Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

Tsan-Hsing Shih
Ohio Aerospace Institute, Brook Park, Ohio

Nan-Suey Liu
Glenn Research Center, Cleveland, Ohio

September 2013
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question to help@sti.nasa.gov

- Fax your question to the NASA STI Information Desk at 443–757–5803

- Phone the NASA STI Information Desk at 443–757–5802

- Write to:
 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320
Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

Tsan-Hsing Shih
Ohio Aerospace Institute, Brook Park, Ohio

Nan-Suey Liu
Glenn Research Center, Cleveland, Ohio

Prepared for the 21st Computational Fluid Dynamics Conference sponsored by the American Institute of Aeronautics and Astronautics San Diego, California, June 24–27, 2013

National Aeronautics and Space Administration
Glenn Research Center Cleveland, Ohio 44135
Acknowledgments

This work is supported by the NASA Fundamental Aeronautics Program. The authors would like to thank Drs. Thomas Wey, Jeff Moder and M.S. Raju for their technical help on the Eulerian scalar PDF solver. The authors would also like to express our thanks to Professor John L. Lumley, Professor Zellman Warhaft and Professor J. Y. Chen for their critical comments, suggestions and encouragements to our previous related work on “Conservation PDF Equations of Turbulence” that leads to our current work. Finally, we would like to thank Professor Stephen B. Pope for his excellent text book “Turbulent Flows” that guides us in our PDF studies and this work.

This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

This report contains preliminary findings, subject to revision as analysis proceeds.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

This work was sponsored by the Fundamental Aeronautics Program at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

Available electronically at http://www.sti.nasa.gov

National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312
Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

Tsan-Hsing Shih
Ohio Aerospace Institute
Brook Park, Ohio 44142

Nan-Suey Liu
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

This paper presents the very large eddy simulations (VLES) of a Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar DWFDF method, in which DWFDF is defined as the density weighted time filtered fine grained probability density function. The flow field is calculated by using the time filtered compressible Navier-Stokes equations (TFNS) with nonlinear subscale turbulence models, and when the Eulerian scalar DWFDF method is invoked, the energy and species mass fractions are calculated by solving the equation of DWFDF. A nonlinear subscale model for closing the convection term of the Eulerian scalar DWFDF equation is used and will be briefly described in this paper. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar DWFDF method in both improving the simulation quality and maintaining economic computing cost are observed.

1.0 Introduction

Many engineering applications of large eddy simulations (LES) for internal combustor flows need to accurately account for the turbulence-chemistry interaction to facilitate a higher fidelity analysis of the design. In the conventional computational fluid dynamics (CFD) simulation methods the turbulence-chemistry interaction appears in an unclosed term that must be modeled, and its various empirical models have been proposed. The simplest one is the so called “laminar chemistry” which simply ignores the detailed effects of turbulence on the chemical reactions. However, in the DWFDF method, the chemical reaction source term in the DWFDF equation is in a closed form, therefore it can be directly calculated without any modeling, which is the unique feature of the probability density function (PDF) like approaches (Refs. 1, 2, and 3).

In this paper, we present the preliminary VLES results of a complex Jet-A (C12H23) spray reacting flow in a single element LDI injector. The simulation methods include both the conventional CFD method (TFNS) and an Eulerian scalar DWFDF method (Ref. 4), in which the velocity field is determined by the continuity and momentum equations of time filtered compressible Navier-Stokes equations. All simulations are done with the NCC code (Ref. 5) using the same numerical parameter setting and the same computational domain and grid resolution. In the pure TFNS simulation, all the subscale turbulent flux models, i.e., stresses, heat and species fluxes, are nonlinear models (Refs. 6 and 7). The basic equations and models are described in Section 2.0. In the Eulerian scalar DWFDF method, the convection term of scalar DWFDF contains a conditional 'mean' that needs to be modeled. Here a nonlinear model is introduced, which provides a diffusion process in the sample variable space (Refs. 3 and 8). A brief description about the scalar DWFDF equation and the model is given in Section 3.0.
At the present stage of simulations, we use a relatively simple spray injection model (i.e., prescribed droplet size and distribution) and a global five-species one-step kinetics for combustion chemistry (Ref. 9), so that we could concentrate more on the evaluation of different simulation approaches.

The main results of simulations, including both with and without invoking an Eulerian scalar DWFDF method, are described in Section 4.0. They are compared side by side to examine how much effects are produced by invoking the Eulerian scalar DWFDF method.

One of the main objectives of this study is to search for a consistent and stable VLES simulation tool for multiphase combustion flows. We require that this tool is of a rational “physics” based model and also able to produce the physically reasonable, numerically stable solution that can sustain over a very long (infinite) time period. And also, this tool should be relatively economic. It is encouraging to observe from the present simulations that the adopted Eulerian scalar DWFDF method does show the potential for improving the simulation quality and remaining an economic computing cost.

2.0 Basic Equations for TFNS Simulations

2.1 Time Filtered Turbulent Variables $\tilde{\phi}(x,t)$, $\tilde{\phi}^\circ(x,t)$

In the case of compressible turbulent reacting flow, we often deal with two types of time filtering: one with the density weighting, the other without the density weighting. The filtered turbulent variable without the density weighting is denoted by $\tilde{\phi}(x,t)$ and is defined as

$$\tilde{\phi}(x,t) = \int_{-\infty}^{\infty} \phi(x,t') G(t-t') dt'$$ \hspace{1cm} (1)

where ϕ is the unfiltered turbulent variable, e.g., velocity components U_i, density ρ, pressure P, species mass fraction Φ_i and internal energy $e = \sum_{m=1}^{N} \Phi_m e_m$. The integration is over the entire time domain $-\infty < t' < +\infty$. $G(t-t')$ is the time filter with a constant filter width Δ_T and satisfies the following condition and asymptotic property:

$$\int_{-\infty}^{\infty} G(t-t') dt' = 1$$ \hspace{1cm} (2)

$$\int_{-\infty}^{\infty} \phi(x,t') G(t-t') dt' = \phi(x,t), \hspace{0.5cm} \text{as} \hspace{0.5cm} \Delta_T \rightarrow 0$$ \hspace{1cm} (3)

The density-weighted filtered turbulent variable is denoted by $\tilde{\phi}^\circ(x,t)$ and is defined as

$$\tilde{\phi}^\circ(x,t) = \frac{\rho \tilde{\phi}(x,t)}{\rho}$$ \hspace{1cm} (4)

These filtered variables $\tilde{\phi}(x,t)$, $\tilde{\phi}^\circ(x,t)$ mainly represent the large scale turbulence, and they are still random but contain relatively low frequency part of the turbulent motion when comparing with the unfiltered turbulent variable $\phi(x,t)$.

