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Additional Developments in Atmosphere Revitalization 
Modeling and Simulation 

Robert F. Coker, James C. Knox, Ramona Cummings, Thomas Brooks,  and Richard G. Schunk 
NASA Marshall Space Flight Center, Huntsville, AL, 35812, USA 

NASA's Advanced Exploration Systems (AES) program is developing prototype systems, 
demonstrating key capabilities, and validating operational concepts for future human 
missions beyond Earth orbit.  These forays beyond the confines of earth’s gravity will place 
unprecedented demands on launch systems.  They must launch the supplies needed to 
sustain a crew over longer periods for exploration missions beyond earth’s moon. Thus all 
spacecraft systems, including those for the separation of metabolic carbon dioxide and water 
from a crewed vehicle, must be minimized with respect to mass, power, and volume. 
Emphasis is also placed on system robustness both to minimize replacement parts and 
ensure crew safety when a quick return to earth is not possible.  Current efforts are focused 
on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by 
evaluating structured sorbents, seeking more robust pelletized sorbents, and examining 
alternate bed configurations to improve system efficiency and reliability.  These 
development efforts combine testing of sub-scale systems and multi-physics computer 
simulations to evaluate candidate approaches, select the best performing options, and optim-
ize the configuration of the selected approach.  This paper describes the continuing develop-
ment of atmosphere revitalization models and simulations in support of the Atmosphere Re-
vitalization Recovery and Environmental Monitoring (ARREM) project within the AES 
program. 

Nomenclature 
qsi = saturation capacity in multi-species Toth equation, mol kg-1  
m0i = multi-species Toth equation parameter 
mTi = multi-species Toth equation parameter, K 
Bi = constant in multi-species Toth equation, K 
b0i = multi-speciesToth equation parameter, kPa-1 
q = pellet loading, mol m-3 
qሶ  = time rate of change of pellet loading, mol m-3 s-1 
q* = equilibrium pellet loading, mol m-3 
c = concentration of water vapor, mol m-3 
cሶ  = time rate of change of water vapor concentration, mol m-3 s-1 
Di = axial dispersion coefficient, m2 s-1 
 ሬሬԦ = fluid (air) velocityܝ
ρ = density, kg m-3 
Cp = heat capacity, J kg-1 K-1 
T = temperature, K 
Tሶ  = time rate of change of temperature, K s-1 
Tbndry = temperature of adjacent boundary material, K 
km = mass transfer coefficient, s-1 
 ሬሬԦ = unit vector normal to component surfaceܖ
k = thermal conductivity, W m-1 K-1 
h = heat transfer coefficient, W m-2 K-1 
Q = Heating source due to sorption, W m-3 
∂Hsorbent = differential heat of adsorption, kJ mol-1 
εsorbent = Porosity in the sorbent beds 
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ε0 = centerline porosity in the sorbent beds 
Cε = 1/ε0 – 1 
Nε = 4 
Rwall = distance to nearest wall, m 
Dpellets = mean diameter of sorbent pellets, mm 
κsorbent = Permeability through the sorbent beds, m2 

εplates = Porosity in the heat exchanger plates 
κplates = Permeability through the heat exchanger plates, m2 

N = number of holes in each heat exchanger plate 
AHXhole = area of one hole in a heat exchanger plate, m2 
Aplate = cross-sectional area of an entire heat exchanger plate, m2 
rHXhole = radius of one hole in a heat exchanger plate, m 
ARREM = Atmosphere Revitalization Recovery and Environmental Monitoring 
AES = Advanced Exploration Systems  
SG = Silica Gel 
HX = Heat Exchanger 
VSA = vacuum swing adsorption 
HC = half-cycle (time to purge or hydrate one bed), s 
IBD = isothermal bulk desiccant 
slpm = standard (1 atm, 0 ºC) liters per minute 

I. Introduction 
redictive simulation tools are being developed to reduce the hardware testing requirements of the Atmosphere 
Revitalization Recovery and Environmental Monitoring (ARREM) project.  Although sub-scale testing is 

required to establish the predictive capability of the simulation, the much greater cost of extensive full-scale testing 
can be limited to that required for the confirmation of analytical design optimization studies. Non-recurring costs of 
predictive simulation development are non-trivial.  However, once predicative capability is established, geometric 
reconfiguration of a model is usually straightforward.  A predictive simulation capability provides numerous 
additional benefits.  Understanding of complex processes is greatly increased since process conditions (temperature, 
pressure, concentrations, etc.) may be examined anywhere in the adsorption column.  Weaknesses in a prototype 
design can be readily identified and improvements tested via simulation.  Finally, the predictive simulation provides 
a powerful tool for virtual troubleshooting of deployed flight hardware. 

