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 State-of-the-art life support carbon dioxide (CO2) reduction technology, based 

on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from 

metabolic CO2. This recovery is constrained by the limited availability of reactant 

hydrogen. Post-processing of the methane byproduct from the Sabatier reactor 

results in hydrogen recycle and a subsequent increase in oxygen recovery. For this 

purpose, a Methane Post-Processor Assembly containing three sub-systems has been 

developed and tested. The assembly includes a Methane Purification Assembly 

(MePA) to remove residual CO2 and water vapor from the Sabatier product stream, 

a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen 

and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the 

hydrogen product for recycle. The results of partially integrated testing of these 

sub-systems are reported. 
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CM = Crew Member 

CRA = Carbon Dioxide Reduction Assembly 

ISS = International Space Station 

MePA = Methane Purification Assembly 

MSFC = Marshall Space Flight Center 

OGA = Oxygen Generation Assembly 

PPA = Plasma Pyrolysis Assembly 

SDU = Sabatier Development Unit 

SmLPM = Standard millLiters Per Minute 

W = Watts 

I. Introduction 

UMAN life support systems on the International Space Station (ISS) include a number of technologies to 

continuously provide breathable air to the crew. The Trace Contaminant Control System removes harmful 

volatile organic compounds and other trace contaminants from the circulating air. The Carbon Dioxide Removal 

Assembly (CDRA) removes metabolic carbon dioxide (CO2) and returns humidified air to the cabin. The Oxygen 

Generation Assembly (OGA) electrolyzes water to produce oxygen for the crew and hydrogen (H2) as a byproduct. 

The Carbon Dioxide Reduction Assembly (CRA), the most recently added technology, compresses and stores CO2 

from the CDRA until hydrogen is available from the OGA. The CO2 and H2 are then fed to a Sabatier reactor for 

reduction to form water and methane as shown in Equation 1.  

 

CO2 + 4H2    CH4 + 2H2O                                                       (1) 

 

The water product is condensed out of the product stream and recycled back to the Water Purification Assembly for 

crew use or to produce additional oxygen in the OGA. The methane is vented overboard as a waste product. For 

future long-duration missions or missions beyond low Earth orbit, the methane may prove to be valuable for a 

number of reasons. First, if purified from unreacted CO2 and residual water vapor, methane may be stockpiled for 

use as a fuel or converted to other desirable chemicals. Second, the H2 may be recovered from the methane and 

recycled back to the CRA to produce additional water product, thereby increasing total oxygen recovery.  

 Three technologies are presented here to address the potential need for purified methane and/or hydrogen 

recovery from Sabatier-produced methane. Additionally, architectural options are discussed in an effort to address 

increasing system complexity.  

II. Background 

 To address the potential needs for a purified methane product as well as H2 recovery from methane, an initial 

architecture was proposed. As shown in Figure 1, the integrated system includes a Methane Purification Assembly 

(MePA), a Plasma Pyrolysis Assembly (PPA), and an Acetylene Separation Assembly (ASepA).   

 Currently, the CRA on ISS is operated at a 

H2:CO2 ratio of 3.5. This results in almost complete 

conversion of the H2, but only partial conversion of 

the CO2. For this reason, the methane product 

leaving the CRA contains significant quantities of 

unreacted CO2. Additionally, the condensing heat 

exchanger is air cooled and a downstream drum 

separator operates on the mid-temperature coolant 

loop. Thus, the methane product stream is also 

saturated with water vapor at approximately 15°C. 

The MePA is included in the initial architecture for 

the purpose of removing residual CO2 and any 

uncondensed water vapor from the methane 

product stream. It should be noted that the MePA 

must be sized to accommodate all water vapor 

leaving the CRA. This will allow purified methane 

to be either stockpiled or fed to a down-stream 

post-processor. 

H 

 
Figure 1. Methane post-processing initial architecture concept. 
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 The Plasma Pyrolysis Assembly (PPA) is one potential methane post-processor for Sabatier-produced methane. 

