
.. 

Orion Scripted Interface Generator (OrionSIG) 

Robert J. Dooling 

NASA's Kennedy Space Center 

Major: Computer Science 

Program: ACCESS Summer 2013 

Date: 29 July 2013 

Kennedy Space Center 29 July 2013 



NASA USRP - Internship Final Report 

Orion Scripted Interface Generator (OrionSIG) 

Robert J. Dooling •t (robert.Ldooling@nasa.gov) 
Rochester Institute ofTechnology, Rochester, NY 14623 

Abstract 
The Orion spacecraft undergoing development at NASA and Lockheed Martin aims to launch 

the first humans to set foot on asteroids and Mars.' Sensors onboard Orion must transmit back to 
Earth astronomical amounts of data recording almost everything in 50,23 1 lb. (22,784 kg)2 of 
spacecraft, down to the temperatures, voltages, or torsions of even the most minor components. 
This report introduces the new Orion Scripted Interface Generator (OrionSIG) software created by 
summer 20 13 NASA interns Robert Dooling and Samuel Harris. OrionSIG receives a list of Orion 
variables and produces a script to graph these measurements regardless of their size or type. The 
program also accepts many other input options to manipulate displays, such as limits on the 
graph 's range or commands to graph different values in a reverse sawtooth wave. OrionSIG paves 
the way for monitoring stations on Earth to process, display, and test Orion data much more 
efficiently, a helpful asset in preparation for Orion 's first test mission in 2014. 

Figure I. Orion spacecraft design (image courtesy of NASA) 

• Intern, NE-A2 (NASA Engineering-Avionics: Guidance, Navigation & Flight Controls), Kennedy Space Center, 
Rochester Institute ofTechnolopY· 
t Superscript symbols such as " " refer to footnotes and superscript numbers such as " 1

" refer to endnotes. 

Kennedy Space Center Page 1 29 July 2013 



CAIDA 
CUI 
csv 
Double 
ENUM 
EFT-I 
Float 
FSW 
GUI 
KSC 
MPCV 
NASA 
OrionSIG = 
Sf 
SSI 
SSL 
SQL 
VI 
USRP 

NASA USRP - Internship Final Report 

Nomenclature 
Customer Avionics Interface, Development & Analysis 
Compact Unique Identifier 
Comma-Separated Values spreadsheet 
Decimal data type, which may store decimals up to 128 bits long 
Enumerator data type, which defines a constant (for example, 3. 14 could define "PI") 
Orion Exploration Flight Test I 
Decimal data type, which may store decimals up to 64 bits long 
Flight Software 
Graphical User Interface 
Kennedy Space Center 
Multi-Purpose Crew Vehicle, the function of the Orion spacecraft 
National Aeronautics and Space Administration 
Orion Scripted Interface Generator 
Signed integer data type, which may be positive or negative 
The filename extension of each SuperScript file 
Honeywell Aerospace' s proprietary SuperScript Language, which is the format ofOrionSIG output 
Structured Query Language 
Unsigned integer data type, which is always positive 
Undergraduate Student Research Program 

I. Introduction and Project Domain 

N o human has set foot on the moon since December 19723 and American flags planted by Apollo missions have 
long since faded to white sheets4 saluting a deserted void . All of the billions of trillions of other celestial bodies 

in the universe, even nearby asteroids, remain completely untouched by astronauts. • The Orion Multi-Purpose Crew 
Vehicle (MPCV) may soon propel humans beyond low Earth orbit for the frrst time in over 40 years and lay the 
foundation for thrilling advances in space exploration. NASA 's upcoming Exploration Flight Test One (EFT -1) 
mission scheduled for September 2014 will test the blossoming Orion spacecraft un-crewed in a launch from Cape 
Canaveral atop a Delta IV Heavy rocket, two orbits around the Earth, re-entry, and splashdown. On EFT-I , the 
Orion capsule will soar to altitudes and speeds unmatched by any spacecraft built for astronauts since Apollo 17 
rocketed home from the moon four decades ago.5 

Figure 2. Orion EFT-I mission overview (image courtesy of NASA) 

• Of course, un-crewed spacecraft such as the Voyager and Pioneer probes (all now well beyond Pluto) have 
explored much more, but the most promising part of Orion ' s potential lies in what humans can do that robots cannot. 