II. Process Design Approach 
Adsorption in packed fixed beds of pelletized sorbents is presently the primary means of gas separation for 

atmosphere revitalization systems.  However, structured sorbents are emerging as a new approach to sorbent 
systems.  Structured sorbents are produced as monoliths, with an open structure for airflow, or by fixing sorbents on 
an inert substrate such as paper-like honeycomb structures or expanded metal sheets.  A well designed structured 
sorbent is not as subject to attrition (e.g., due to fines or dust generation) as a packed bed.  Also, by using a 
thermally conductive substrate, the heat of adsorption can be transferred out of the bed, possibly to the cold 
desorbing bed if geometry permits.  However, structured sorbents must be evaluated to determine their applicability 
to commercial processes and space flight.  It must be shown that, in addition to providing a more robust solution, the 
resource requirements (i.e., weight, power, volume, etc.) are similar to, if not less than, the state-of-the-art packed 
bed configuration. 

An accurate assessment of structured sorbents and comparison with packed bed designs is desirable; 
experimental results so far show unanticipated variation in packed bed breakthrough for identical beds held under 
the same conditions.  It is suspected that small packing irregularities can propagate downstream in large beds and 
impact process efficiency.  This indicates a margin of error inherent in packed bed fabrication and thus a likely 
superiority of structured sorbents for process efficiency and control. This paper discusses modeling results using 
COMSOL’s Multiphysics code for a fixed bed design and a membrane based design, as well as a proof of concept 
(POC) design based on vacuum swing adsorption (VSA).    

For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, 
requiring the simulation of the heat balance equations through both the beds and the housing, as well as the 
equations for sorption processes and fluid flow. For columns with small tube diameter to pellet diameter ratios, as 
encountered in internally heated columns, flow channeling along the column wall can have a strong influence on 
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curves are for when that bed is experiencing purge flow, while the upper curves are when the bed is experiencing 
adsorbing flow.  Note that time progresses to the upper left and each curve is at the end of a HC.  Thus, although the 
overall bed efficiency, at ~85%, is not changing much with time, internally the bed is adsorbing and desorbing more 
and more water as time goes on; the last curve is 
after 33 HCs and a quasi-steady state has clearly 
not yet been achieved, even though the pellet 
loading has converged to with 20% of the 
equilibrium loading.  Figure 5 shows the predicted 
time-integrated sorption efficiency, 1-Pvapout/Pvapin, 
compared to the measured results.  COMSOL is 
slightly more efficient, probably due to the excess 
sorbent present in the model due to not including 
the spring plates.  Also, the experiment likely has 
small inefficiencies, due to imperfect insulation 
and air leaks, that are not included in the model.  
For example, the 15 minute HC experiment did 
not include some bolts that tighten the cells 
together and thus had a higher pressure loss across 
the IBD as well as a relatively low efficiency.  
However, so far the model fails to quantitatively 
reproduce the temperature and dew point curves, 
although it gets the trends and shapes correct; a 
number of possible causes are currently being 
explored.  Even given these differences, the 
predictive capability of COMSOL for the IBD 
efficiency seems adequate to aid in future design. 

IV. Microlith 

D. Description 
Precision Combustion, Inc. 

(PCI), via NASA-sponsored 
projects, has been developing 
regenerable Microlith®- based 
adsorber modules for the 
separation of air constituents such 
as humidity, CO2, and trace 
contaminants to function in either 
closed or open loop operations.  
The Microlith® adsorbers use a 
patented technology developed by 
PCI to coat expanded metal with 
zeolite sorbent crystals to produce 
a structured sorbent. An 
advantage of this configuration is 
that it can be thermally 
regenerated by passing a current 
through the electrically-resistive 
expanded metal.  Previous 
developmental work has focused 
on testing individual Microlith®-based adsorber modules for residual humidity removal, trace contaminant removal, 
and CO2 removal. The most recent developmental work evaluated the integrated operation of the residual H2O 
removal and CO2 removal adsorber modules. The adsorber design concept is shown in Fig. 22 (Perry et. al. 2009).  
The operation of the concept is sketched out in Fig. 23.   

Figure 5. Efficiency predicted by COMSOL (blue) and from experiments
(red), along with a power law fit that goes as HC(-1/20). 

Figure 4. Concentration evolution for the IBD COMSOL
reduced model. 
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F. Results and Discussion 
A value of 5.79e-10 m2 was used for the 

permeability.  The breakthrough of water 
concentration is illustrated in Fig. 25 at the 
supply inlet and at the nine axial locations 
between the red marks in Fig. 24.  Although 
there is an axial gradient, as shown in Fig. 26 
(where flow is from the top), with 
breakthrough occurring sooner closer to the 
inlet, the integrated results show that bulk 
breakthrough takes over 20 hrs at this flow 
rate and inlet dew point.  One of the poorly 
known inputs to the model, however, is the 
thermal coupling between the jelly-roll 
material and the housing.  In a companion 
model, the heat transfer coefficient was 
assumed to be a moderate 100 W m-2 K-1.  
As shown in Fig. 27, although the 
breakthrough timing can be moderately well 
matched, the resulting 
simulated peak temperatures 
vary from that in the 
experiment.  Note the thermo-
couples are several mm from 
locations assumed in the 
simulation and should be 
adjusted in future modeling.  

This model will provide a 
means for optimization of 
cyclic parameters for this 
particular hardware, and allow 
for design optimization studies 
for new Microlith designs. 