Significant testing on a sub-scale system has been reported previously.
1-3

 Briefly, this technology converts methane 

to H2 and acetylene (C2H2) as shown in Equation 2. 

  

2CH4    3H2 + C2H2                                                                        (2) 

 

The system operates by generating a plasma using microwave power. Hydrogen is fed to the reactor in addition to 

CH4 to promote conversion to acetylene rather than other products, particularly carbon. The gas effluent from the 

PPA generally consists of H2, unreacted CH4, and acetylene with trace quantities of ethylene and ethane. The first 

generation system was designed to process methane at a flow rate equivalent to ~1/2 crew member (CM). In 2012, a 

second generation system was designed and delivered to the Marshall Space Flight Center (MSFC) to process 

methane at a 1-CM rate.
4
 Additionally, this system was designed for improved energy efficiency, better acetylene 

selectivity, greater methane conversion, and reduced carbon production.  

 Following recovery in the PPA, H2 must be recycled back to both the CRA and the PPA for additional oxygen 

recovery. However, for this purpose, the H2 product must be purified from gases that could adversely affect CRA 

performance during H2 recycle. Previous testing of a CRA ground development unit, called the Sabatier 

Development Unit (SDU) showed no affect of CH4 on Sabatier performance when introduced at up to 15 mol% of 

the H2 feed stream.
4
 Acetylene and the other hydrocarbons leaving the PPA have the potential to further decompose 

when recycled to the CRA. This would cause fouling of the Sabatier catalyst thereby dramatically reducing the 

anticipated lifetime of the CRA reactor. Traditional H2 separation techniques such as membranes, metal hydrides, 

and cryogenic separations were dismissed early on. Membranes require very high pressure differentials for adequate 

separation. Acetylene will spontaneously decompose at pressures of just 2 atm, making membranes a poor option. 

Metal hydrides were eliminated as a potential option due to poisoning concerns. Finally, cryogenic separations were 

not considered due to the unavailability of cryogenic liquids for habitat use. This resulted in selection of a sorbent-

based system that, rather than removing hydrogen, was intended to remove acetylene and other hydrocarbons. The 

added benefit of this approach is that unreacted methane is recycled back to the system for further reaction. Initial 

testing on two candidate sorbents for an ASepA system was reported in 2011.
5
   

III. Hardware Description and Methods 

Prior to this effort, no hardware existed for the MePA or ASepA beds. Below, the design considerations for the 

MePA and ASepA beds are discussed. Additionally, testing methods for the MePA bed are described. The PPA 

hardware used in this effort has been described previously and will not be discussed here. 
4
 However, testing 

methods for the 2
nd

 Generation PPA are described below. 

A. MePA Design and Testing 

Design considerations for the 1
st
 Generation MePA bed and testing methods are each discussed below. 

 

1. MePA Design Requirements 

Because of the operational parameters of the upstream CRA, the purpose of the MePA is to remove unreacted 

CO2 and residual water vapor at a 4-crew member (CM) production rate. Additional requirements leveed on the 

MePA system design included: 

1) Minimum cycle time of 4 hours 

2) Power requirement of less than 200W 

3) Desorption via vacuum and heat 

4) Fabrication possible from inexpensive, easily obtainable, off-the-shelf components 

 

The cycle time requirement was based upon experience with sorbent-based systems requiring regeneration when 

exposed to water. Because zeolites have a very high affinity for water molecules, considerable energy is required for 

desorption. Zeolites, particularly ones using clay binders, have very low thermal conductivity. Thus, based on the 

need to keep power to the MePA as low as possible, a fairly long cycle time is needed for the bed to reach 

desorption temperature and return to ambient before the subsequent adsorption cycle. The power requirement was 

based on an architecture-wide view of power usage. The PPA system uses considerable power, thus low power 

requirements on associated separation systems is desirable. The third requirement above was based on experience 

with the CDRA beds. CDRA uses heat and vacuum to remove CO2 and heat and a dry air sweep stream to remove 

water. For the MePA, a sweep gas was considered impractical. There are two (mostly) dry streams that could 
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possibly be used for the purpose: the H2 recycle stream leaving the ASepA or the CO2 stream feeding the Sabatier. 

