to 
allow auralization of flyover noise to be a common element of system noise prediction.  A more 
integrated approach would enable two-way data exchange, whereby the noise prediction process 
would provide its output to the auralization process, and the auralization process would provide
its output back to the noise prediction program for additional processing or reporting.  The new 
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approach is facilitated by two developments: the next generation aircraft noise prediction 
program (ANOPP2) software library, and a new auralization software library.  This paper 
describes both of these libraries and their associated APIs at a high level, and offers three 
architectures for more closely integrating system noise prediction and auralization.  In particular, 
the approach taken allows the customization of user written code while retaining more easily 
maintained and extensible software libraries that provide core functionality. 

2. NEXT-GENERATION AIRCRAFT NOISE PREDICTION PROGRAM 
NASA initiated the development of ANOPP6,7 approximately 30 years ago and has continued 
that development to provide the U.S. Government with the ability to assess aircraft noise.  The 
prediction methodologies that have been implemented within ANOPP are predominantly based 
on empirical, semi-empirical, and analytical models, validated with the best available 
experimental data.  Many of the prediction methods work well for conventional aircraft 
configurations but lack capability and fidelity required for unconventional configurations.  The 
recent push for unconventional aircraft designs requires more robust, higher-fidelity, physics-
based noise prediction tools that can predict outside of the experience base for which ANOPP 
methods were developed. 

The next generation ANOPP, called ANOPP2, is designed to address the limitations of 
ANOPP in order to accurately predict noise for current and future concepts.  Figure 2a shows a 
conventional tube-and-wing aircraft configuration with rear-mounted engines.  Noise sources 
from this configuration typically include the engines and airframe components such as the 
landing gear, flaps, and slats.  Prediction of noise from these sources in isolation is not the same 
as when installed.  For example, the noise from an installed main landing gear is directly related 
to the local flow field, which is affected by the freestream flow velocity and the aircraft's high-
lift system settings.8  Similarly, engine noise can be reflected from the wing for under-the-wing 
configurations, or partially shielded from the ground for over-the-wing configurations. These 
effects, as well as other source noise phenomena, are more evident for unconventional 
configurations as shown in Figure 2b.  This HWB design offers significant noise reduction 
potential due to shielding of the engine sources by the airframe.  Using ANOPP to predict the 
noise for this configuration requires novel application of the methods since the HWB 
configuration is beyond the database for which the methods were built. 
 

 
 

Figure 2:  Conventional (a) and unconventional (b) aircraft designs. 

An important advantage of ANOPP2 is that it provides a framework to integrate acoustic 
modeling approaches of varied fidelity for source noise component prediction, installation 
effects, and propagation to the far-field. This multi-fidelity framework is accomplished via a 
plugin system, which allows ANOPP2 to include fast prediction methods for design optimization 
while also including physics based prediction methods that contain the fidelity required for 

(a) (b) 
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understanding and controlling noise.  ANOPP2 hence offers the user several options for 
predicting specific noise depending on requested fidelity and computational resources. 
 The ANOPP2 framework is built around a software library, called the ANOPP2 library, 
which consists of a number of sub-libraries for performing specific functions.  The most relevant 
sub-libraries, vis-à-vis auralization, are Flight Path, Atmosphere, Observer, and Acoustic 
Analysis.  Each sub-library within the ANOPP2 library contains functions for the generation, 
retrieval and storage of the specific data needed by that library using documented APIs.  For 
example, the Observer library contains functionality needed to define, store, and retrieve the 
locations of multiple observers so predictions can be propagated to observer locations. These 
APIs are the interface to the ANOPP2 functionality that is used by a user-written FORTRAN or 
C++ code.  The use of ANOPP2 APIs in this manner allows the user to customize code for a 
specific application as opposed to relying on a single general-purpose code. 