Kennedy Space Center Page 2 29 July 2013 



, 

NASA USRP - Internship Final Report 

A. Defining Orion Data 
We faced the exciting challenge of displaying 

diverse types of EFT -I data in graphs to support pre­
launch testing and further Orion software development. 
Existing EFT-I Flight Software (FSW) currently uses 
databases of Compact Unique Identifiers (CUTs). CUis 
consist of strings of letters and numbers representing 
encoded names for variables on the Orion flight that 
are transmitted back to Earth during the mission. For 
example, the CUI OCA VXXXOXXXOOOXX• may 
refer to the current temperature in part of the crew 
module. In the CUI database, a temperature variable 
like the one in OCA VXXXOXXXOOOXX may be 
stored as a "float" (decimal) data type with a size of 64 
bits.t 

Our OrionSIG solution needed to accept lists of 
these CUI names from the user, match them to 
information from a CUI database, and then generate 
SuperScript Language (SSL)t code to graph each CUI. 

Figure 3. During EFT-1, Orion's capsule will re-enter 
Earth's atmosphere at 20,000 mph, a speed unsurpassed 
since 1972, and accurate data recording will help verify 

future astronaut safety (image courtesy of NASA). 

The CUI database always exists in the same folder as OrionSIG with fields for each CUI's bus 10, start bit, number 
of bits, and data type. 

~ Bus IDs refer to the non-encoded variable names themselves. 

~ Start bits and numbers of bits describe where the value is located in bits. 

~ Finally, the data type helps us translate from binary-encoded values to actual values and vice versa.§ 

Retrieving the number of bits and the data type were necessary for OrionSIG to determine each CUI's maximum 
possible value. For example, an 8-bit unsigned integer with all bits set to I results in 255 and a 16-bit signed integer 
with all bits set to I results in 32767. We cannot rely on pre-defined limits because many different data types and 
values outside ofthe powers of2, such as 11-bit integers, occur in the CUI database. 

B. Monitoring Orion Data 
We tested our OrionSIG project frequently in the KSC Customer 

Avionics Interface, Development & Analysis (CAIDA) lab. This facility 
and many others at NASA employ Dewesoft, a "data acquisition, test, and 
measurement"6 software used for tracking and recording data during pre­
flight testing, launches, and missions:· Dewesoft already enables 
engineers to display Orion measurement values using the bus IDs from the 
CUI database mentioned earlier. To complete testing of Orion data, 
however, OrionSIG is needed to display the full range of possible values 
for a CUI in all forms of graphs, from pure sine waves to square waves 
and reverse sawtooth waves. 

Figure 4. CArDA Logo 
(image courtesy of NASA) 

Recall that OrionSIG produces graphs through SuperScript code. CAIDA includes a SuperScript Language 
Interface program that executes SuperScript (.ssi) files and the affected variables are plotted in Dewesoft graphs 
once per second. Before OrionSIG, engineers needed to manually write .ssi scripts to test any of hundreds of 
thousands of CUis in Dewesoft by setting their values one line and one CUI at a time. With OrionSIG, creating 
these .ssi scripts is a fully automated process and engineers save many hours of valuable time. OrionSIG supports 
testing data for telemetry, or the transmission of data from aircraft and spacecraft to the ground. 7 

• Most characters have been replaced with "X" or "0" because actual CUis cannot be released to the public. 
t See Section I V. OrionSIG Data Typ es for a table of all Orion data types like this one. 
t Most readers will never have heard of SSL because it is a proprietary scripting language by Honeywell Aerospace. 
§ For those unfamiliar with decoding binary, "0 1110001" may translate to the ASCII character "a," the unsigned 
decimal "97," or many other things depending on what data type it actually represents . 
.. This superb video features Dewesoft at NASA: http://www.youtube.com/watch?v=22hfUd7NCSE. 