Because the bed will require heating regardless of the presence of a sweep stream, H2 was determined to be 

undesirable due to safety concerns. Previous testing of a Sabatier reactor with water in the inlet stream showed 

decreased performance. If the CRA CO2 feed stream was used to sweep the MePA, the performance of the CRA 

would likely be negatively affected. Thus, the CO2 stream was eliminated from consideration. The only remaining 

option for MePA desorption is vaccum. This vaccum could be provided via space vacuum, but this would lead to the 

loss of O2 in the forms of water and CO2.  Alternatively, a vacuum pump could be used and the desorbed water and 

CO2 recycled back to the AR system. This would require considerably more mass, power, and infrastructure. A trade 

would be necessary to determine which option would best fit specific mission needs. The intention of the effort was 

to initially build a single-bed system with the assumption that a more refined dual-bed system would ultimately be 

designed and fabricated for fully integrated testing. The dual-bed system would have similar requirements, barring 

number 4 above.  

 

2. 1
st
 Generation MePA Testing 

Once designed and fabricated, the MePA bed was integrated with a Sabatier Development Unit (SDU) located at 

MSFC. The SDU was operated at a 4-CM feed rate of CO2 and a H2:CO2 ratio of 3.5. The SDU effluent was 

evaluated for dew point and CO2 composition. Once steady state was reached, the SDU effluent was fed to the 

MePA to observe breakthrough curves. Following 90% breakthrough, the SDU was stopped and desorption of the 

MePA was conducted under vacuum (1 torr absolute) at a target temperature of 150°C at the bed wall. The test was 

repeated a total of three times. 

B. 2
nd

 Generation PPA Stand-Alone Testing 

Following arrival of the 2
nd

 Generation PPA at MSFC, stand-alone testing was desirable to evaluate the baseline 

performance and to ensure no damage had been done during transportation from UMPQUA Research Co. This 

testing was completed in three phases.   

Phase I testing was conducted to map the performance over a range of pressures and microwave power. The 

system was operated at a methane feed rate of 350 SmLPM (or 1-CM) and 1400 SmLPM of hydrogen. Testing was 

conducted with pressures of 40 torr, 50 torr, and 60 torr and microwave power between 250 watts (W) and 600W in 

50W increments. 

Phase II testing was conducted to determine the effect of varied CH4 mol% versus H2 mol% in the feed gas. 

Testing was conducted at 50 torr and 450W microwave power. Methane feed composition points included 15, 17, 

20, 23 and 25 mol% CH4. Note that methane feed was maintained at 350 SmLPM and the H2 modified to meet the 

required feed percentages.  

Phase III testing was conducted to determine the carbon-accumulation effect of long-duration operation. The 

system was operated at 50 torr, 350 SmLPM CH4, 1400 SmLPM H2, and 450W microwave power. 

C. ASepA Design 

The purpose of the ASepA bed is to separate H2 and CH4 from hydrocarbons produced in the PPA including 

C2H2, ethylene, ethane, and others. Performance of the 1
st
 Generation PPA system showed an outlet stream 

containing ~1 mol% CH4, ~8 mol% C2H2, and <0.5 mol% of all other hydrocarbons. The ASepA requirements are 

shown below. Stringent safety controls were imposed on the ASepA due to acetylene handling. A thorough safety 

review and material analysis were completed prior to fabrication of the bed.  

1) Minimum cycle time of 4 hours 

2) Power requirement of less than 200W 

3) Desorption via vacuum and heat 

4) Fabrication possible from inexpensive, easily obtainable, off-the-shelf components (excluding safety-

critical components) 

5) Containing a sorbent capable of adsorbing >95% of hydrocarbons with the exception of methane 

6) Operation at sub-ambient pressure 
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IV. Results and Discussion 

Both a MePA and an ASepA bed were designed, fabricated and assembled in 2011. The MePA bed was tested 

while integrated with the SDU. Stand-alone testing of the 2
nd

 Generation PPA was completed. These results are 

discussed below. Additionally, a discussion of the initial architecture and possible deviations from this architecture 

to minimize system complexity are discussed. 

