
Denver, Colorado
NOISE-CON 2013

2013 August 26-28

Auralization Architectures for NASA’s Next Generation
Aircraft Noise Prediction Program

Stephen A. Rizzi Aric R. Aumann
Leonard V. Lopes Analytical Services and Materials, Inc.
Casey L. Burley 2 N. Dryden St.
NASA Langley Research Center Hampton
2 N. Dryden St. VA 23681
Hampton
VA 23681
stephen.a.rizzi@nasa.gov

ABSTRACT
Aircraft community noise is a significant concern due to continued growth in air traffic,
increasingly stringent environmental goals, and operational limitations imposed by airport
authorities. The assessment of human response to noise from future aircraft can only be afforded
through laboratory testing using simulated flyover noise. Recent work by the authors
demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft
and a future hybrid wing body aircraft concept. This auralization used source noise predictions
from NASA’s Aircraft NOise Prediction Program (ANOPP) as input. The results from this
process demonstrated that auralization based upon system noise predictions is consistent with,
and complementary to, system noise predictions alone. To further develop and validate the
auralization process, improvements to the interfaces between the synthesis capability and the
system noise tools are required. This paper describes the key elements required for accurate
noise synthesis and introduces auralization architectures for use with the next-generation
ANOPP (ANOPP2). The architectures are built around a new auralization library and its
associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data
required for auralization. The architectures are designed to make the process of auralizing
flyover noise a common element of system noise prediction.

1. INTRODUCTION
Auralization of aircraft flyover noise is the process by which source noise predictions, often
performed in the frequency domain, are turned into audible sound at some distant observer
location(s). System noise prediction programs, such as ANOPP, are oriented toward generation
of noise metrics and generally lack a built-in auralization capability of their own. However, by
combining synthesis and simulation tools with source noise predictions from ANOPP,
auralizations of a reference state-of-the-art tube-and-wing aircraft and a conceptual hybrid wing
body (HWB) aircraft were recently made possible.1 As a validated tool, auralization can be used
to more effectively communicate the societal benefit of low noise concepts to stakeholders than
can tabulated metrics alone. Further, auralization provides a feedback mechanism to the
technologists developing noise reduction concepts. With this capability, it is now possible to
assess human response to flyover noise by systematically evaluating source noise reductions
within the context of a system level simulation.

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

The main elements of auralization include synthesis, propagation, and playback. One
possible implementation of these elements is shown in Figure 1.2 In the synthesis element,
source noise predictions, e.g., from ANOPP, are performed a priori, and serve with other data as
input. The synthesis block generates a continuously evolving source pressure time history at the
emission angles determined by the propagation path (straight or curved). In the propagation
element, the pressure time history output by the synthesis block is propagated to a ground
observer through application of a time-varying time delay, gain and filter. These operations may
be performed on the entire record as shown, or buffer by buffer as part of the playback element.
Simulation of a flyover in the context of an interactive virtual environment is made possible
through the use of the Community Noise Test Environment (CNoTE)3 and a specialized real-
time audio processor.4 In such an environment, listener tracking data is passed to the real-time
processor and multi-channel audio is passed back to the listener.

Figure 1: An auralization framework using system noise predictions as input.2

While the recent study1 demonstrated the feasibility and benefits of a full aircraft
auralization using such a framework, it also identified the need for a more seamless connection
between the prediction and auralization tools. In particular, one-way data exchange from the
ANOPP source noise prediction to the auralization processes was performed manually using
Network Common Data Form (NetCDF)5 files. This cumbersome data exchange, in combination
with bookkeeping necessary to track applied noise control treatments, manual preprocessing for
source noise de-dopplerization, and duplicative input to the source noise prediction and the
auralization elements, made the process both labor intensive and error-prone.
 In recognition of these limitations, it was decided to develop a more integrated approach to
allow auralization of flyover noise to be a common element of system noise prediction. A more
integrated approach would enable two-way data exchange, whereby the noise prediction process
would provide its output to the auralization process, and the auralization process would provide
its output back to the noise prediction program for additional processing or reporting. The new

Playback Propagation

Source:
Listener:

Source Directivity
Atmosphere

Path
 (Curved / Straight)

 Synthesis

Apply TGF
(Time, Gain, Filter)

Input

#n paths

GoldServer

#n signals

#n delayed
receiver

angles

Listener Tracking/
Audio

Source
trajectory

(Flight Sim.)

