Layer Precipitable Water (LPW) Briefing

09 July 2013

In preparation for Intensive Evaluation
Period July 15 – Sept 15

John Forsythe, Stan Kidder (CIRA)
Kevin Fuell, Anita LeRoy (NASA/SPoRT via UAH)

Cooperative Institute for Research in the Atmosphere
Why have Layered PW?

- WV imagery only senses upper level moisture
- WV imagery senses higher in moist regions and lower in dry regions (*first 1-2mm in cloud free regions, Jedlovec et. al. 2000*)
- TPW has no vertical moisture distribution information
- Note how WV and 500-300mb layer PW match well
- WV is only small portion of TPW as most moisture is near lower boundary layer
Microwave Integrated Retrieval System - MIRS

- Retrieves many variables from microwave sounding instruments (Boukabara et al. 2011)
 - AMSU-A, MHS, SSMI/S
- Uses 1DVAR (e.g., Rodgers 2000) retrieval scheme to retrieve atmospheric profile plus surface conditions.
- Retrievals through clouds
- Over water and land!
- Operationally produced by NOAA / NESDIS

37GHz (H) Brightness Temperatures from SSMI/S instrument on DMSP satellite. Just one example of the channels used by MIRS
Layer Precipitable Water (LPW)

- MIRS mixing ratios (q) integrated to yield Layer Precipitable Water:

\[LPW \equiv \int_{p_{top}}^{p_{bottom}} q \frac{dp}{g} \]

- *When \(p_{bottom} \) is at the surface (\(p_{sfc} \)) it is a function of surface elevation only; it does not change with changing weather conditions.*

- If \(p_{sfc} \) is less than 850 hPa but greater than 700 hPa, then the bottom layer is missing (black) and the 850 to 700 hPa layer is calculated from \(p_{sfc} \) to 700 hPa.

850mb-700mb LPW over Pacific and western North America regions derived from MIRS
Chosen Layers of LPW – in D2d

NOTE: 500-300 hPa layer not shown

Atmos. River evident even at upper layer

Tropical Moisture tongue creating sharp gradient

Wide moisture plume compared to upper layers

Atmospheric River
Satellite Local Time Passes

<table>
<thead>
<tr>
<th>Satellite (Instrument)</th>
<th>Approx. Local Time Ascending</th>
<th>Approx. Local Time Descending</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA 18 (AMSU-A, MHS)</td>
<td>1500</td>
<td>0300</td>
</tr>
<tr>
<td>NOAA 19 (AMSU-A, MHS)</td>
<td>1330</td>
<td>0130</td>
</tr>
<tr>
<td>Metop-A/B (AMSU-A, MHS)</td>
<td>2130</td>
<td>0930</td>
</tr>
<tr>
<td>DMSP F18 (SSMI/S)</td>
<td>2000</td>
<td>0800</td>
</tr>
<tr>
<td>NASA Aqua (AIRS, infrared)</td>
<td>1330</td>
<td>0130</td>
</tr>
</tbody>
</table>

Notes
1. The actual observation time is within about ½ orbit (50 min) of the above times.
2. AIRS retrievals only in clear or thin cloud areas.
850-700 mb LPW Loop – May 10, 2013

850mb-700mb LPW over Pacific and western North America regions derived from MIRS
(faster loop for local viewing provided in “extra” slides of this file)
When is LPW available and How is LPW Composited?