A. MePA Design and Testing Results 

A MePA system was designed to meet the previously discussed 

requirements.  Once fabricated, the bed was integrated at the exit of 

the SDU and tested. A discussion of the design and the results of 

initial testing are provided below. 

 

1. MePA Design 

The MePA subsystem was designed as a zeolite-based adsorbent 

bed. The bed was fabricated with metal fins along the length of the 

bed. An air cooling loop was designed to flow air across the fins to 

provide cooling during adsorption and following desorption. While 

the heat of adsorption without this cooling was not measured, 

isotherm data indicates that lower temperatures allow for greater 

capacity for CO2 and H2O. The cooling was implemented to take 

advantage of this fact. Four core heaters were designed to provide 

heat for desorption.  

The sorbent bed was fabricated from 6061 aluminum. The base 

parts, including end caps, a tube body, and perforated 

plates, were fabricated in-house and are shown in Figure 2. 

A felt screen retainer, shown in Figure 3, started as a 1.27 

cm thick aluminum ring. The ring was wrapped in Huyglas 

1702HT fiber insulation (Filtration Specialties), with the 

woven side facing the metal. The fiber was secured by an 

interior snap ring, and excess fiber was removed with a 

razor. A perforated plate was attached to one side of the 

Huyglas felt-covered ring. On the opposite side, two layers 

of stainless steel mesh – a fine bottom layer and a course 

top layer – were attached to the retainer beneath a securing 

ring. These mesh circles were cut by hand and holes were 

made using a metal punch. The mesh side was positioned to face the zeolite. Four cartridge heater rods were 

installed into the five-hole inlet end cap. The seal on each endcap was provided by two high-temperature o-rings. On 

two of the heaters, thermocouples were imbedded halfway down the rod; on the remaining two heaters, 

thermocouples were imbedded at the endpoints.These thermocouples were intended to monitor the heater 

temperatures during desorption phases and the interior bed temperature during adsorption. 

The bed was packed first with 114.85g of glass beads, 

followed by 

200.04g (≈5cm) of 

Sorbead water-safe 

silica gel sorbent, 

and a total of 

1077.6g of Grace 

Davison 13X 

zeolite, and an additional layer of 96.36g of glass beads. The felt screen 

retainer, a wave spring, and the outlet end cap, were then installed, 

completing bed assembly. Once sealed, the bed was baked out overnight at 

300°C. The purpose of the bake out was to eliminate any moisture 

adsorbed from the air during the packing process. A “wet mass” of 

5107.45g was recorded pre-bake out.  The bake out removed a total of 

54.63g of moisture mass from the sorbent, as shown in Table 1. 

Table 1. MePA Mass Data. Pre- and Post-Bake out. 

Glass Bead Mass (g) 211.27 

Silica Bead Mass (g) 200.04 

Zeolite Bead Mass (g) 1077.55 

Total Wet Mass (g) 5107.45 

Total Dry Mass (g) 5052.82 

Mass Lost in Bake out (g) 54.63 

 

d) 

 
Figure 2. Base components of the MePA 

bed.  Outlet end cap with a small piece of 

steel mesh secured on (top left), interior of 

the steel bed tube (right), Inlet end cap with 

no heaters(bottom left). 

  

 

 
Figure 3. Felt screen retainer for the MePA bed.  
Bottom view with coarse and fine steel mesh, along with 

a securing ring (left) and top view with the perforated 

plate (right) 

 

 

 
Figure 4. MePA sorbent bed with 

Qfin attached. 
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Once the core sorbent bed was completed, the cooling system was fabricated and assembled. Six sections of 

Qmax Qfin extruded heat sinks were installed as shown in Figure 4. Each 360⁰ pair of fins was placed at a 1/3 offset 

to the adjacent pair. The finned bed was installed into an aluminum duct 61cm long and 18cm in diameter. A system 

of solid state thermoelectric heat pumps, a fan, and ducting was used to flow cooling air around the bed assembly.  

