Integration and Ruggedization of a Commercially Available Gas Chromatograph and Mass Spectrometer (GCMS) for the Resource Prospector Mission (RPM)

Presentation to HEMS
September, 2013

K. Loftin, J. Captain, T. Griffin, NASA/KSC
R. Kidd, E. Niedholdt, NASA/JPL
G. Kibelka, OI Analytical
K. Wright, Inficon
Presentation Overview

- Mission Summary
- Preliminary Payload Requirements
- Analog field tests Engineering Test Unit Design
- Challenges (Budget, Intellectual Property, Technical)
- Flight Forward Plans
RPM is a potential **low cost** mission to the moon comprising a soft lander, and a rover carrying a payload designed to detect and map volatiles and for demonstration of in situ resource utilization (production of oxygen from regolith). The concept of operations includes landing in an area of limited solar illumination in the vicinity of the lunar south pole where volatiles may be trapped in the sub-surface.
Why do we need a Resource Prospector Mission (RPM)

To maintain a long term human presence in space, we must learn to use the resources that are available and not rely completely on transporting all of our supplies in other words:

We have to learn to "Live off the Land"

Imagine how far Lewis and Clark would have gotten if they had to rely on all the water, food and shelter they packed in.
What is RESOLVE?
Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

RESOLVE is an internationally developed payload (NASA and CSA) that can perform two important missions for Science and Human Exploration of the Moon.

Resource Prospecting Mission: (Polar site)
✓ Verify the existence of and characterize the constituents and distribution of water and other volatiles in lunar polar surface materials
 – Map the surface distribution of hydrogen rich materials
 – Determine the mineral/chemical properties of polar regolith
 – Measure bulk properties & extract core sample from selected sites
 ▪ To a depth of 1m with minimal loss of volatiles
 – Heat multiple samples from each core to drive off volatiles for analysis
 ▪ From <100K to 423 K (150°C)
 ▪ From 0 up to 100 psia (reliably seal in aggressively abrasive lunar environment)
 – Determine the constituents and quantities of the volatiles extracted
 ▪ Quantify important volatiles: H₂, He, CO, CO₂, CH₄, H₂O, N₂, NH₃, H₂S, SO₂.
 ▪ Survive limited exposure to HF, HCl, and Hg

ISRU Processing Demonstration Mission: (Equatorial and/or Polar Site)
✓ Demonstrate the Hydrogen Reduction process to extract oxygen from lunar regolith
 – Heat sample to reaction temperature
 ▪ From 423 K (150°C) to 1173 K (900°C)
 – Flow H₂ through regolith to extract oxygen in the form of water
 – Capture, quantify, and display the water generated
RESOLVE Top-Level Science/ISRU Requirements

- Measure the water and hydrogen bearing volatiles content in a lunar subsurface
 - Determine the horizontal and vertical distribution of hydrogen and hydrogen bearing volatiles
 - Measure the spatial distribution of hydrogen and hydrogen bearing volatiles with a minimum horizontal resolution of 2.0 meters and a minimum vertical resolution of 0.25 m.
 - Measure neutron flux consistent with at least 0.5 wt% water equivalent hydrogen,
 - Measure 0.5 wt% water-equivalent layer at 1 meter depth under a dry overburden, with 25 cm depth resolution
 - Measure spatial OH and H$_2$O in the Near IR spectrum
 - Extract subsurface material
 - Extract a subsurface sample up to a depth of 0.75 m. (Goal of 1 m)
 - Maintain a minimum of 1 subsurface core segment per core below 175 deg K (-98 deg C)
 - Selectively accept sections of an acquired subsurface sample
 - Obtain augured cuttings from a depth of 0.5 meters
 - Measure the abundance of water and hydrogen bearing volatiles in the lunar subsurface
 - Quantify water in the lunar regolith when water concentrations are between 0.5% to 8.0% (95% TBR) by mass
 - Process a minimum of 40 subsurface core segments.
 - Heat lunar regolith samples to a minimum of 425 deg K (150 deg C) for volatile extraction.
 - Identify and measure the relative abundance of the volatile constituents of the lunar regolith below 70 amu
 - Measure the isotope ratio of Deuterium/Hydrogen and Oxygen 16/18

- Measure geotechnical characteristics of the lunar highlands and cold traps
 - Measure the distribution of grains in the lunar regolith with respect to size and shape. (GOAL)
 - Measure bulk characteristics of lunar regolith
 - Determining geotechnical parameters of the drilling media during the sample acquisition phase
 - Identifying mineralogical features in the lunar regolith

- Demonstrate oxygen extraction from regolith using the Hydrogen Reduction process
 - Heat samples to 1175 K (902 C) to hydrogen reduction
 - Measure water vapor produced
 - Image water condensate/droplets produced during volatile analysis and H$_2$ reduction
RESOLVE Development Toward Flight