Synthesis

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

approach is facilitated by two developments: the next generation aircraft noise prediction
program (ANOPP2) software library, and a new auralization software library. This paper
describes both of these libraries and their associated APIs at a high level, and offers three
architectures for more closely integrating system noise prediction and auralization. In particular,
the approach taken allows the customization of user written code while retaining more easily
maintained and extensible software libraries that provide core functionality.

2. NEXT-GENERATION AIRCRAFT NOISE PREDICTION PROGRAM
NASA initiated the development of ANOPP6,7 approximately 30 years ago and has continued
that development to provide the U.S. Government with the ability to assess aircraft noise. The
prediction methodologies that have been implemented within ANOPP are predominantly based
on empirical, semi-empirical, and analytical models, validated with the best available
experimental data. Many of the prediction methods work well for conventional aircraft
configurations but lack capability and fidelity required for unconventional configurations. The
recent push for unconventional aircraft designs requires more robust, higher-fidelity, physics-
based noise prediction tools that can predict outside of the experience base for which ANOPP
methods were developed.

The next generation ANOPP, called ANOPP2, is designed to address the limitations of
ANOPP in order to accurately predict noise for current and future concepts. Figure 2a shows a
conventional tube-and-wing aircraft configuration with rear-mounted engines. Noise sources
from this configuration typically include the engines and airframe components such as the
landing gear, flaps, and slats. Prediction of noise from these sources in isolation is not the same
as when installed. For example, the noise from an installed main landing gear is directly related
to the local flow field, which is affected by the freestream flow velocity and the aircraft's high-
lift system settings.8 Similarly, engine noise can be reflected from the wing for under-the-wing
configurations, or partially shielded from the ground for over-the-wing configurations. These
effects, as well as other source noise phenomena, are more evident for unconventional
configurations as shown in Figure 2b. This HWB design offers significant noise reduction
potential due to shielding of the engine sources by the airframe. Using ANOPP to predict the
noise for this configuration requires novel application of the methods since the HWB
configuration is beyond the database for which the methods were built.

Figure 2: Conventional (a) and unconventional (b) aircraft designs.

An important advantage of ANOPP2 is that it provides a framework to integrate acoustic
modeling approaches of varied fidelity for source noise component prediction, installation
effects, and propagation to the far-field. This multi-fidelity framework is accomplished via a
plugin system, which allows ANOPP2 to include fast prediction methods for design optimization
while also including physics based prediction methods that contain the fidelity required for

(a) (b)

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

understanding and controlling noise. ANOPP2 hence offers the user several options for
predicting specific noise depending on requested fidelity and computational resources.
 The ANOPP2 framework is built around a software library, called the ANOPP2 library,
which consists of a number of sub-libraries for performing specific functions. The most relevant
sub-libraries, vis-à-vis auralization, are Flight Path, Atmosphere, Observer, and Acoustic
Analysis. Each sub-library within the ANOPP2 library contains functions for the generation,
retrieval and storage of the specific data needed by that library using documented APIs. For
example, the Observer library contains functionality needed to define, store, and retrieve the
locations of multiple observers so predictions can be propagated to observer locations. These
APIs are the interface to the ANOPP2 functionality that is used by a user-written FORTRAN or
C++ code. The use of ANOPP2 APIs in this manner allows the user to customize code for a
specific application as opposed to relying on a single general-purpose code.