 

2. MePA Testing Results 

As described previously, the MePA was integrated with the SDU and fed SDU effluent. Three adsorption runs 

were completed to breakthrough. The test was designed such that a constant H2:CO2 ratio of 3.5 should be 

maintained to the SDU. However, following testing, it was 

determined that the hydrogen flow controller was not maintaining 

accurate flow. As such, the feed ratios of the Runs 1, 2, and 3 were 

actually 3.80, 3.76, and 3.37, respectively. Additionally, in an ideal 

situation, the SDU separator would maintain a constant rate of water 

condensation.  However, due to variations in the ambient conditions, 

dew points for the MePA feed were 78°F, 84°F and 86°F, 

respectively. The combination of these two variations to testing 

requirements led to vastly different feed compositions to the MePA. 

The actual feed rates to the MePA are shown in Table 2.  

An additional testing anomaly occurred during the desorption cycles of the test. During desorption following the 

first trial, one of the heaters failed, leaving only three for regeneration. In an attempt to compensate for this failure, 

the regeneration was continued until a steady temperature was observed at the wall of the sorbent bed. During 

desorption following the second trial, a second heater failed. Again, the bed was regenerated for a longer duration in 

an attempt to thoroughly heat the 

sorbent material. Due to the heater 

failures, the regeneration data was 

of little use for data comparison 

and cycle-time comparison 

purposes. When comparing 

breakthrough curves for each run, 

as seen in Figure 5, it appears that 

the loss of the heaters made a 

difference in the regeneration of 

the bed. This is observed by 

observing the curves of the 

breakthrough. Each subsequent 

breakthrough showed a much 

sharper curve, suggesting a cleaner 

breakthrough.  

A comparison of theoretical 

adsorption capacity versus 

observed adsorption capacity was 

also made. This effort was made 

more difficult due to variations in 

the adsorption temperature 

between runs and the varied composition of the MePA inlet stream. Both silica beads and zeolite 13X have an 

affinity for water and CO2 that varies with temperature and pressure. 

On both materials, the water is preferentially adsorbed and displaces 

CO2. Theoretical capacities of water and CO2 on both sorbents are 

shown in Table 3 for each run (based on temperature). Percentage of 

theoretical capacity was calculated by first looking at water and 

assuming 100% adsorption on silica beads (to maximum capacity). 

This is not an entirely realistic assumption due to the fact that some 

water would invariable be expected to pass through the silica beads 

and adsorb on the 13X. However, this assumption was made for a 

simple comparison. Carbon dioxide adsorption was then evaluated 

based entirely on adsorption on 13X due to the relatively low affinity 

Table 2. Variation in MePA feed 

composition. 

Feed to MePA 
(mmol/min) 

Run 1 Run 2 Run 3 

CO2 4.84 5.18 11.00 

H2 6.65 5.78 3.98 

CH4 58.55 58.21 52.40 

H2O 3.25 4.00 4.11 

 

 
Figure 5. MePA breakthrough following subsequent regenerations. 

 

Table 3. Theoretical capacities of water 

and CO2 on silica beads and zeolite 13X. 

Silica Beads Run 1 Run 2 Run 3 

CO2 (mol) 0.02 0.02 0.06 

H2O (mol) 3.20 3.20 3.20 

  
  

  

13X Zeolite Run 1 Run 2 Run 3 

CO2 (mol) 3.77 3.88 4.31 

H2O (mol) 15.09 15.09 15.09 
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of CO2 on silica beads. As shown in 

Figure 6, there does not appear to be 

an obvious decrease in bed 

performance between runs. Because 

water was never observed to 

breakthrough, the variation in the 

water data is directly related to 

differences in quantities of water fed 

to the bed. Although it appears that 

water did not reach theoretical 

capacity, it was due to insufficient 

water rather than poor material 

performance. Carbon dioxide 

adsorption reached greater than 78% 

of the theoretical value for all runs. 