2.2 Basic Equation

Applying the time filtering, (1) and (4), to the compressible Navier-Stokes equations, we obtain:

$$\frac{\partial \tilde{\phi}}{\partial t} + \frac{\partial \tilde{\rho} \tilde{U}_j}{\partial x_j} = 0$$ \hspace{1cm} (5)
\[
\frac{\partial \bar{p} \tilde{U}_i}{\partial t} + \frac{\partial \bar{p} U_j}{\partial x_j} = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_i} \left(2\rho v \left(S_{ij} - \frac{1}{3} \delta_{ij} S_{kk} \right) \right)
\]

(6)

\[
\frac{\partial \bar{p} \tilde{\epsilon}}{\partial t} + \frac{\partial \bar{p} U_j e}{\partial x_j} = \frac{\partial \bar{q}_i}{\partial x_i} + \frac{PS_{kk}}{\rho v} + 2\rho v \left(S_{ij} S_{ij} - \frac{1}{3} S_{kk} S_{kk} \right) + \bar{Q}
\]

(7)

\[
\frac{\partial \bar{p} \Phi_m}{\partial t} + \frac{\partial \bar{p} U_j \Phi_m}{\partial x_j} = \frac{\partial}{\partial x_i} \left(\rho \Gamma^{(m)} \frac{\partial \Phi_m}{\partial x_i} \right) + \bar{W}_m \quad m = 1, 2, \ldots, M
\]

(8)

where

\[
\bar{P} = \bar{p} R \sum_{m=1}^{M} \frac{\Phi_m T}{w_m} = \bar{p} R \sum_{m=1}^{M} \frac{\Phi_m e}{w_m}, \text{ or } \bar{P} = \bar{p} R \sum_{m=1}^{M} \frac{\Phi_m \Phi_{M+1}}{w_m}
\]

(9)

\[
\bar{q}_i = -\kappa \frac{\partial T}{\partial x_i} - \sum_{m=1}^{M} \rho \Gamma^{(m)} h_m \frac{\partial \Phi_m}{\partial x_i}
\]

(10)

In the above equations, \(\kappa, v, \nu\) and \(\Gamma^{(m)}\) are the molecular heat conductivity, kinematic viscosity, and the \(m\)-th species diffusivity. It is commonly assumed that \(\Gamma^{(m)}\) is same for all species \(\Phi_m\), and \(w_m\) is the molecular weight. The \(h_m, T\) are the enthalpy of species and the temperature, \(Q\) is the radiation rate, \(W_m = \rho S_m\) is the chemical production rate of the \(m\)-th species, \(\Phi_{M+1}\) represents the internal energy \(e\), \(R\) is the universal gas constant. Note that all the fuel-spray related terms are not shown in above equations for the simplicity, please see Reference 10 for the details. These equations are a general; however, unlike the constant density flows, further approximations for the terms on their right hand side are required in order to complete the density weighted time filtering process. One of such approximations leads to

\[
2\rho v \left(S_{ij} - \frac{1}{3} \delta_{ij} S_{kk} \right) \approx \mu \left(\frac{\partial \tilde{U}_i}{\partial x_j} + \frac{\partial \tilde{U}_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial \tilde{U}_k}{\partial x_k} \right)
\]

(11)

In which, we have basically neglected the variations of \(\mu, p\) during the filtering process, the value of \(\mu\) will be considered as a known function of \(\bar{P}, \bar{T}, \ldots\). Other types of approximations are also possible, for example,

\[
2\rho v \left(S_{ij} - \frac{1}{3} \delta_{ij} S_{kk} \right) \approx v \left(\frac{\partial \bar{p} \tilde{U}_i}{\partial x_j} + \frac{\partial \bar{p} \tilde{U}_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial \bar{p} \tilde{U}_k}{\partial x_k} \right)
\]

(12)

Similarly,

\[
\bar{q}_i = -\kappa \frac{\partial T}{\partial x_i} - \sum_{m=1}^{M} \rho \Gamma^{(m)} h_m \frac{\partial \Phi_m}{\partial x_i} \approx \kappa \frac{\partial \bar{P} \tilde{T}}{\partial x_i} - \sum_{m=1}^{M} \Gamma^{(m)} \bar{p} h_m \frac{\partial \Phi_m}{\partial x_i}
\]

(13)

\[
\rho \Gamma^{(m)} \frac{\partial \Phi_m}{\partial x_i} \approx \Gamma^{(m)} \frac{\partial \bar{P} \tilde{\Phi}_m}{\partial x_i}
\]

(14)

Where \(v, \kappa, c\) and \(\Gamma^{(m)}\) are considered as the known functions of \(\bar{P}, \bar{T}, \ldots\). Furthermore, we introduce the dissipation rate of the subscale turbulent kinetic energy,
\[
2\rho \nu \left(S_{ij} S_{ij} - \frac{1}{3} S_{ii} S_{kk} \right) = \bar{\rho} \bar{\varepsilon}
\]

(15)

Therefore, the time filtered compressible Navier-Stokes equations can be written as

\[
\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \bar{\rho} \bar{U}_j}{\partial x_j} = 0
\]