Kennedy Space Center Page 3 29 July 201 3 



NASA USRP - Internship Final Report 

II. Software Design 
In early June 2013, we started our project with a smaller version of the software requirements in Fig. 5. We 

expanded them into the current Fig. 5 diagram as we discussed user preferences and needs such as graphing with 
KSC engineers. Recall that OrionSIG requires an input file and a CUI database to function : it accepts CUis from the 
input file, looks them up in the database, and then generates a script based on the results . 

Input (. l\1 or .Cs\ ) 

Each line: 

-CUI name 

- graphT~ pe* 

-high* 

-low* 

- step* 

(*)optional 

A. User Input 

• 
• 

Figure 5. OrionSIG Project Diagram 

We placed additional input options in descending order of importance, and graphType belongs at the first 
position after the CUI name. If OrionSIG is only given a CUI without a graphType or any of the other options 
specified, it will graph the CUI 's values from minimum possible to maximum possible repeatedly in a sawtooth 
waveform. Many other graph options, however, are common in telemetry and the user can specify another waveform 
by entering its name one space or one cell to the left of the CUI name. · 

The other input options high, low, and step affect which values in the CUI 's range from minimum possible to 
maximum possible are plotted on a Dewesoft graph. Instead of using these default maximum and minimum values, 
the user can specify different upper and lower limits. Finally, the step value affects how much the graph increments 
or decrements each second. Step values are constant in most graphs, including sawtooth wave graphs and triangular 
wave graphs. Curved graphs such as sine and cosine, however, require a step that changes with each increment or 
decrement and OrionSIG modifies the user-specified step in these cases. 

B. Implementation Decisions 

We chose to create OrionSIG with iterative software engineering, the C++ programming language, and SQLite 
database management. OrionSIG was unlike any other project any of us had experienced before because of its 
massive domain. We initially had no clue of the scope of data we needed to handle or how our software would 
coexist with Dewesoft, SSL Interface, and other parts of the testing environment described earlier. We started our 

• See Section V OrionSJG Graph Types for a table of all OrionSIG graph types. 

Kennedy Space Center Page 4 29 July 2013 



NASA USRP - Internship Final Report 

project with a helpful diagram similar to the one in Fig. 5, but needed to research the answers to many questions, 
especially regarding the nature of Orion data. Iterative software development fit our extended learning process very 
well: we created basic software that satisfied our basic 
understanding of the requirements, learned more about data 
and user scenarios, integrated this knowledge into the next 
build, and then repeated the cycle. 

The C++ programming language offers a higher level of 
abstraction that was useful while designing OrionSIG to 
operate with many different data types. For example, 
operator overloads·, which do not exist in Java, were 
instrumental in applying functions to graph different values 
for CUis encoded in binary. We also chose C++ because it 
was our strongest common language. Finally, the SQLite 
C++ interface is quite well-documented and we were able 
to incorporate the CUI database into our project easily. 

We also considered developing a Graphical User 
Interface (GUI) version ofOrionSIG, but other summer 
projects took precedence. The benefit of building an 
OrionSIG GUI also did not seem to justify the cost because 
our users over the summer simply wanted to submit a 
spreadsheet of CUls and then receive script code to graph 
them for testing. They did not seem as interested in 
changing the graph parameters from the default: an 
ascending sawtooth wave. 

Figure 6. Orion is a true 21 -century spacecraft and 
supporting this expansive project taught us a great 
amount about data types (image courtesy of NASA). 

III. Software Evolution 
Finally, we began implementation separately: one of us created a rough C++ program for handling input, 

calculations, and output while the other created a rough C++ and SQLite program for looking up CUis in Orion ' s 
databases and retrieving needed values. We successfully combined these products early and then spent the majority 
of the project developing functions to convert between data types and binary as well as vice versa. Recall that we 
created OrionSIG in iterations: each version accepted more data and flexibility. 