Internal Call for Proposal Awarded 2006

Performed Lunar Polar Design Ref Mission

Lab. Tests

1st & 2nd ISRU Analog Test

3rd ISRU Analog Test

Lunar Env. Chamber Test

Gen I
2006-2007

Demonstrate Feasibility & Subsystem Performance

- Hardware designed to demonstrate functions needed for RESOLVE
- Minimal integration between functions
- Minimal software and autonomous control development
- No mission operation considerations

- Not considered in design:
 - Flight environment
 - Mass, power, and volume
 - Mission operations

Gen II
2007-2008

Demonstrate Integration & Operations

- Hardware designed to demonstrate functions needed for RESOLVE in one ‘flight like’ package
- Flight mass and volume for RESOLVE functions considered in design
- Start of software and control development
- Start of mission operation considerations

- Not considered in design:
 - Flight environment
 - Flight-like avionics and power conditioning, and ground support hardware

Gen IIIA
2010-2012

Develop ‘flight like’ unit for mission simulation

- Hardware designed to address lunar polar ice/volatile mission requirements
- Software and control development
- Focus on mission operations
- Design to operate under lab/analog conditions with path to lunar env.

- Not considered in design:
 - Flight design for all RESOLVE hardware
 - Software & control of hardware operation
 - Mission operation timeline and power profile
 - Environment: vacuum, temperatures, EMI, materials

Gen IIIB
2012-2014

Develop flight prototype for vacuum operation

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Test Site on Hawaii Very Much Like the Moon!
RESOLVE Analog Field Tests

Nov. 2008
- RESOLVE Gen II on Scarab Rover
- Power, avionics, and ground support equipment on separate trailer

FEB. 2010
- RESOLVE Gen II+ on CSA Juno Rover
- Power, avionics, and ground support equipment on separate Juno

July 2012
- RESOLVE Gen IIIA on CSA Artemis Jr. Rover
- Everything on single rover platform
Neutron Spectrometer Subsystem (NSS)
Functions & Design Constraints

NSS Functions
- Determine the horizontal and vertical distribution of hydrogen and hydrogen bearing compounds/minerals
 - Map to 1 meter depth and ~ 1 m wide path
 - Map to depth at rover speed \(\leq 10 \pm 1 \text{ cm/s} \)
- Detect water at a minimum abundance of 0.5% by mass with <10% uncertainty
- Operate \(\geq 6 \) hrs in permanently shadowed area

NSS Design Constraints
- Mount \(\sim 1 \) m above the surface aimed in front of the rover
- Operate -30 to +40 °C
- Max temperature change rate: 20 °C /hour
- Instrument Mass: 1.85 kg
- Power: 2 W ave.; <4 W max for heaters

NSS Sensor Module (SM)
On boom or fixed structure

NSS Data Processing Module (DPM)
Integrated within main payload

NSS Brassboard
GSE Display
Data
Strip Chart
Sensor Module
Detector Tubes
Data Processing Board
RS422 Comm
Near Infrared Volatile Spectrometer Subsystem (NIRVSS) Functions & Design Constraints

NIRVSS Functions

- Quantify amount of water in lunar regolith at a minimum abundance of 0.5% by mass
- Identify surface bound H₂O/OH
 - Map at rover speed ≤10 +/- 1 cm/s
- Bound understanding of mineral content in regolith
- Identify volatiles, including water content and form evolved during auger/drilling
- Bound volatile presence in top 20-30 cm of regolith during auger/drilling
- Enable observation under all lighting conditions
- Image drill area with sufficient Field Of View to observe 22 cm of tailings with resolution at ~200 μm scale
- Operate ≥ 6 hrs in permanently shadowed area

NIRVSS Design Constraints

- Identifying volatile and mineralogical features in the near-infrared spectrum in the range of 1.8-3.2 microns with a spectral resolution of less than 0.05 μm.
- Mount Near IR, Camera, and lamp to view auger/drill area
- Achieve SNR ≥100 at 3 μm while drilling
- Operate +0 to +45 °C
- Mass: 7.7 kg
- Power: 16.31 W ave (NIR, camera, & lamp)
Sample Acquisition Subsystem: DESTIN Functions & Design Constraints

DESTIN Functions
- Penetrate substrate 1m to collect, retrieve, transfer samples from >0.75 m
 - Unconsolidated regolith to consolidated
- Auger material to surface from depth up to 0.5 m
- Maintain sample phase, chemical state, and stratigraphy
- Sample Transfer Receptacle (STR)
 - Section samples to 12.5 cm length x 1.6 cm dia.
 - Deliver ≥90% of sample to OVEN
 - Deliver sample to OVEN at <150 K
- Minimize sample cross-contamination
- Abandon drill rod if stuck and recover
- Autonomous operation in shadowed region for ≥6 hrs
- Measure temperature near core
- Measure: sample hardness, energy required for penetration, rate of cut, drill depth, instantaneous drilling power, weight on bit, torque, rpm