3. AURALIZATION LIBRARY
Central to the auralization architectures to be discussed in Section 4 is a new Auralization
software library and its associated API. The Auralization library is an object oriented library
with functions and data structures for path, synthesis, and propagation processing. The interface
to the Auralization library is through an Auralization API, which provides functionality similar
to that represented by the blocks in Figure 1, but is seamlessly connected with external code and
data. The primary interface with an external noise prediction framework is ANOPP2 via the
ANOPP2 APIs, but additional interfaces may be added in the future.
 Functionality needed to provide data on the propagation path from the noise source to the
observer at each emission time increment is implemented using a Path object. This data includes
the emission angle used to synthesize the source noise, the ray path used to propagate that noise
to the observer, and the receiver angle used to optionally locate the source in a virtual three-
dimensional listening environment. Note that the data is determined for each ray path between
the source(s) and observer(s). The main elements of the Path object needed to implement this
functionality are notionally listed in Table 1. Here, public functions refer to those functions
accessible through the Auralization API, methods refer to the specific means of performing the
specified function, and data refers to those quantities operated on by the specified function.

Table 1: Main elements of Path object in the Auralization API.

Public Functions Methods Data

Fetch_Source_Position Flight Path API Location and
orientation Read external file

Fetch_Observer_Position Observer API Location Read external file

Calc_Path
Straight (built-in) Ray(s), emission

angle(s), receiver
angle(s)

Curved2,9
Curved GPU10

Calc_TGF Atmosphere API Time delay(s),
gain(s), filter(s) Ground plane (TBD)

 Likewise, a Synthesis object is used to provide the functionality to produce a buffer of
pressure time history data for each source-receiver path at the instantaneous emission angle
based upon provided source noise predictions, e.g., from ANOPP2. The path emission angle and
source directivity are fetched buffer by buffer to generate a smoothly evolving sound.3,11-13 The
main elements of the Synthesis object are notionally provided in Table 2. After synthesis, the

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

buffer is propagated to the receiver using the Propagation object, described below. Propagation
of the synthesized buffer may occur individually for each source-receiver path, or collectively for
collocated sources sharing a common path to the receiver. For the latter, a mixing function is
required.

Table 2: Main elements of Synthesis object in the Auralization API.

Public Functions Methods Data

Fetch_Source_Directivity

Observer API Hemisphere:
broadband,
narrowband, pure
tone, time domain

Read NetCDF file

Fetch_Emission_Angle From path object Emission angle Read external file

Synthesize_Buffer

Broadband3,11 ps(t) – One for each
source component
and path

Narrowband3,11
Pure tone12
Time domain13

Mix_Buffers Built-in ps(t) – One for each
path

Write_Buffers Observer API Write external file

 Lastly, the Propagation object accumulates the sample buffers output from the Synthesis
object, and applies a time-dependent fractional time delay (T), gain (G) and filter (F) for each
path. The time delay accounts for the propagation time, the gain accounts for spherical
spreading loss, and the filter accounts for atmospheric absorption. Note that all operations are
performed in the time domain. The end product of the TGF processing is a pseudo-recording of
the pressure time history at the observer location(s), which may be used to generate aircraft noise
metrics with the ANOPP2 Acoustic Analysis API. The pseudo-recording can be played back on
any suitable sound reproduction system or be incorporated in an interactive virtual three-
dimensional listening environment, through use of the CNoTE3 software and specialized real-
time hardware.4 The main elements of the propagation object are shown in Table 3.

Table 3: Main elements of Propagation object in the Auralization API.

Public Functions Methods Data

Fetch_Synth_Buffer From synth object ps(t) – At least one
for each path (buffer) Read external file

Fetch_TGF From path object Time delay(s),
gain(s), filter(s) Read external file

Apply_Delay Built-in
Apply_Gain Built-in
Apply_Filter Built-in

Write_Output_Buffer
Observer API

 Wave file – CNoTE
Sound card

 Finally, note that the all objects in the Auralization API are meant to be extensible to allow
user-defined methods to be specified in the future.

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

4. ARCHITECTURE OPTIONS
Three architecture options are next presented which allow auralization to be performed using the
ANOPP2 and Auralization APIs. These are the inline, restart, and plugin options.