V. VSA POC 

G. Description 
A Proof of Concept  (POC) 

vacuum swing adsorption (VSA) 
canister has been designed, with the 
goal to maintain a respirable 
atmosphere through both carbon 
dioxide removal and humidity 
control for a portable life support 
system within a single sorbent bed.  
The objective of the VSA POC 
simulation effort is to develop and 
correlate a baseline mathematical 
model of such a a canister loaded 
with Zeolite 13X.  Previous vacuum 
desorption efforts have used 
analogies to atmospheric pressure 
models with varying degrees of 
success.  Since the VSA POC will 
be used to maintain both humidity 
and carbon dioxide levels within 

Figure 26. Concentration (left) and loading (right) of the COMSOL 
model of the  microlith-based radial flow adsorber design after 18000 s, 
with flow from the top. 

 
Figure 25. Axially averaged model Concentration results at 
the three red radial locations drawn in Fig. 24. 

Figure 27. Axially integrated temperatures from the model (solid 
curves) and measured values from the experiment (dashed curves). 
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A simulation was conducted for a VSA 
POC bed measuring 1 inch in length filled 
with 2.67 mm diameter Zeolite 13X pellets. 
The bed was initially saturated with N2 at a 
total pressure of 101325 Pa (1 atmosphere) 
and temperature of 293.15K. The initial 
mass fractions of the constituents (H2O, 
CO2, O2 and N2) in the gas at the inlet were 
WH2O= 0.011 (corresponding to a 60°F dew 
point), WCO2=0.006, WO2=0.283 and 
WN2=0.7.    

The adsorption/desorption half cycle 
was 50 seconds for the 1 inch bed. During 
adsorption, the momentum solver is 
disabled since both pressure and the 
superficial velocity are defined. The inlet 
superficial velocity and throughout the bed 

during adsorption was 0.1 m/s. 
  Fig. 35 is from an adsorption half 

cycle. Bed loadings for H2O and CO2 at 20 
seconds and 50 second are shown. The H2O 
and CO2 concentrations increase as time 
progresses and it also shows the competitive 
effects that H2O has with CO2 in a Zeolite 
13X.  

At the end of the adsorption half cycle 
the momentum solver is enabled to begin 
the desorption half cycle.  To simulate the 
evacuation of gas from atmospheric 
conditions to a partial vacuum, the pressure 
is ramped down from 101325 Pa to 10.13 Pa 
over one second at the open end of the 
domain while the other is end is closed off.  

The blow-down simulation of the VSA 
POC bed model is provided in Fig. 36 which shows the pressure distribution throughout the bed for the specified 
times ranging from 10 to 20 seconds after vacuum desorption is initiated. 

I. Results and Discussion 
 This specific model only went through one adsorption/desorption full cycle. Fig. 37 shows the end of the 

adsorption and desorption cycle. It shows H2O and CO2 concentrations after adsorption but no change in H2O and 
very little CO2 removal after desorption. For this specific case, the pressure in the bed would have to drop 
significantly lower in order to see H2O removed since bed loading is a function of pressure and temperature based 
on the Competitive Langmuir Isotherm described above.  

 
Figure 35. Bed loading vs distance (1”) at 50 s during the 
adsorption half cycle. 

Figure 36. Pressure Blow-down. 
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The adsorption/desorption process 
will be cycled using MATLAB scripting 
which enables the user to control the 
number of cycles and cycle length. With 
the increase in cycles, the bed should 
reach saturation of H2O throughout the 
bed.  The H2O concentration wave would 
eventually push and remove the CO2 
from the bed due to its competitive 
effects.  At higher H2O concentrations, 
desorption would be more significant 
since H2O loading drops at 10 Pa after a 
desorption half cycle. 

VI. Conclusion 
The need for atmosphere 

revitalization systems that are optimized 
with respect to performance, resources, 
and is necessitated by the aggressive new 
missions planned by NASA.  With 
NASA budgets remaining flat, innovative approaches to new system development are required.  This paper presents 
such an approach for the ARREM project, where testing is supplemented with modeling and simulation to reduce 
costs and optimize hardware designs.  In this paper, we have discussed the optimization of heat transfer for 
development of a Isothermal Bulk Desiccant (IBD) and the application of the fixed bed model in 3D to simulate a 
cyclic IBD sub-scale test. Studies of the Microlith® Adsorber flow pattern have been used to troubleshoot 
performance problems and to obtain a successful solution to the flow.  Finally, the groundwork has been laid for a 
VSA POC test by developing the appropriate, simplified vacuum system equations and verifying them against a de-
tailed 3D multiphysics simulation. 

The efforts represented here will be continued to support the design of Atmosphere Revitalization systems under 
the ARREM project. These modeling and simulation efforts are expected to provide design guidance, system opti-
mization, and troubleshooting capabilities for atmosphere revitalization systems being considered for use in future 
exploration vehiclesconclusion section is not required, though it is preferred. 
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Figure 37. H2O and CO2 bed loading vs distance (1”) after 1 
desorb and adsorb cycle, each 50s long. 