DESTIN Design Constraints
- Dimensions of all components <1.35m x 0.75m x 1m
- Safe position must not interfere with rover locomotion
- Operate when titled up to 15 degrees
- No consumables
- 50 auger/drill operations
- Mass: <40 kg max.; 25 kg goal
- Power: <150 W ave.
- Static Force: 120 N max.
Oxygen and Volatile Extraction Node (OVEN) Functions & Design Constraints

OVEN Functions
- Heat multiple samples to 423 K (150 °C) for volatile extraction
- Heat a minimum of one sample to 1173 K (900 °C) in presence of hydrogen for oxygen extraction from regolith
- Accept sample from Sample Transfer Receptacle (STR)
 - May be solid core or granular material:
 - 16 mm dia. by 125 mm; 25 to 60 gms
- Accept samples at <150 K
- Maintain samples at <175 K prior to sealing.
- Measure sample mass before and after processing to +/- 0.1 gm accuracy
- Dump sample after processing to remove a minimum of 95% of sample material
- Selectively accept and reject (dump) sample without processing
- Transfer volatiles released (at 150 and 900 °C sample temperatures) to surge tank in analysis and water droplet demo.

OVEN Design Constraints
- Minimum leak rate during sample processing - psi over 4 hrs at 100 psi (at 150 and 900 °C)
- Heat 40 samples in 5-7 day mission
- Mass: 10 kg
- Power: <300 W ave.
- Minimize height of OVEN subsystem since STR drill tube must extend above OVEN
Lunar Advanced Volatile Analysis (LAVA) Functions & Design Constraints

LAVA Functions
- Accept gas samples from OVEN at up to 100 psi and 423 K (150 °C) to 1173 K (900 °C)
- Identifying and measuring the relative abundance of the volatile constituents of the lunar regolith.
 - Quantify amount of evolved water in from the lunar regolith at a vapor concentration of 0.1% to 95% with a standard deviation of 5% relative standard deviation or the absolute standard deviation of 0.2% water, whichever is greater
 - Measure volatile constituents of the lunar regolith to 70 amu including, CO, H₂O (g), H₂, [H₂S, NH₃, SO₂, C₂H₄. are Goals]
 - Measure the D/H and O¹⁶/¹⁸ isotope ratios (Goal)
- Collect and provide images of water collected through volatile extraction and hydrogen reduction of regolith
- Provide and regulate hydrogen gas to OVEN for Regolith Oxygen Extraction

LAVA Design Constraints
- Complete GC-MS analysis in under 2 minutes
- Mass: 15 kg
- Power: <100 W ave.
RESOLVE Gen III

Purpose: Develop a flight-like unit that can fit on a rover and operate in the lunar environment

Sample Acquisition System
Auger/Core Drill Subsystem [CSA]
- Collect and transfer subsurface material down to 1 m below surface
- Maintain sample stratigraphy and volatiles (below 150 K)
- Meter samples for processing
- Auger material to surface for evaluation
- Measure geotechnical properties of regolith during drilling

Surface Mineral/Volatile Evaluation
Near Infrared Volatile Spectrometer Subsystem (NIRVSS) - ARC
- Measure surface bound OH/H$_2$O while traversing (at min. of 0.5% by mass)
- Detect form of water (ice/hydration) in auger tailings
- Detect water vapor in evolved gases
- Image surface and drill tailings

Resource Localization
Neutron Spectrometer Subsystem (NSS) - ARC
- Locate hydrogen and hydrogen bearing volatiles down to 1 meter below the surface while traversing (at min. of 0.5% by mass)

Volatile Content/Oxygen Extraction
Oxygen & Volatile Extraction Node (OVEN) - JSC
- Accept samples from Sample Acquisition System
- Heat samples from <150 K to 423K for volatile extraction
- Heat samples to 1173 K for oxygen extraction
- Transfer evolved gases to LAVA volatile analyzer

Volatile Content Evaluation
Lunar Advanced Volatile Analysis (LAVA) - KSC
- Accept evolved gas from OVEN; provide hydrogen for oxygen extraction
- Perform analysis in under 2 minutes
- Measure water content in evolved gas
- Characterize volatiles of interest (below 70 amu)
- Measure D/H and O16/O18 isotopes
- Capture & image water evolved

Operation Control Flight Avionics - KSC
- Space-rated microprocessor
- Control subsystems and manage data

Surface Mobility [CSA]
- Traverse wide range of lunar surface/material conditions
- Tele-operation and autonomous traverse modes
- Carry RESOLVE payload; provide power, comm., and thermal management