(16)

\[
\frac{\partial \bar{\rho} \bar{U}_i}{\partial t} + \frac{\partial \bar{\rho} \bar{U}_j \bar{U}_j}{\partial x_j} = -\frac{\partial \bar{\rho}}{\partial x_i} \left[\nu \left(\frac{\partial \bar{\rho} \bar{U}_i}{\partial x_j} + \frac{\partial \bar{\rho} \bar{U}_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial \bar{\rho} \bar{U}_k}{\partial x_k} \right) \right]
\]

(17)

\[
\frac{\partial \bar{\rho} \bar{\varepsilon}}{\partial t} + \frac{\partial \bar{\rho} \bar{U}_i \bar{e}_i}{\partial x_i} = -\frac{\partial \bar{q}_i}{\partial x_i} + \bar{P} S_{kk} + \bar{\rho} \bar{\varepsilon} + \bar{Q}
\]

(18)

\[
\frac{\partial \bar{\rho} \bar{\Phi}_m}{\partial t} + \frac{\partial \bar{\rho} \bar{U}_i \bar{\Phi}_m}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\Gamma^{(m)} \frac{\partial \bar{\rho} \bar{\Phi}_m}{\partial x_i} \right) + \bar{\rho} \bar{S}_m \quad m = 1, 2, \ldots, M
\]

(19)

\[
\bar{P} = \bar{\rho} R \sum_{m=1}^{M} \frac{\Phi_{mT}}{w_m} = \frac{\bar{\rho} R}{c_v} \sum_{m=1}^{M} \frac{\Phi_{me}}{w_m}, \quad \text{or} \quad \bar{P} = \frac{\bar{\rho} R}{c_v} \sum_{m=1}^{M} \frac{\Phi_{mT}}{w_m}
\]

(20)

\[
\bar{q}_i = -\frac{\kappa}{\bar{\rho}} \frac{\partial \bar{\rho} \bar{T}}{\partial x_i} - \sum_{m=1}^{M} \bar{\rho} \Gamma^{(m)} h_m \frac{\partial \Phi_m}{\partial x_i}
\]

(21)

These equations are considered quite general, because i) they are exact if the flow becomes a constant density incompressible flow, ii) all the approximations made in Equations (17), (18) and (19) are related only to the molecular diffusion terms which are less important and even become negligibly small, because they are of O(1/Re) comparing with the convection terms on the left hand side for turbulent flows at high Reynolds numbers (see Refs. 11 and 1). In addition, Equation (16) to (19) are often used together with the further approximations for (20) and (21):

\[
\bar{P} = \rho R \sum_{m=1}^{M} \frac{\Phi_{mT}}{w_m} = \left(\frac{\rho RT}{M} \right) \approx \frac{\bar{\rho} R \bar{T}}{M}, \quad 1 = \sum_{m=1}^{M} \frac{\Phi_m}{w_m}, \quad 1 = \sum_{m=1}^{M} \frac{\Phi_m}{w_m}
\]

(22)

\[
\bar{q}_i = -\kappa \frac{\bar{\rho} \bar{T}}{\bar{\rho}} \frac{\partial \Phi_m}{\partial x_i}
\]

(23)

The momentum flux \(\bar{\rho} \bar{U}_i \bar{U}_j \), the energy flux \(\bar{\rho} \bar{U}_i \bar{e} \) and the species flux \(\bar{\rho} \bar{U}_i \bar{\Phi}_m \) are considered to be critically important and should be carefully modeled. Many models in the literature, from the simplest Smagorinsky model (Ref. 12) to the complex two-equation nonlinear models (Refs. 13 and 14), have been suggested in terms of subscale turbulent stresses and subscale turbulent scalar fluxes:

\[
\tau_{ij} = \bar{\rho} (\bar{U}_i \bar{U}_j - \bar{U}_i \bar{U}_j) \quad \text{and} \quad \Theta_i = \bar{\rho} (\bar{U}_i \Theta - \bar{U}_i \bar{\Theta}) \quad \text{where} \quad \Theta \text{ represents the scalar quantities: } e \text{ and } \Phi_m.
\]

\section*{2.3 Nonlinear Models for Subscale Turbulent Fluxes}

A general constitutive relationship between subscale turbulent stresses \(\tau_{ij} \) and the strain rate of filtered turbulent flow \(\bar{S}_{ij} \), \(\bar{\Omega}_{ij} \) suggests (Ref. 15)
\[
\tau_{ij} - \frac{1}{3} \delta_{ij} \tau_{kk} = -2 f C_\mu \frac{k^2}{\varepsilon} \left(\tilde{S}_{ij} - \delta_{ij} \tilde{S}_{kk} / 3 \right) - A_3 f \frac{k^3}{\varepsilon^2} \left(\tilde{S}_{ik} \tilde{\Omega}_{kj} - \tilde{\Omega}_{ik} \tilde{S}_{kj} \right) + 2 A_5 f \frac{k^4}{\varepsilon^3} \left[\Omega_{ik} \tilde{S}_{kj}^2 - \tilde{S}_{ij}^2 \tilde{\Omega}_{ik} + \tilde{\Omega}_{ik} \tilde{S}_{kn} \tilde{\Omega}_{mj} - \tilde{\Omega}_{kl} \tilde{S}_{im} \tilde{\Omega}_{mk} \delta_{ij} + H_4 (\tilde{S}_{ij} - \delta_{ij} \tilde{S}_{kk} / 3) \right],
\]

where, \(\tilde{S}_{ij} = (\tilde{U}_{i,j} + \tilde{U}_{j,i}) / 2 \), \(\tilde{\Omega}_{ij} = (\tilde{U}_{i,j} - \tilde{U}_{j,i}) / 2 \), \(H_4 = (\tilde{S}_{kk} \tilde{S}_{mm} - \tilde{S}_{kl} \tilde{S}_{lk}) / 2 \). The model coefficients \(C_\mu \), \(A_3 \) and \(A_5 \) are constrained by the realizability condition and the rapid distortion theory limit. They are formulated as (see Ref. 14):