Perhaps the most interesting aspect ofOrionSIG development involved the SSL output. We were writing code 
meant to create new code in a scripting language. Working with this lower-level scripting language required some 
creativity whenever we could accomplish something in a high-level language like C++ but not SSL. Honeywell 
Aerospace ' s documentation for this proprietary language was only available to us as a single paper copy in a binder 
at the CAIDA Jab. Some functions were new to us but thorough testing helped us fine-tune our functions and syntax. 

We also reduced the running time of our program from over 30 seconds to Jess than 2 seconds for a sample input 
file of approximately 100 CUis (mostly located early in the database) when we discovered the "LIMIT I" statement 
in SQLite. This command vastly improved the speed of data retrieval from the CUI database: instead of searching 
the entire database for multiple instances of a certain CUI, SQLite terminated its search once it had discovered our 
CUI. 

Initial version Develo_l)_ed version Current version 

Unsigned integers from 0 to 
All Orion EFT- I data types, 

Acceptable Unsigned integers 18446744073709551615 
including chars, doubles, and 

data types from 0 to 4294967295 Signed integers from 
arrays 
(See Section IV OrionSJG Data 

-2147483648 to 2147483647 
Types) 

Input format 
A single line from a 

Multiple lines from a .txt file 
Multiple lines from a .txt or .csv 

.txt file file 

• For those unfamiliar with operator overloading: programmers add new functions that allow them to apply addition, 
division, and other operators to non-traditional data types, such as strings of binary. 

Kennedy Space Center Page 5 29 July 2013 



NASA USRP - Internship Final Report 

Ascending 
Ascending 

Acceptable Descending 
Descending 
Rough cosine wave 

graph types Rough cosine wave 
Rough sine wave 

Rough sine wave 
Linear 

Graphing shows a single period 
Graphing shows a 

Display 
single period of the 

of each wave, advancing 
behavior through each CUI until the end 

wave. 
ofthe program. 

IV. OrionSIG Data Types 
The main challenge of developing OrionSIG lay in 

creating flexible software that accepts and transfers many 
types of data, from Boolean values (true or false) to arrays 
of unsigned long long values (each element is any number 
from 0 to 18446744073709551615). We also needed to 
allow bit manipulation for each variable, requiring us to 
program functions that could convert any of the multiple 
types of data into binary code. Throughout the project, we 
explored different methods to optimize the speed of working 

Many possible options, including 
refined sine, square, and sawtooth 
(See Section V. OrionSJG Graph 
Types) 

Graphing produces the wave 
continuously until the user presses 
any key to advance to the next 
CUI. The user may also stop the 
execution between waves. 

with the CUI database and long binary numbers. For 
example, the program handled large binary numbers more 
efficiently when we stored them as vectors (collections) of 
Boolean values instead of as vectors of characters or 
integers. 

Figure 7. Many data values must be tested to prepare 
for Orion EFT -I 's long journey from launch to 

splashdown (image courtesy of NASA). 

Data type Size in bits Range ofp_ossible values• 
BOOL 8 false to true 
CHAR 8 null character to "Delete" character (all ASCII characters) 
SI8 8 -128 to 127 
UI8 8 0 to 255 
SII6 16 -32768 to 32767 
Ull6 16 0 to 65535 
SI32 32 -2147483648 to 2147483647 
UI32 32 0 to 4294967295 
UI64 64 0 to 18446744073709551615 
FLOAT 64 1.175494351 E - 38 to 3.402823466 E + 38 
DOUBLE 128 2.2250738585072014 E - 308 to I. 7976931348623158 E + 308 
ENUM Varies Varies 
ARRAY Varies Varies 

V. OrionSIG Graph Types 
OrionSIG' s default behavior is to continuously display a current CUI's minimum value and then maximum 

value, possibly with intermediate values in between depending on the data type. When plotted, these values form an 
ascending sawtooth wave. Fortunately, users can also add other input on the same lines as each CUI name to request 
different display options (such as cosine or reverse sawtooth), high values, low values, and interval sizes for 
generating intermediate values. Developing input validation for all of the possible options in relation with each other 
was also time-consuming, but OrionSIG' s flexibility and helpful handling of user errors was worth the work. 