This corresponds to operation of over 

8 hours before anticipated 

breakthrough based on the CO2 

expected to be unreacted by the CRA 

from a crew of four.    

 

B. 2
nd

 Generation PPA Testing Results 

As mentioned previously, 2
nd

 Generation PPA Testing was conducted in three phases. The results of each phase 

of testing are provided below.   

 

1. Phase I Testing Results 

The purpose of Phase I testing was to 

observe the effect of system pressure and 

microwave power on CH4 conversion. Note 

that neither C2H2 selectivity nor carbon 

accumulation was considered for this 

comparison. The results of this test are 

shown in Figure 7. A number of 

observations were made based on this data. 

First, it appeared that there was a significant 

improvement in CH4 conversion when 

increasing pressure from 40 torr to 50 torr. 

However, there was minimal improvement 

by further increasing the pressure to 60 torr. 

Second, the greatest influence on 

conversion was observed by an increase in 

microwave power between 250 and 450W. 

Beyond 450W, minimal additional 

improvement was observed suggesting 

increasing reflected energy and a more 

dramatic increase in system inefficiency.      

 

 

 

 

 

 

 

 

 

 
Figure 7. Results of Phase I 2nd Generation PPA testing. 

 

 
Figure 6. MePA bed performance compared to theoretical capacities. 
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2. Phase II Testing Results 

 The purpose of Phase II testing 

was to observe the effect of varied 

PPA feed composition on CH4 

conversion, C2H2 selectivity, and 

carbon formation. As mentioned 

previously, methane feed to the PPA 

was held constant at a 1-CM feed 

rate. Hydrogen feed was varied such 

that total CH4 to the system varied 

from 15-25 mol%. Methane 

conversion data is shown in Figure 

8. As seen in the graph, increasing 

the percentage of CH4 in the feed 

stream ultimately resulted in 

increased CH4 conversion and 

acetylene/hydrogen production. 

Additionally, undesirable conversion 

to ethylene also decreased at higher 

CH4 levels. On first glance, it would 

appear that increasing the 

percentage of methane in the feed 

stream would ultimately produce 

better results. However, when the 

PPA reactor was examined at the end of each test, it was clear that additional carbon formation was also observed. 

Figure 9 shows the reactor interior following each run of 4 hour duration. From the images, it appears that there is a 

gradually increasing quantity of carbon, with the exception of the 17mol% run. This type of carbon formation is 

usually observed with either very high CH4 composition in the feed stream or very high power at low pressures. 

When the data was reviewed, it was determined that for the 17mol% run, the PPA reactor was shut-down in an off-

nominal procedure. Normally, the process for shutting down the PPA involves stopping the microwave power 

followed by dropping the pressure set-point to zero torr, and finally, stopping the gas flow. In the case of the 

17mol% run, the pressure was dropped first. This resulted in a very low pressure with the full 450W of microwave 

power. Thus, the 17mol% image is not indicative of what would normally be observed for this set point. Finally, it 

should be noted that no decrease in performance was observed over the course of any run, despite the carbon 

formation.  

 Based on this data and PPA target performance parameters of >90% CH4 conversion and minimal carbon 

production, a 20 mol% CH4 feed stream was determined to be optimum for future testing. This type of operation will 

require a significant H2 stream (1.4 SLPM for 1-CM, 5.6 SLPM for 4-CM) to be provided to the PPA. The fact that 

the architecture assumes H2 recycle for the CRA enables recycle to the PPA for this type of operation. However, this 

capability will inevitably drive the mass/volume of the system up to accommodate the high volume of recycle gas. 

 

 
Figure 8. Methane conversion results for Phase II 2nd Generation PPA 

Testing. 

 

 
Figure 9. PPA Reactor carbonaceous material accumulation during Phase II 2nd Gen PPA Testing. Images show 

build-up with methane feed composition of 15%(a), 17%(b), 20%(c), 23%(d), and 25%(e). 