- Program runs every 3 hours at 00Z, 03Z,
 - Data latency to user is ~40 minutes (i.e. 1800Z arrives at 1840Z)
- Data for the last 12 hours are plotted with the newest observation on top (covering up older observations)
 - No averaging or smoothing of data
- There is a 1-2 hour gap between the time on the image and the latest satellite data due to the time it takes to transmit the data to the ground, do the retrievals, and make the composites.
LPW Strengths

<table>
<thead>
<tr>
<th>Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vertical resolution to diagnose moisture distribution vs TPW whole column approach</td>
</tr>
<tr>
<td>• Sounding coverage over data-sparse oceans several times per day</td>
</tr>
<tr>
<td>• Spatial detail well beyond radiosonde network</td>
</tr>
<tr>
<td>• Composite of many similar instruments</td>
</tr>
<tr>
<td>• Use of microwave data over land</td>
</tr>
<tr>
<td>• Microwave retrievals probe through clouds</td>
</tr>
</tbody>
</table>
LPW Weaknesses

Weaknesses

- Discontinuities can occur due to time or instrument differences
- Change in magnitude near land/ocean boundary possible
- Less vertical detail than RAOBs or profilers
- Satellite retrieval latency of 2-4 hours
- AIRS retrievals (infrared) are somewhat different than microwave retrievals
 - Higher resolution has more detail ("noisy" variation)
 - Dry bias compared to other microwave instruments
 - Can retrieve over snow (Strength)

AIRS swath stands out as dry and has more variations

AIRS has more coverage over AK snow covered ground vs microwave over Canada
LPW Applications

From WFO Area Forecast Discussions (AFD), these issues would benefit from LPW:

Verification of model short-term, vertical moisture distribution

- Portland, OR ...MODELS CONTINUE TO INDICATE MOST OF THE LOW LEVEL MOISTURE GETTING WRUNG OUT BY

Monitoring of upper level moisture advection for clouds and atmospheric rivers

- Phoenix, AZ ...GIVEN THE BROAD SWLY FLOW AND LIKELIHOOD OF TAPPING EXTENSIVE UPPER LEVEL SUBTROPICAL MOISTURE ONCE AGAIN...HAVE GENERALLY NARROWED THE FORECAST DIURNAL RANGE...ESPECIALLY WITH RESPECT TO HIGHS

- Albuquerque, NM ...THE UPPER RIDGE FLATTENED-OUT OVERNIGHT AND WESTERLIES HAVE OVERTAKEN OUR AREA WITH PACIFIC MOISTURE ADVECTON IN THE MID AND UPPER LEVELS OF THE ATMOSPHERE RESULTING IN CLOUDS.

Analysis of 2-d moisture gradients aloft verses relying on point source data

- San Diego, CA ... THE 00Z MIRAMAR SOUNDING SHOWED A PW JUMP TO JUST OVER ONE-HALF INCH. THE MOIST LAYER WAS BETWEEN 8K AND 13K FT.
What Needs to be Evaluated in Operations

• Which forecasting problems benefit most from having LPW information and how
• How much the LPW information helps the forecast over having only TPW and GOES 6.7 μm data in operations
• Ways to make the products more operationally useful, for example by selecting different layers, calculating different variables (e.g., RH), or comparing with climatology (e.g., percent of normal).
Example of potential product: Tropospheric relative humidity profiles from satellite and model forecasts.

- Compare to what is available from radiosondes.

Near-realtime display at:
http://cat.cira.colostate.edu/sport/layered/blended/profile_zoom1.htm

Model has higher humidity at lower levels compared to MIRS derived sounding.
LPW Summary

• Microwave Integrated Retrieval System (MIRS) provides soundings of specific humidity from a variety of instruments and is combined with AIRS infrared soundings to create a Layered Precipitable Water (LPW) composite product

• The LPW provides vertical moisture information in the column instead of just upper levels via WV imagery, or a single column value via TPW products

• LPW is created every 3 hours using the last 12 hours worth of data and has a delivery latency of 40 minutes.

• Weaknesses include discontinuities in the composite

• Strengths include seeing through clouds, over land usage, and greater spatial coverage of vertical moisture profiles

• Applications of LPW include analysis of horizontal and vertical moisture gradients, verification of NWP moisture, and analysis of atmospheric rivers and other moisture advection.

• Operational testbed is ongoing to determine viability of wider distribution
References

Faster loop from main slides, 4-panel loop of LPW layers

EXTRA SLIDES AFTER THIS POINT
Faster loop from slide #7