\[
C_\mu = \frac{1}{4.0 + A_3 k^2 U^*} \quad A_3 = \frac{\sqrt{1.0 - A_4^2 C_\mu^2 \left(\frac{k}{\varepsilon} S^* \right)^2}}{0.5 + 1.5 k^2 / \varepsilon^2 \Omega^* S^*} \quad A_5 = \frac{1.6 C_\mu \frac{k^2}{\varepsilon}}{\nu^* / \varepsilon} \Omega^* S^* + \frac{\Omega^*}{4},
\]

in which,

\[
A_4 = \sqrt{6} \cos \varphi, \quad \varphi = \frac{1}{3} \arccos \left(\sqrt{6} W^* \right), \quad W^* = \frac{S_{ij}^* S_{jk}^*}{(S^*)^2},
\]

\[
U^* = \sqrt{(S^*)^2 + (\Omega^*)^2}, \quad S^* = \sqrt{S_{ij}^* S_{ij}^*}, \quad \Omega^* = \sqrt{\tilde{S}_{ij} \tilde{\Omega}_{ij}}, \quad S_{ij}^* = \tilde{S}_{ij} - \frac{1}{3} \delta_{ij} \tilde{S}_{kk}
\]

The coefficient \(f \) is a function of the resolution control parameter (RCP) that is defined as a ratio of the time filter width \(\Delta T \) to a global integral time scale of the flow \(T \): RCP = \(\Delta T / T \) and

\[
f \left(\frac{\Delta T}{T} \right) \approx 2 \left(\frac{\Delta T}{T} \right)^2 - \left(\frac{\Delta T}{T} \right)^4
\]

As it is discussed in Reference 7 that RCP represents the percentage of unresolved turbulent kinetic energy. Therefore, the value of RCP and the coefficient \(f \) are always between 0 and 1. Similarly, the nonlinear model for subscale scalar fluxes is formulated as (Ref. 16)

\[
\Theta_i = -9 T \frac{\partial \tilde{\Theta}}{\partial x_i} - 9 T \frac{k}{\varepsilon} \left(c_1 \tilde{S}_{ij} + c_2 \tilde{\Omega}_{ij} \right) \frac{\partial \tilde{\Theta}}{\partial x_j}
\]

Where \(\Theta_k \) denotes the subscale turbulent diffusivity for the corresponding scalar quantity \(\Theta \). It is often approximated by \(\Theta_k = v_T / \nu^0 \), and \(\nu^0 \) represents the turbulent Prandtl number or Schmidt number depending on whether the scalar quantity \(\Theta \) is the energy \(\tilde{e} \) or the species \(\tilde{\Phi}_m \). The subscale turbulent eddy viscosity is defined as \(v_T = f \cdot C_\mu \cdot k^2/\varepsilon \). The coefficients, \(c_1 \) and \(c_2 \), are yet to be calibrated. In the current simulations they are set to be \(c_1 = c_2 = -0.24 \).

The subscale turbulent kinetic energy and its dissipation rate \(k, \varepsilon \) will be determined from the following model equations:

\[
\frac{\partial}{\partial t} \tilde{k} + \frac{\partial}{\partial x_i} \tilde{u}_i \tilde{k} = \frac{\partial}{\partial x_i} \left[\left(\mu + \mu_T \right) \frac{\partial}{\partial x_i} \tilde{k} \right] - \tau_{ij} \tilde{S}_{ij} - \tilde{\rho} \varepsilon
\]
\[
\frac{\partial}{\partial t} \bar{p} \varepsilon + \frac{\partial}{\partial x_i} \bar{p} \bar{u}_i \varepsilon = \frac{\partial}{\partial x_i} \left[\left(\mu + \mu_T \right) \frac{\partial \varepsilon}{\partial x_i} \right] - C_{\varepsilon 1} \varepsilon^2 \frac{\partial^2 \delta_{ij}}{\partial x_j} \varepsilon - C_{\varepsilon 2} \frac{\bar{p} \varepsilon^2}{k}
\]

(31)

where \(C_{\varepsilon 1} \) and \(C_{\varepsilon 2} \) are the model coefficients. We have adopted the commonly used values of \(C_{\varepsilon 1} = 1.45 \) and \(C_{\varepsilon 2} = 1.92 \) in the present work while keeping in mind that here \(\mu_T \) is a subscale turbulent eddy viscosity.

3.0 Basic Equation for Scalar DWFDF

In this Section, we will use the fine grained probability density function (FG-PDF) to define the density weighted time filtered fine grained probability density function (DWFDF), then explore the relationship between scalar DWFDF and time filtered turbulent scalar variables. This will provide the basis for establishing the transport equation for the scalar DWFDF.

3.1 Definition of Scalar DWFDF

3.1.1 Fine Grained Probability Density Function (FG-PDF) for Scalars \(f'_\Phi (\psi ; x,t) \)

According to Pope’s definition (Ref. 1), the joint FG-PDF for turbulent velocity and scalars (i.e., compositions or species mass fractions, internal energy) can be written as

\[
f'(V, \psi ; x,t) = \delta(U(x,t) - V) \delta(\Phi(x,t) - \psi) = \prod_{i=1}^{3} \delta(U_i(x,t) - V_i) \prod_{m=1}^{M} \delta(\Phi_m(x,t) - \psi_m) \]

(32)

Its marginal FG-PDF for scalars is

\[
f'_\Phi (\psi ; x,t) = \delta(\Phi(x,t) - \psi) \equiv \prod_{m=1}^{M} \delta(\Phi_m(x,t) - \psi_m) \]

(33)

where \(\delta \) denotes the delta function, \(U(x,t) \) is the turbulent (random) velocity vector \((U_1, U_2, U_3) \), \(\Phi(x,t) \) is the turbulent (random) scalar array \((\Phi_1, \Phi_2, \ldots, \Phi_M, \Phi_{M+1}) \), for example, \(M \) species mass fractions and one internal energy \(\Phi_{M+1} = e \); the \(x,t \) denote the physical space variable \((x_1, x_2, x_3) \) and the time \(t \), \(V \equiv (V_1, V_2, V_3) \) and \(\psi \equiv (\psi_1, \psi_2, \ldots, \psi_M, \psi_{M+1}) \) are the sample space variables for \(U(x,t) \) and \(\Phi(x,t) \), respectively.