3. AURALIZATION LIBRARY 
Central to the auralization architectures to be discussed in Section 4 is a new Auralization 
software library and its associated API.  The Auralization library is an object oriented library 
with functions and data structures for path, synthesis, and propagation processing.  The interface 
to the Auralization library is through an Auralization API, which provides functionality similar 
to that represented by the blocks in Figure 1, but is seamlessly connected with external code and 
data.  The primary interface with an external noise prediction framework is ANOPP2 via the 
ANOPP2 APIs, but additional interfaces may be added in the future. 
 Functionality needed to provide data on the propagation path from the noise source to the 
observer at each emission time increment is implemented using a Path object.  This data includes 
the emission angle used to synthesize the source noise, the ray path used to propagate that noise 
to the observer, and the receiver angle used to optionally locate the source in a virtual three-
dimensional listening environment.  Note that the data is determined for each ray path between 
the source(s) and observer(s). The main elements of the Path object needed to implement this 
functionality are notionally listed in Table 1.  Here, public functions refer to those functions 
accessible through the Auralization API, methods refer to the specific means of performing the 
specified function, and data refers to those quantities operated on by the specified function. 

Table 1:  Main elements of Path object in the Auralization API. 

Public Functions Methods Data 

Fetch_Source_Position Flight Path API Location and 
orientation Read external file 

Fetch_Observer_Position Observer API Location Read external file 

Calc_Path 
Straight (built-in) Ray(s), emission 

angle(s), receiver 
angle(s) 

Curved2,9 
Curved GPU10 

Calc_TGF Atmosphere API Time delay(s), 
gain(s), filter(s) Ground plane (TBD) 

 
 Likewise, a Synthesis object is used to provide the functionality to produce a buffer of 
pressure time history data for each source-receiver path at the instantaneous emission angle 
based upon provided source noise predictions, e.g., from ANOPP2.  The path emission angle and 
source directivity are fetched buffer by buffer to generate a smoothly evolving sound.3,11-13  The 
main elements of the Synthesis object are notionally provided in Table 2.  After synthesis, the 
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buffer is propagated to the receiver using the Propagation object, described below. Propagation 
of the synthesized buffer may occur individually for each source-receiver path, or collectively for 
collocated sources sharing a common path to the receiver.  For the latter, a mixing function is 
required. 

Table 2:  Main elements of Synthesis object in the Auralization API. 

Public Functions Methods Data 

Fetch_Source_Directivity 

Observer API Hemisphere: 
broadband, 
narrowband, pure 
tone, time domain 

Read NetCDF file 

Fetch_Emission_Angle From path object Emission angle Read external file 

Synthesize_Buffer 

Broadband3,11 ps(t) – One for each 
source component 
and path 

Narrowband3,11 
Pure tone12 
Time domain13 

Mix_Buffers Built-in ps(t) – One for each 
path 

Write_Buffers Observer API  Write external file 
 
 Lastly, the Propagation object accumulates the sample buffers output from the Synthesis 
object, and applies a time-dependent fractional time delay (T), gain (G) and filter (F) for each 
path.  The time delay accounts for the propagation time, the gain accounts for spherical 
spreading loss, and the filter accounts for atmospheric absorption.  Note that all operations are 
performed in the time domain.  The end product of the TGF processing is a pseudo-recording of 
the pressure time history at the observer location(s), which may be used to generate aircraft noise 
metrics with the ANOPP2 Acoustic Analysis API.  The pseudo-recording can be played back on 
any suitable sound reproduction system or be incorporated in an interactive virtual three-
dimensional listening environment, through use of the CNoTE3 software and specialized real-
time hardware.4  The main elements of the propagation object are shown in Table 3. 

Table 3:  Main elements of Propagation object in the Auralization API. 

Public Functions Methods Data 

Fetch_Synth_Buffer From synth object ps(t) – At least one 
for each path (buffer) Read external file 

Fetch_TGF From path object Time delay(s), 
gain(s), filter(s) Read external file 

Apply_Delay Built-in  
Apply_Gain Built-in  
Apply_Filter Built-in  

Write_Output_Buffer 
Observer API 

 Wave file – CNoTE 
Sound card 

 
 Finally, note that the all objects in the Auralization API are meant to be extensible to allow 
user-defined methods to be specified in the future. 
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4. ARCHITECTURE OPTIONS 
Three architecture options are next presented which allow auralization to be performed using the 
ANOPP2 and Auralization APIs.  These are the inline, restart, and plugin options. 