A. Inline Option
The inline option performs both the ANOPP2 and auralization analyses within a single user-
written executable code. A block diagram of the inline option is shown in Figure 3. Here, the
user provides the definition of the aircraft and its mission to the ANOPP2 library functions and
internal prediction methods. The resulting noise predictions are then provided to the
Auralization API functions which subsequently generates pressure time histories that are then
stored on the ANOPP2 observer object. Through the use of ANOPP2 library functions, this
information is available to the user. The inline option may have its most utility in a design
environment where the user wishes to auralize different variants of the same underlying analyses,
e.g., a change in flight operations.

B. Restart Option
The restart option is similar to the inline option except that noise prediction output from
ANOPP2 is written to a restart file at the end of the ANOPP2 analysis. The data from that file is
then loaded via ANOPP2 library functions, at the start of the auralization, as shown in Figure 4.
This architecture is likely to be most useful when the user wishes to change the path or synthesis
parameters but otherwise retain the source definition. The auralization portion of the restart
option essentially reduces to a standalone auralization code when the source directivity data is
written to NetCDF formatted files instead of to an ANOPP2 restart file. This file format is
commonly used for storing source directivity data, whether predicted or measured. In this case,
the NetCDF library functions are used to load the data instead of the ANOPP2 library.

Figure 3: Diagram of the inline architecture. Figure 4: Diagram of the restart architecture.

C. Plugin Option
A third auralization architecture option uses the ANOPP2 plugin system. This system allows
users to incorporate external methods into the ANOPP2 architecture to supplement or even
replace ANOPP2 functionality without having direct access to ANOPP2 source code. This is
accomplished through a dynamic-library-based plugin system where each external method is

User

ANOPP2
Library

Internal
Prediction
Method

Auralization
Method

User

User

ANOPP2
Library

Internal
Prediction
Method

Restart
File

User

User

ANOPP2
Library

Auralization
Method

User

ANOPP2
Library

Auralization
Method

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

embedded in a dynamic library. ANOPP2 couples the dynamic libraries with the system noise
prediction architecture.
 Figure 5 shows the communication between a user, the ANOPP2 library, and two methods:
an internal prediction method and an external auralization method implemented using a dynamic-
library. The user provides information to ANOPP2, including the aircraft and its flight mission.
The ANOPP2 library then provides that information to both the internal method and to the
plugin; the plugin performs the auralization using the aforementioned Auralization API and
stores the resulting pressure time histories in an ANOPP2 observer object using the API for that
object. As with the inline method, ANOPP2 library functions make that information accessible
to the user. The user interfaces with ANOPP2 through a user written code regardless of whether
the method is contained within the ANOPP2 library or the dynamic library. It is important to
note that new methods, because they are embedded in dynamic libraries, may be added to the
system without having to rebuild ANOPP2 because the interfaces between the ANOPP2 library
and all plugins remain the same.

Figure 5: Communication between the user, the ANOPP2 library, and two methods: an internal prediction method
and an external auralization method via a plugin. Information flow is denoted by (A) for the internal method and
(B) for the external method.

5. CONCLUDING COMMENTS
In an effort to make the process of auralizing flyover noise a common element of system noise
prediction, an auralization capability is being developed for use with NASA’s next generation
aircraft noise prediction program ANOPP2. The capability is built upon a new Auralization
library and its associated Application Programming Interface, which has functions and data
structures for path, synthesis, and propagation processing. Three architectures have been
identified allowing auralization to be performed using the ANOPP2 API. These are inline,
restart, and plugin. The choice of architecture is made by the user to best serve the analysis at
hand. Because the Auralization API is meant to be extensible, additional capabilities may be
added by the user to fulfill specialized requirements, or to interface to other noise prediction
programs such as the Advanced Acoustic Model.14 Finally, the Auralization library and its API
will be more easily maintained than the present set of auralization codes since they will be
contained with a single common code base.