 

a b c d e 
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3. Phase III Testing Results 

The purpose of Phase III testing was to evaluate the performance of the PPA over long durations. During this 

test the PPA was run for a total of 117 hours. At 92 hours the pressure in the reactor began to increase. The test was 

stopped to determine the cause of the increasing pressure. When the reactor was disassembled, it was determined 

that the line leading from the reactor chamber to the primary filter assembly 

had significant quantites of carbon formation. The carbon build-up on the 

lines leading away from the reactor can be seen in Figure 10. The film coated 

the entire surface area of the inlet to the filter assembly and was determined 

to be 2mm thick.  A cottom swab was used to clean the nearly-completely 

occluded tube. Carbon samples were taken for further analysis. Following 

cleaning of the outlet tube, the reactor was restarted and the pressures were 

easily maintained at the desired testing setpoints. It should be noted that 

these lines were on the original 1
st
 Generation PPA and had never been 

cleaned by test personnel. Thus, this build-up of carbon was the 

accumulation of hundreds of hours of testing, not just Phase III testing. 

A second observation was carbon formation on the stub where the 

plasma reaction was centered. The carbon appeared at approximately 92 

hours and became more pronounced over time as testing continued. Figure 

11 shows this formation at the onset and then as the formation evolved after 

each run session. It is believed that this was an accumulation of the solid carbon as it cooled and precipitated on the 

surface of the stub.  Due to PPA in-wall cooling, the outer edges of the stub are of much cooler temperature than the 

plasma itself, thus providing a cooler surface for carbon deposition. 

Prior to 92 hours of operation,  the 

reaction was stable, as seen in Figure 

12, and the product stream maintained a 

consistent acetylene to ethylene 

selectivity of about 25:1, where 

selectivity is defined as the ratio of the 

moles of acetylene produced to the 

moles of ethylene produced. As the PPA 

reactor approached the 111 hour mark, a 

decrease in selectivity and CH4 

conversion were observed. After the 111 

hour mark the acetylene selectivity 

dropped below 20:1 and the desired 

product conversion started to decrease 

as gas remained unreacted. The test was 

continued to 117 hours to establish a 

baseline for the end of long-duration 

testing. Carbon samples from the reactor 

walls and all the filters were collected to 

be analyzed at a later date.  These results 

suggest that the presence of the carbon 

build-up on the stub may have caused 

disruptions in the gas flow paths leading 

to the generation of two plasma spheres 

reacting side-by-side, rather than the 

single sphere as intended. Because 

neither of these spheres would be 

located in the ideal microwave and gas 

flow path, performance was negatively 

impacted.   

This data shows that, while the 

system may be operated for several days 

without a decrease in performance, 

carbon formation from the process will 

 
Figure 10. Carbon build-up after 

92 hours of testing.   The carbon can 

be seen as an inner ring at the tip of 

the arrow inside the metal ring. 

 

 
Figure 12.  Long-duration performance of the PPA. 

 

 

. Phase III Long-Term Duration Hourly Conversion. 

 

 
Figure 11.  Carbon Build-Up on PPA Stub.  The progressive build-up is 

shown in the red circles and were taken at 92 hours, 103 hours, and 111 hours 

of operation, respectively. 
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inevitably require a cleaning cycle to be implement for longer duration operation. A cleaning cycle was previously 

examined using a CO2 plasma.
4
 This type of chemical cleaning would likely be useful after several hours of 

operation. However, based on the images in Figure 11, a more intensive, possibly mechanical method would be 

required if several days were required between cleanings. A mechanical cleaning would likely require crew 

intervention, making this option undesirable. A chemical cleaning could be automated. However, no CH4 could be 

processed during this time. This would require either CH4 bypass to vent or some type of CH4 storage. A bypass 

would result in loss of recoverable H2 for the duration of the cleaning. Storing CH4 would result in both additional 

mass for storage system as well as a larger PPA reactor to accommodate the combined CH4 flow from the PPA and 

the CH4 flow from the storage system. Specific mission scenarios will likely drive the path forward and be 

dependent on available mass/volume, crew time, and required resource recovery.   