3.1.2 Scalar DWFDF \(F_\Phi(\psi; x,t) \)

We define the following density weighted time filtered fine-grained probability density function for scalars as

\[
F_\Phi(\psi; x,t) = \int_{-\infty}^{t} \rho(x,t') f'_\Phi(\psi; x,t') G(t-t') \, dt'
\]

\[
= \int_{-\infty}^{\infty} \rho(x,t') \delta(\Phi(x,t') - \psi) G(t-t') \, dt'
\]

(34)

Obviously, the scalar DWFDF, \(F_\Phi(\psi; x,t) \), is still a random quantity. And it satisfies the following “normalization” property:
\[
\int_{-\infty}^{\infty} F_{\Phi}(\psi; x, t) d\psi = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, t') \delta(\Phi - \psi) G(t - t') dt' d\psi = \int_{-\infty}^{\infty} \rho(x, t') G(t - t') dt' = \bar{\rho}
\]

(35)

Note that here \(\int_{-\infty}^{\infty} \) means that the integration is over the entire domain of the sample space \(\psi \).

3.1.3 Relationship Between Scalar DWFDF and Large Scale Turbulent Scalar Variables

With the definition of scalar DWFDF described in Equation (34), we can exactly deduce the density weighted time filtered scalar turbulent variables that are defined in Equations (1) and (4). For example,

\[
\int_{-\infty}^{\infty} \psi F_{\Phi}(\psi; x, t) d\psi = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, t') \delta(\Phi(x, t') - \psi) G(t - t') dt' d\psi
\]

\[
= \int_{-\infty}^{\infty} \Phi(x, t') \rho(x, t') G(t - t') dt' = \bar{\rho} \Phi = \bar{\rho}(x, t) \Phi(x, t)
\]

Equation (36) indicates that the left hand side is an operation \(\langle \Phi \rangle \) that defines the density weighed time filtered turbulent variable \(\bar{\rho} \Phi \):

\[
\langle \Phi \rangle = \int_{-\infty}^{\infty} \psi F_{\Phi}(\psi; x, t) d\psi = \bar{\rho}(x, t) \Phi(x, t)
\]

(37)

For a function \(W(\Phi(x, t)) \), it is easy to verify that

\[
\langle W(\Phi) \rangle = \int_{-\infty}^{\infty} W(\psi) F_{\Phi}(\psi; x, t) d\psi = \bar{\rho}(x, t) \bar{W}(\Phi(x, t))
\]

(38)

Furthermore, we may consider the derivatives \(\nabla \Phi \) as a new random quantity and legitimately write

\[
\langle \nabla \Phi \rangle = \bar{\rho} \nabla \Phi
\]

(39)

However, because of the variable density, the “operation” \(\langle \rangle \) does not have the differential commute property, i.e.,

\[
\langle \nabla \Phi \rangle \neq \nabla \langle \Phi \rangle
\]

(40)

because \(\bar{\rho} \nabla \Phi \neq \nabla (\bar{\rho} \Phi) \).

We can also write the density weighted time filtered \(\langle U_j \Phi_j \rangle \) for the joint velocity and scalar variables as

\[
\langle U_j \Phi_j \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_j \psi F_{U_j, \Phi_j}(V, \psi; x, t) dV d\psi = \bar{\rho}(x, t) U_j \Phi_j(x, t)
\]

(41)

where, \(F_{U_j, \Phi_j}(V, \psi; x, t) \) is the joint DWFDF defined as

\[
F_{U_j, \Phi_j}(V, \psi; x, t) = \int_{-\infty}^{\infty} \rho(x, t') \delta(U(x, t') - V) \delta(\Phi(x, t') - \psi) G(t - t') dt'
\]

(42)

which also satisfies the “normalization” property:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{U_j, \Phi_j}(V, \psi; x, t) dV d\psi = \int_{-\infty}^{\infty} \rho(x, t') G(t - t') dt' = \bar{\rho}
\]

(43)
3.1.4 Joint DWFDF, $F_{U\Phi}(V; \psi; x, t)$ and Its Conditional DWFDF $F_{U\Phi}(V|\psi; x, t)$

From Equation (42), we may follow Reference 1 to define a “conditional” DWFDF on the condition $\Phi = \psi$ as

$$F_{U|\Phi}(V|\psi; x, t) = \frac{F_{U,\Phi}(V, \psi; x, t)}{F_{\psi}(\psi; x, t)}$$

(44)

and the “conditional filtering” (or conditional ‘mean’) as

$$\langle U(x, t)|\psi \rangle = \int_{-\infty}^{\infty} V F_{U|\Phi}(V|\psi; x, t) dV = \frac{1}{F_{\psi}(\psi; x, t)} \int_{-\infty}^{\infty} V F_{U,\Phi}(V, \psi; x, t) dV$$

$$= \frac{1}{F_{\psi}} \int_{-\infty}^{\infty} V \int_{-\infty}^{\infty} \rho(x, t') \delta(U(x, t') - V) \delta(\Phi(x, t') - \psi) G(t - t') dt' dV$$

(45)

Then we have

$$\int_{-\infty}^{\infty} \rho(x, t') U(x, t') f_{\Phi}(\psi; x, t') G(t - t') dt' = \int_{-\infty}^{\infty} V F_{U,\Phi}(V, \psi; x, t) dV = F_{\Phi} \cdot \langle U(x, t)|\psi \rangle$$

(46)

And the “complete” filtering should be

$$\int_{-\infty}^{\infty} F_{\Phi} \cdot \langle U(x, t)|\psi \rangle d\psi = \int_{-\infty}^{\infty} V F_{U,\Phi}(V, \psi; x, t) dV d\psi$$

$$= \int_{-\infty}^{\infty} \rho(x, t') U(x, t') G(t - t') dt'$$

(47)

Equation (46) can be extended to any other turbulent quantities, for example, $\nabla \Phi, S_i(\Phi)$:

$$\int_{-\infty}^{\infty} \rho(x, t') \nabla \Phi(x, t') f_{\Phi}(\psi; x, t') G(t - t') dt' = F_{\Phi} \cdot \langle \nabla \Phi |\psi \rangle$$

$$\int_{-\infty}^{\infty} \rho(x, t') S_i(\Phi(x, t')) f_{\Phi}(\psi; x, t') G(t - t') dt' = F_{\Phi} \cdot \langle S_i(\Phi) |\psi \rangle = F_{\Phi} \cdot S_i(\psi)$$

(48)

Where $\nabla \Phi$ is viewed as a new random variable in addition to Φ.