EFT-I Flight Software currently cannot update more than once per second, so many lines that should be vertical 
in an ideal graph are slanted instead. 

Kennedy Space Center Page 6 29 July 2013 



NASA USRP - Internship Final Report 

Ascending sawtooth wave 

Cosine wave 

Descending sawtooth wave 

Flip bits 

• These images have been edited to protect export-controlled information. 

Kennedy Space Center Page 7 29July2013 



NASA USRP - Internship Final Report 

Horizontal line 

Middle triangular wave· 

Sine wave 

Square wave 

• Middle triangle waves are identical to triangle waves, except they originate at the midpoint instead of the low 
value. 

Kennedy Space Center Page 8 29 July 2013 



NASA USRP - Internship Final Report 

Triangular wave 

VI. Usage 

A. Execution Instructions 
I. Locate and run OrionSIG.exe. 
2. Enter the name of your desired input file (.txt or .csv)• 

a. If your input file is in a different folder, you must enter its full path 
b. Ensure that your input matches the rules in B. Input Format 

c. Ensure that the database ("CUI_INFO.db," always included in OrionSIG packages) is in the same 

folder 
3. A SSI script will be generated with the name "[fi lename]_output.ssi". 

B. Input Format 
The input file for OrionSIG may contain multiple lines of input, each of which should be formatted as follows: 
[CUiname] [graphType] [high] [low] [step] 

Parameter Definition Example(s) 

[CUI name] 
Name of the CUI that you 

OCA VXXXOXXXOOOXX 
wish to evaluate. 

Anything starting with (not case-sensitive): 
"t" for triangular wave 
"sq" for square wave 
"si" for sine wave 

How you want the output 
"m" for middle triangular wave 

[graph Type] "h" or " I" for horizontal line 
(optional) 

script to graph the range of 
" f" for flip bits 

CUI values. 
"c" for cosine wave 
"b", "d", "n" or "r" for backwards I descending I negative I 
reverse sawtooth 
Anything else defaults to ascending I forward I increasing I 
sawtooth I up 

[high] 
Highest value to which the 

Any value in the range for the data type (such as 0 to 
(optional) 

output script will set the 
4294967295 for 32-bit unsigned integers) 

CUI. 
Lowest value to which the 

[low] output script will set the Any value in the range for the data type (such as -128 to 127 
(optional) CUI; can be the same as for 8-bit signed integers) 

high in horizontal line 

• If no filename extension is specified, OrionSIG will first attempt to open a [filename].txt file and then a 
[filename] .csv file . 

Kennedy Space Center Page 9 29 July 2013 



NASA USRP - Internship Final Report 

graphs. 
3 for a high of 5 and a low of -I 0, resulting in 5 steps per 

[step] 
Rate at which the SSI period 

(optional) 
script will increase I 
decrease the CUI value. 107.9 for a high of3653 .8 and a low of2143 .2, resulting in 14 

steps per period 

VII. Conclusion and Future Development 
Orion Scripted Interface Generator (OrionSIG) removes the need for engineers at NASA' s Kennedy Space 

Center to manually write SuperScript Language code for testing and graphing Orion spacecraft telemetry 
measurements. Fortunately, OrionSIG can also help test data for any other mission that uses CUI databases in the 
same format. A GUI version of OrionSIG may be able to include an option to generate databases of CU!s from 
existing Excel spreadsheets to quickly enable this testing model for CUIS from any mission. This GUI version could 
also allow users to apply options to ranges of CUis inside the input. For example, a user could change the 
graphType for CUis II through 21 to "triangular wave". We hope our comprehensive data test tool holds great 
potential for supporting future NASA efforts and wish the Orion team all the very best for a successful EFT-I 
mission. 