A. Inline Option 
The inline option performs both the ANOPP2 and auralization analyses within a single user-
written executable code.  A block diagram of the inline option is shown in Figure 3.  Here, the 
user provides the definition of the aircraft and its mission to the ANOPP2 library functions and 
internal prediction methods.  The resulting noise predictions are then provided to the 
Auralization API functions which subsequently generates pressure time histories that are then 
stored on the ANOPP2 observer object.  Through the use of ANOPP2 library functions, this 
information is available to the user.  The inline option may have its most utility in a design 
environment where the user wishes to auralize different variants of the same underlying analyses, 
e.g., a change in flight operations. 

B. Restart Option 
The restart option is similar to the inline option except that noise prediction output from 
ANOPP2 is written to a restart file at the end of the ANOPP2 analysis.  The data from that file is 
then loaded via ANOPP2 library functions, at the start of the auralization, as shown in Figure 4.  
This architecture is likely to be most useful when the user wishes to change the path or synthesis 
parameters but otherwise retain the source definition.  The auralization portion of the restart 
option essentially reduces to a standalone auralization code when the source directivity data is 
written to NetCDF formatted files instead of to an ANOPP2 restart file.  This file format is 
commonly used for storing source directivity data, whether predicted or measured.  In this case, 
the NetCDF library functions are used to load the data instead of the ANOPP2 library. 

 
Figure 3: Diagram of the inline architecture. Figure 4: Diagram of the restart architecture.

C. Plugin Option 
A third auralization architecture option uses the ANOPP2 plugin system.  This system allows 
users to incorporate external methods into the ANOPP2 architecture to supplement or even 
replace ANOPP2 functionality without having direct access to ANOPP2 source code.  This is 
accomplished through a dynamic-library-based plugin system where each external method is 
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embedded in a dynamic library.  ANOPP2 couples the dynamic libraries with the system noise 
prediction architecture. 
 Figure 5 shows the communication between a user, the ANOPP2 library, and two methods: 
an internal prediction method and an external auralization method implemented using a dynamic-
library.  The user provides information to ANOPP2, including the aircraft and its flight mission.  
The ANOPP2 library then provides that information to both the internal method and to the 
plugin; the plugin performs the auralization using the aforementioned Auralization API and
stores the resulting pressure time histories in an ANOPP2 observer object using the API for that
object.  As with the inline method, ANOPP2 library functions make that information accessible
to the user.  The user interfaces with ANOPP2 through a user written code regardless of whether 
the method is contained within the ANOPP2 library or the dynamic library.  It is important to 
note that new methods, because they are embedded in dynamic libraries, may be added to the 
system without having to rebuild ANOPP2 because the interfaces between the ANOPP2 library 
and all plugins remain the same. 

 
Figure 5:  Communication between the user, the ANOPP2 library, and two methods: an internal prediction method 
and an external auralization method via a plugin.  Information flow is denoted by (A) for the internal method and 
(B) for the external method. 

5. CONCLUDING COMMENTS 
In an effort to make the process of auralizing flyover noise a common element of system noise 
prediction, an auralization capability is being developed for use with NASA’s next generation 
aircraft noise prediction program ANOPP2.  The capability is built upon a new Auralization 
library and its associated Application Programming Interface, which has functions and data 
structures for path, synthesis, and propagation processing.  Three architectures have been 
identified allowing auralization to be performed using the ANOPP2 API.  These are inline, 
restart, and plugin.  The choice of architecture is made by the user to best serve the analysis at 
hand.  Because the Auralization API is meant to be extensible, additional capabilities may be 
added by the user to fulfill specialized requirements, or to interface to other noise prediction 
programs such as the Advanced Acoustic Model.14  Finally, the Auralization library and its API 
will be more easily maintained than the present set of auralization codes since they will be 
contained with a single common code base. 
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