3.2 Transport Equation for Scalar DWFDF $F_{\Phi}(\psi; x, t)$

We can now derive the transport equation for scalar DWFDF from Equations (18), (19) as follows: first, we write the terms on the left hand side of Equation (19) as

$$\frac{\partial \Phi}{\partial t} \cdot \frac{\bar{D}_{\Phi m}}{\partial t} = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} \psi \cdot F_{\Phi} d\psi = \int_{-\infty}^{\infty} \frac{\partial F_{\Phi}}{\partial t} d\psi$$

(49)
\[
\frac{\partial \bar{U}_i \Phi_m}{\partial x_i} = \frac{\partial}{\partial x_i} \int_{-\infty}^{\infty} V_i \psi_m F_{U_i \Phi} \, dV \, d\psi = \left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V_i \frac{\partial}{\partial x_i} F_{U_i \Phi} \, dV \, d\psi \right\} \\
\text{or} \\
\int_{-\infty}^{\infty} \psi_m \left(\frac{\partial}{\partial x_i} \left(F_{\Phi} \cdot \langle U_i | \psi \rangle \right) \right) d\psi
\]

Then, the terms on the right hand side of (19) can be written as

\[
\frac{\partial}{\partial x_i} \left(\Gamma^{(m)} \frac{\partial \bar{\Phi}_m}{\partial x_i} \right) = \frac{\partial}{\partial x_i} \left(\Gamma^{(m)} \frac{\partial}{\partial x_i} \int_{-\infty}^{\infty} \psi_m F_{\Phi} \, d\psi \right) = \int_{-\infty}^{\infty} \psi_m \frac{\partial}{\partial x_i} \left(\Gamma^{(m)} \frac{\partial F_{\Phi}}{\partial x_i} \right) d\psi
\]

\[
\bar{\rho} \bar{S}_m = \int_{-\infty}^{\infty} S_m(\psi) F_{\Phi} \, d\psi = -\int_{-\infty}^{\infty} \psi_m \frac{\partial (S_k F_{\Phi})}{\partial \psi_k} d\psi
\]

Where in Equation (52) we have applied the integration by parts and the following zero integration:

\[
\int_{-\infty}^{\infty} \frac{\partial}{\partial \psi} \left[A(\psi) \cdot F_{\Phi} \right] d\psi = 0, \quad \text{if a finite value of filtering } \langle A \rangle \text{ exists.}
\]

Collecting all the integrand terms, and let the sum be zero (we refer this as the conservation condition, which is in general a sufficient but may not be necessary condition, Ref. 17), we obtain

\[
\frac{\partial F_{\Phi}}{\partial t} + \frac{\partial \left(F_{\Phi} \cdot \langle U_i | \psi \rangle \right)}{\partial x_i} = \left\{ \frac{\partial}{\partial x_i} \left(\Gamma^{(m)} \frac{\partial F_{\Phi}}{\partial x_i} \right) - \frac{\partial}{\partial \psi_k} \left[F_{\Phi} \cdot S_k (\psi) \right] \right\}, \quad k = 1, 2, \ldots, M + 1
\]

This equation also includes the equation of internal energy when \(S_{M+1}(\psi) = 0 \) and other source terms in Equation (18) are neglected. Unlike the case of the joint DWFDF \(F_{U_i \Phi} \), for the marginal \(F_{\Phi} \), the convection term is not closed because of the conditional filtering \(\langle U_i | \psi \rangle \). Then, this critically important term, corresponding to \(\bar{\rho} \bar{U}_i \bar{\Phi}_m \) in Equation (19), must be carefully modeled while the less important molecular diffusion term naturally remains in the closed form. In addition, we noticed that the equally important chemistry source term \(\bar{\rho} \bar{S}_{S_m}(\bar{\Phi}) \) in Equation (19), which involves complex processes of turbulence-chemistry interaction, is closed in the scalar DWFDF equation, i.e., no need of modeling. This direct calculation of turbulence-chemistry interaction is one of the unique features of the PDF methodology.

3.3 Nonlinear Model for Subscale Scalar Fluxes

The convection term in Equation (54) contains the term \(F_{\Phi} \cdot \langle U_i | \psi \rangle \), which must be modeled. We may start from a nonlinear model, Equation (29), for the term \(\bar{\rho} \bar{U}_i \bar{\Phi}_m \):

\[
\bar{\rho} \bar{U}_i \bar{\Phi}_m = \bar{\rho} \bar{U}_i \bar{\Phi}_m - \Gamma^{(m)} \frac{\partial \bar{\Phi}_m}{\partial x_i} - \Gamma^{(m)} \frac{k}{\varepsilon} \left(c_1 \bar{S}_j + c_2 \bar{\Omega}_j \right) \frac{\partial \bar{\Phi}_m}{\partial x_j}
\]

This will lead to the following model by directly applying Equations (37) and (46):
\[F_{\Phi} \cdot \langle U_i | \psi \rangle = \bar{U}_i F_{\Phi} - \left[\Gamma_T^{(m)} \frac{\partial F_{\Phi}}{\partial x_i} \right] + \frac{\partial}{\partial \psi_k} \left[\Gamma_T^{(m)} \frac{k}{\varepsilon} (c_1 \tilde{S}_{ij} + c_2 \Omega_{ij}) \psi_k \frac{\partial F_{\Phi}}{\partial x_j} \right] \]

(56)