User

ANOPP2
Library

Internal
Prediction
Method

User

Dynamic
Library
(Plugin)

Auralization
Method

(A1)

(A2)

(B1)

(B4) (B3)

(B2)

Auralization Architectures for NASA’s ANOPP2 Rizzi, Lopes, Burley, & Aumann

Noise-Con 2013, Denver, Colorado, August 26-28, 2013

ACKNOWLEDGEMENTS
This work was performed with support from the Aeronautical Sciences Project of the NASA
Fundamental Aeronautics Program.

RERERENCES

1. Rizzi, S.A., Aumann, A.R., Lopes, L.V., and Burley, C.L., "Auralization of hybrid wing body aircraft flyover

noise from system noise predictions," 51st AIAA Aerospace Sciences Meeting, AIAA-2013-0542,
Grapevine, TX, 2013.

2. Arntzen, M., Rizzi, S.A., Visser, H.G., and Simons, D.G., "A framework for simulation of aircraft flyover
noise through a non-standard atmosphere," 18th AIAA/CEAS Aeroacoustics Conference, AIAA-2012-2079,
Colorado Springs, CO, 2012.

3. Rizzi, S.A., Sullivan, B.M., and Aumann, A.R., "Recent developments in aircraft flyover noise simulation at
NASA Langley Research Center," NATO Research and Technology Agency AVT-158 "Environmental
Noise Issues Associated with Gas Turbine Powered Military Vehicles" Specialists' Meeting, NATO RTA
Applied Vehicle Technology Panel, Paper 17, pp. 14, Montreal, Canada, 2008.

4. "GoldServe, AuSIM3D Gold Series Audio Localizing Server System, User's Guide and Reference, Rev. 1d,"
AuSIM Inc., Mountain View, CA, October 2001.

5. "NetCDF (Network Common Data Form)," http://www.unidata.ucar.edu/software/netcdf/, Unidata, 2013.
6. Raney, J.P., "Development of a New Computer System for Aircraft Noise Prediction," AIAA 2nd Aero-

Acoustics Conference, AIAA-75-536, pp. 5, Hampton, VA, March 24-26, 1975.
7. Zorumski, W.E., "Aircraft Noise Prediction Program Theoretical Manual, Parts 1 and 2," National

Aeronautics and Space Administration, Langley Research Center, Hampton, VA NASA/TM-83199-PT-1
and PT-2, February 1982.

8. Smith, M., Carrilho, J., Molin, N., Piet, J.-F., and Chow, L., "Modeling Landing Gear Noise With Installation
Effects," 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), AIAA-2007-
3472, pp. 16, Rome, Italy, May 21–23, 2007.

9. "Advanced Sound Propagation in the Atmosphere (ASOPRAT) User's Guide," V 3.0, The University of
Mississippi, 1991.

10. Shen, J., Arntzen, M., Varbanescu, A.L., Sips, H., and Simons, D.G., "A Framework for Accelerating
Imbalanced Applications on Heterogeneous Platforms," Proc. Computing Frontiers 2013, Ischia, Italy,
May 14-16, 2013.

11. Rizzi, S.A. and Sullivan, B.M., "Synthesis of virtual environments for aircraft community noise impact
studies," 11th AIAA/CEAS Aeroacoustics Conference, AIAA-2005-2983, Monterey, CA, May, 2005.

12. Allen, M.P., Rizzi, S.A., Burdisso, R., and Okcu, S., "Analysis and synthesis of tonal aircraft noise sources,"
18th AIAA/CEAS Aeroacoustics Conference, AIAA-2012-2078, Colorado Springs, CO, 2012.

13. Rizzi, S.A., Aumann, A.R., Allen, M.P., Burdisso, R., and Faller II, K.J., "Simulation of rotary and fixed wing
flyover noise for subjective assessments (Invited)," 161st Meeting of the Acoustical Society of America,
Seattle, WA, May 23-27, 2011.

14. Page, J.A., Wilmer, C., Schultz, T., Plotkin, K.J., and Czech, J., "Advanced Acoustic Model Technical
Reference and User Manual," Wyle Laboratories, Inc., SERDP Project WP-1304, May 2009.