Figure 8. Artistic rendering of Orion EFT-1 in space (image courtesy of NASA) 

Acknowledgments 
My summer 2013 NASA internship exposed me to large-scale software engineering, profound thoughts about 

the universe as well as human space exploration, and many wonderful people who I will remember forever. For this 
fantastic experience, I am extremely grateful to first and foremost, ACCESS (Achieving Competence in Computing, 
Engineering, and Space Science), which funded my internship program. I also thank my university, Rochester 
Institute of Technology and especially their Computer Science department, for bringing me from knowing nothing 
about programming a few years ago to where I am today. Several NASA employees deserve a very special thank 
you for helping me communicate, understand my work, and succeed even though I am profoundly deaf and 
American Sign Language is my primary language. Thank you to my mentor Curtis Williams; my fellow Avionics 
interns Samuel Harris, Uriae Walker, and Anthony Castrovillo; and KSC sign language interpreters Stephanie 

Kennedy Space Center Page 10 29 July 2013 



NASA USRP - Internship Final Report 

Watkins, Laurie Carter, Donna Fisher, Kimba Conner, and Jennifer Rogers. OrionSIG and my knowledge would not 
be where they are today without these individuals. 

I am also very grateful to Arnold Postell for leading a brilliant NASA Avionics Division with the most friendly 
workforce I have ever met; Brian Luther for running an excellent Guidance, Navigation & Flight Controls Branch 
and providing me with the opportunity of a lifetime; Dean Orr for bringing the interns the best NASA has to offer; 
Glenn Rosenthal for teaching me telemetry; Rose Austin, Benita DeSuza, and Grace Johnson for coordinating a 
terrific KSC Education Office as well as many intern events; Stephanie Stilson, Mike Ciannilli, Patrick Feeney, and 
Marcelo Dasilva for cultivating a KSC LGBT Employee Resource Group with exciting potential; Caren Ensey for 
bringing me up to speed on NASA software engineering standards; and Annette Pitt for answering my many 
questions. 

Last but not least, I also want to sincerely thank those who made me feel welcome at NASA and Cape Canaveral 
in at least some small way, whether through words or actions. I was only here for ten weeks and wish I could spend 
more time with these people, but they made a big difference when I moved to a completely new area of the country 
without knowing anyone there: Felix Pena, Sherry O'Bryan, Kaley McCarty, Kenneth Jenkins, Charles Parrish, Alex 
Tsoras, Karl Stolleis, Hali Jakeman, Ashley Williams, Joanna Johnson, Steven Pancoast, Kathy Meesakul, Christine 
Okrepkie, Edward Tugg, Robert Zambrana, Nicole Delvesco, Jessica Conner, Kristie Durham, and many others. 

References 
1NASA. "NASA's Orion Moves Closer to Next Giant Leap." www.nasa.gov N.p., 8 March 2012. Web. 18 July 2013. 
2NASA. "Orion Quick Facts." www.nasa.gov N.p .. Web. 19 July 2013. 
3NASA. "Apollo 17." www.nasa.govN.p .. Web. 19 July 2013. 
4NASA. "Six Flags on the Moon: What is Their Current Condition?" www.nasa.gov N.p., 21 April2012. Web. 19 July 2013. 
5NASA. "NASA On Course to Launch Orion Flight Test." www.nasa.gov N.p., 28 February 2013. Web. 18 July 2013. 
6Dewesoft. "About us." www.dewesofi.com N.p .. Web. 23 July 2013. 
7Rosenthal, Glenn. "A Course in Telemetry." NASA KSC Rocket University. Cape Canaveral, FL. July 9-11 , 2013. Lecture. 
8Microsoft. "Storage of Basic Types." Microsoft Developer NetworkN.p. Web. 24 July 2013. 
9Dewesoft, Software Package, Ver. 7.0.5. Dewesoft, Trbovlje, Slovenia. 2012. 

Kennedy Space Center Page 11 29 July 2013 