3.4 Summary

With the model given by Equation (56), the scalar DWFDF equation for \(F_{\Phi}(\psi, x, t) \) can be written as

\[
\frac{\partial F_{\Phi}}{\partial t} + \frac{\partial (\bar{U}_i F_{\Phi})}{\partial x_i} = \left[\frac{\partial}{\partial x_i} \left(\Gamma_T^{(m)} + \Gamma_T^{(m)} \frac{\partial F_{\Phi}}{\partial x_i} \right) \right] - \frac{\partial}{\partial \psi_k} \left(F_{\Phi} \cdot S_k (\psi) \right) - \frac{\partial}{\partial \psi_k} \left(\psi_k \frac{\partial}{\partial x_i} \left(\Gamma_T^{(m)} \frac{k}{\varepsilon} (c_1 \tilde{S}_{ij} + c_2 \Omega_{ij}) \frac{\partial F_{\Phi}}{\partial x_j} \right) \right), \quad k = 1, 2, \ldots, M + 1
\]

(57)

It can be verified that the scalar DWFDF Equation (57) can exactly deduce the time filtered equation (19). However, the model described by this equation is by no means unique. In addition, the variables \((\bar{U}_i, \tilde{S}_{ij} \) and \(\Omega_{ij} \)) are considered to be available during the solution procedure of the scalar DWFDF equation. Furthermore, in order to apply the available stochastic solution procedure built in the NCC code, we further simplify the model term in Equation (57) as follows:

\[
- \frac{\partial}{\partial \psi_k} \left[\psi_k \frac{\partial}{\partial x_i} \left(\Gamma_T^{(m)} \frac{k}{\varepsilon} (c_1 \tilde{S}_{ij} + c_2 \Omega_{ij}) \frac{\partial F_{\Phi}}{\partial x_j} \right) \right] = \frac{\partial}{\partial \psi_k} \left(\psi_k \frac{1}{\tau} F_{\Phi} \right)
\]

(58)

where

\[
\frac{1}{\tau} = \frac{1}{F_{\Phi}} \frac{\partial}{\partial x_i} \left(\Gamma_T^{(m)} \frac{k}{\varepsilon} (c_1 \tilde{S}_{ij} + c_2 \Omega_{ij}) \frac{\partial F_{\Phi}}{\partial x_j} \right) \approx \sqrt{\tilde{S}_{ij} \tilde{S}_{ij} + \Omega_{ij} \Omega_{ij}}
\]

(59)

Equation (59) is a crude approximation based on the dimensional argument for a time scale, which is responsible for the diffusion of scalar DWFDF in the sample variable space \(\psi_k \). We chose this time scale to be related to the rate of strain and rotation instead of its complex formulation. In order to prevent this time scale from being non-physically small during the simulation, we require that

\[
\tau \geq \sqrt{(\nu + \nu_T) / \varepsilon}
\]

(60)

because the right hand side of (60) represents the smallest time scale of the simulated flow field.

4.0 Numerical Simulations of Single Element LDI Injector

The lean direct injection (LDI) injector is a liquid fuel injector developed to reduce aircraft emissions. Stable combustion is essentially completed within a short distance through rapid fuel and air mixing. This design allows for many small fuel injectors integrated into modules facilitating different fuel staging strategies, such as the one shown in Figure 1. So far, experimental observations have not fully clarified the dynamics of the mixing and combustion processes occurring in these injectors, and numerical studies need to be conducted to achieve a better understanding of the underlying physics of the LDI injector.

Figure 2 shows the air swirler and the convergent-divergent nozzle of the single element injector. Figure 3 depicts the single element LDI combustor geometry and its computational domain. Five probes are dispatched along the centerline (Figure 4) to monitor the evolution of turbulent variables during the simulations. The numerical grid is formed using hexahedral elements and the total number of elements is about 862,000, which is a relatively coarse grid used in a previous RANS simulation (Ref.18).
In this study, the liquid fuel is Jet-A, and C12H23 is adopted as its surrogate, the fuel is injected at the throat of the nozzle, mixing with the swirling air that comes from the air swirlers which consists of six helical, axial vanes with downstream vane angles of 60°. A prescribed droplet-size distribution spray model is used.

In this section, we present the VLES results of TFNS approach with and without invoking Eulerian scalar DWFDF method. We started both simulations with a same initial flow field that was created by earlier simulations from URANS to TFNS at the end of time step of 93,000. In the pure TFNS simulations, the chemistry-turbulence interaction is modeled with a “laminar chemistry” formulation, in which the generation rate of compositions is determined by the “known’ filtered turbulent variables. This simulation has been carried out up to 185,000 time steps with a time step \(dt = 1 \times 10^{-6} \). In the TFNS simulations with invoking an Eulerian scalar DWFDF method, the compositions and internal energy will be determined by the scalar DWFDF equation while the flow field is still determined by the continuity and momentum equations of the filtered Navier-Stokes equations. Since the production rate of composition (chemistry-turbulence interaction) is in a closed form in the scalar DWFDF equation, it can be directly calculated without modeling. This simulation is carried out up to 198,000 time steps with the same size of time step. The stochastic numerical procedures for solving Eulerian scalar DWFDF equation and fuel spray equation are described in Reference 4 and adopted in the present simulations.

Figure 5 shows the general pictures of simulated spray reacting flow in a single element LDI injector by both methods. Most of the results will be presented side by side for comparisons. The main results are presented in terms of: 1) the convergence history of time accurate simulations, which reflects numerical
Figure 5.—Global pictures of spray reacting flow simulated with and without scalar DWFDF method.

Figure 6.—Convergence histories of time accurate simulations.

performance, 2) the variations of velocity components and temperature versus the time step at five probes along the centerline (see Figure 4), which indicate the development of the simulated reacting flow, 3) the centerline distributions of mean (i.e., time averaged) temperature and mean axial velocity, 4) the mean temperature and mean velocity profiles along Z (crossing) axis at several downstream locations, 5) the center recirculation zone visualized by an iso-surface of zero mean axial velocity and the contour plots of various mean and instantaneous turbulent quantities in the X-Z center plane. These profiles, iso-surface and contour plots will provide the information about flow and flame structures of the simulated spray reacting flow. Some available experimental data (Ref. 19) are also plotted for comparisons with the numerical simulations.