C. ASepA Design 

The design of the ASepA bed and heating system was identical to that of the MePA bed. The design of the 

cooling system was identical with the exception of a second thermoelectric device located on the ASepA gas inlet to 

provide pre-cooling for the bed and the use of zeolite 4A as the packing material in the ASepA rather than the 13X 

zeolite and silica beads used in the MePA. This bed is expected to be tested in mid-2013.  

D. Architecture Discussion 

When an initial architecture for SDU post-processing was developed, it was believed that the MePA and ASepA 

systems would remain quite small, fairly simple systems due to the small quantities of gases to be. However, as 

development has progressed, the system has gradually begun to appear more complicated. First, both beds were 

originally planned to be desorbed with heat and vacuum only (no sweep gas). Initial modeling of the beds (not 

reported here) suggests that a sweep gas would be required for both systems to reach an adequate level of 

regeneration using the zeolite 4A. This presents both 

logistical and safety concerns. Second, imbedded 

tube heaters were believed to be a simple and 

effective method for heating the beds. Testing with 

MePA showed that these types of heaters are less 

reliable than originally believed. Additionally, 

because of the low thermal conductivity of clay-

bound zeolite materials, the MePA bed was shown to 

require significantly more heat and longer times to 

reach adequate temperatures for desorption across 

the bed than originally planned. Third, 

thermoelectric devices were originally chosen as a 

method to cool ASepA inlet gases as well as 

circulation cooling air for both the ASepA and 

MePA. However, the devices as implemented in 

these systems have also been shown to be 

significantly less reliable than originally believed. 

Ultimately, all of these issues have added up to a 

larger, less robust system. Thus, it is of great interest 

to re-evaluate the architecture approach for a PPA-

based CH4 post-processing system.  

There are currently two alternative architectures for consideration. Both options make a key assumption: that the 

CRA in future missions will be operated at an H2:CO2 feed ratio of 4.5. This will effectively eliminate all but trace 

quantities of CO2 from the product stream. In contrast, H2 will be the excess reactant. For a PPA-based architecture, 

this is actually desirable due to the quantities of H2 needed for optimum PPA operation. The first architecture, as 

shown in Figure 13, assumes no water removal upstream of the PPA. Based on previous testing, this will mean 

water and carbon monoxide in the PPA effluent. Thus, what was previously the ASepA will now be a H2/CH4 

purification bed that removes water, CO, and C2H2. This will make the system larger than the original ASepA, but 

with only a single system, the resulting architecture is still less complex than the initial architecture. This approach, 

like the original approach, assumes loss of all water vapor coming from the CRA. The CO produced in the PPA is 

due to a reaction between the solid carbon and the water vapor. No additional O2 is lost compared to the original 

architecture approach.  

 
Figure 13. Methane post-processing alternate architecture 

with no SDU dryer. 
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The second architecture, as shown in 

Figure 14, assumes that the majority of the 

CRA effluent water is removed in a residual 

dryer, possibly based on Microwick 

technology developed by Pacific Northwest 

National Laboratories, or something similar. 

This is very similar to the initial architecture, 

but moves away from sorbent beds in the 

hopes of decreasing the size and complexity 

of the system.   

Despite conceptualization of these 

architectures, no decision has yet been made 

as to the direction the CRA post-processor 

will go. However, the simplified assumption 

of a hydrogen-rich feed to the CRA allows 

for a much simplified system over previous 

efforts.  

 

 

V. Future Work 

Multiple trade studies and technology analyses are scheduled for 2013 and 2014. Once a thorough understanding 

of alternative architectures and technology is available, a decision will be made. Technology development on the 

most appropriate technologies will be pursued. During 2013, a secondary effort pursing a 4-CM PPA system will be 

concluded with hardware delivered to NASA. This hardware will be tested as a stand-alone unit and while integrated 

with an SDU in 2014.  
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