4.1 Convergence History

Figure 6 shows the time history of the number of subiterations incurred in time accurate simulations with and without invoking the Eulerian scalar DWFDF method over the last 15,000 time steps. It is interesting to see that the simulation with the Eulerian scalar DWFDF method converges faster than the simulation without invoking scalar DWFDF method. For each time step, the former converges after about 20 subiterations, but the later often needs much more subiterations to converge. Comparing the wall time of computing, the simulation with DWFDF is about 34 hr with 256 processors for the 15,000 time steps; however, the simulation without DWFDF needs over 40 hr to finish 15,000 time steps of calculations.
4.2 Time Variation of Instantaneous Variables at Centerline Probes

Time history of temperature and velocity components at five downstream locations are recorded during the simulations (see Figure 7), it can be seen that at the first three locations the flow appears to be strongly fluctuated and fully developed turbulence (see both the instantaneous temperature T and axial velocity u).

Figure 7.—Time history of temperature T and velocity components u, v and w at 5 probes.
Figure 7.—Concluded.
4.3 Centerline Distributions of Mean Axial Velocity and Temperature

Centerline distributions of mean axial velocity and temperature are shown in Figure 8 and Figure 9. The effect of scalar DWFDF equation on the simulation is noticeable and positive.

Figure 8.—Centerline distribution of mean axial velocity U.

Figure 9.—Centerline distribution of mean temperature T.
4.4 Mean Temperature and Velocity Profiles Along Z Axis at Downstream Locations

Mean temperature profiles at downstream locations at $x = 5, 10, 20, 50, 110$ and 200 mm are compared and shown in Figure 10. These comparisons have revealed a positive effect of the DWFDF equation on the prediction of temperature. However, the effect of DWFDF equation on the velocity field, shown in Figure 11 and Figure 12, is mixed.

Figure 10.—Comparison of temperature distribution along Z axis at downstream locations.
Figure 10.—Concluded.
Figure 11.—Comparison of velocity component V along Z axis at downstream locations.
Figure 11.—Continued.
Figure 11.—Continued.
Figure 11.—Concluded.

Figure 12.—Comparison of velocity component U along Z axis at downstream locations.
Figure 12.—Continued.
Figure 12.—Continued.
4.5 Flow Structure and Contour Plots of Variables in the Center X-Z Plane

To reveal the simulated mean flow and flame structures, we have plotted the center recirculation zone using the iso-surface of zero axial velocity (see Figure 13), the contour plots of velocity components, vorticity magnitude, temperature, turbulent kinetic energy and species mass fractions $C_{12}\text{H}_{23}$, O_2, CO_2, which are shown in Figure 14, Figure 15, and Figure 16. From these figures we observe that the structures of all scalar fields simulated by TFNS with invoking DWFDF equation are quite different from the ones without invoking DWFDF equation. Also, we notice that the level of subscale turbulent kinetic energy is significantly reduced in the TFNS simulation with invoking DWFDF equation (a phenomenon often found in the simulations with the conventional or standard FDF method); however, it does not severely affect the global structure of turbulent reacting flow in our simulations due to the adoption of the new DWFDF equation, in which the time scale or frequency for the DWFDF diffusion in the sample space is not directly related to the subscale turbulent kinetic energy and its dissipation rate, instead, it is determined by the strain and rotation rate of the large turbulent flow, see Equation (59). The contours of all instantaneous variables in X-Z plane are plotted in Figure 17.
Figure 13.—Comparison of center recirculation zone.

Figure 14.—Comparison of mean velocities U, V, W and vorticity contours in center plane.
Figure 14.—Concluded

Figure 15.—Comparison of mean temperature and k contours in center plane.
Figure 16.—Comparison of C_{12}H_{23}, O_{2} and CO_{2} contours in center plane.
Figure 17.—Contours of instantaneous variables in X-Z center plane.
Figure 17.—Continued.
5.0 Conclusion

The very large eddy simulations of Jet-A spray reacting flow in a single element LDI injector have been carried out both with and without invoking an Eulerian scalar DWFDF method. The NCC code is used under the same numerical setting, same computational geometry and grid resolution. In addition, the same spray model and the same chemistry kinetics are used for all the simulations. In this way, we hope to isolate and study only the effect of Eulerian scalar DWFDF method on the simulations, paying a particular attention to the simulation quality and numerical performance.

From the present simulations we have observed that there are noticeable improvements on the temperature prediction in the region of strong turbulence by using the Eulerian scalar DWFDF method. The distribution or structure of other scalar quantities appears to have a significant difference between the simulations with and without the scalar DWFDF method, and it seems to have more reasonable results by invoking the scalar DWFDF method. However, we need more reliable experimental data to evaluate and draw the conclusion. For the flow field, the effect of the scalar DWFDF method is mixed. Better predictions were observed in the axial velocity component.

As to the numerical performance, the observation is that the simulations with invoking an Eulerian scalar DWFDF method appear to have a faster convergence and more stable than the simulations without invoking Eulerian scalar DWFDF method.

References

4. TITLE AND SUBTITLE

Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

6. AUTHOR(S)

Shih, Tsan-Hsing; Liu, Nan-Suey

14. ABSTRACT

This paper presents the very large eddy simulations (VLES) of a Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar DWFDF method, in which DWFDF is defined as the density weighted time filtered fine grained probability density function. The flow field is calculated by using the time filtered compressible Navier-Stokes equations (TFNS) with nonlinear subscale turbulence models, and when the Eulerian scalar DWFDF method is invoked, the energy and species mass fractions are calculated by solving the equation of DWFDF. A nonlinear subscale model for closing the convection term of the Eulerian scalar DWFDF equation is used and will be briefly described in this paper. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar DWFDF method in both improving the simulation quality and maintaining economic computing cost are observed.

15. SUBJECT TERMS

Combustion CFD