RESOLVE Mission Requirements
- Nom. Mission Life = 5+ Cores; 14 Days
- Mass = 170 kg rover/80 kg payload
- Ave. Power; 200-300 W
Vacuum Demonstration Unit
GCMS Design: Integrated COTS Approach

Changes required for Vacuum Unit - Flight forward

- Maintain fast scan rate and analyte sensitivity
- Less mass
- Less power
- More rugged (Vibe tolerant)
- Dilution capability (prior unit saturated at about 5% water)
- Software control from Xiphos - Payload control
- Integrated Avionics controlled by payload
- Thermal Vacuum (materials and electronics)
Inner Diameter - 13"
Total Height - 27"
Varian Turbo-V80 Turbo Vacuum Pump

Current configuration:
7 Total Ports – 5 Available for feed-throughs
• Pressure Transducer & Ion Gauge
• 20-pin Electrical Port
• Double ¼” Swagelok Port
• Single 1/8” Swagelok Port
RESOLVE Sample Delivery System (SDS)

- Temperature and pressure-controlled sample chamber that provides a consistent sample environment for the GC or MS
- Accurately manages temperature (0-150°C) and sample pressure (0-35 psia), with the goal of reducing sample carry over, particularly water
- Can control sample gas and dilution gas delivery to target desired concentration ranges
SDS conditioning proved to be key for stable water quantification using GC.

High temperature conditioning sample with SDS (e.g. 140°C) provided much better water signal stability and repeatability.
Key Performance Parameters (KPP)

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>State of the Art</th>
<th>Threshold Values</th>
<th>R&TD Goals</th>
<th>Actual Values / Current Best Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Mass</td>
<td>15 kg</td>
<td>15 kg</td>
<td>11 kg</td>
<td>14.94 kg ETU (14.69 kg for flight) (MEL input, 5/1/13)</td>
</tr>
<tr>
<td>Average Power¹</td>
<td>80 W</td>
<td>100 W</td>
<td>80 W</td>
<td>75 W checkout (PEL, 2/28/13)</td>
</tr>
<tr>
<td>Peak Power</td>
<td>163 W</td>
<td>200 W</td>
<td>160 W</td>
<td>200 W (PEL, 2/28/13)</td>
</tr>
<tr>
<td>Water Vapor Concentration²</td>
<td>N/A³</td>
<td>0.5-95%</td>
<td>0.1-99%</td>
<td>0.1–99% (Test Data 6/3/2013)</td>
</tr>
<tr>
<td>Mass range (MS systems)</td>
<td>Ion trap 12-150amu Mag Sector 2-130amu Quad 1-60amu (1.8sec/mass scan) All Scanning</td>
<td>Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-65 AMU</td>
<td>Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-80 AMU</td>
<td>6.7 Hz, 1-70 AMU (Test data, 5/3/13)</td>
</tr>
</tbody>
</table>

¹ State of the art values are based on laboratory instruments, not flight instruments
² Gas phase concentration, does not refer to percent mass in soil
³ Not stated for existing flight instruments, depends on background levels and carry over
GC Evolution (Inficon)

<table>
<thead>
<tr>
<th>COTS (1st Gen)</th>
<th>2nd Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold spots (TCD and other Connectors)</td>
<td>Thermal control of heated zones</td>
</tr>
<tr>
<td>Operated by COTS software</td>
<td>Operated by Q6</td>
</tr>
<tr>
<td>Column oven inefficient and heavy</td>
<td>Decreased mass and power usage</td>
</tr>
<tr>
<td>Portable design</td>
<td>More rugged design</td>
</tr>
</tbody>
</table>

First Generation GC Second Generation GC
MS Evolution (OIA)

<table>
<thead>
<tr>
<th>COTS</th>
<th>1st Iteration</th>
<th>2nd Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated vacuum chamber</td>
<td>No vacuum chamber</td>
<td>No vacuum chamber</td>
</tr>
<tr>
<td>1.1 Kg magnet</td>
<td>1.1 Kg magnet</td>
<td>0.6 Kg magnet</td>
</tr>
<tr>
<td>Two detector boards</td>
<td>Two detector boards</td>
<td>Merged detector boards</td>
</tr>
<tr>
<td>Mounted to wall of vacuum chamber (3.9 Kg)</td>
<td>Mounted to lighter material base (2.0 Kg)</td>
<td>Mass further reduced (1.5 Kg)</td>
</tr>
<tr>
<td>No dust shield</td>
<td>Full/partial dust shield</td>
<td>Full dust shield</td>
</tr>
<tr>
<td>No internal thermal isolation</td>
<td>Internal thermal isolation</td>
<td>Internal thermal isolation</td>
</tr>
<tr>
<td>Standard electronics</td>
<td>Standard electronics</td>
<td>Some modified electronics</td>
</tr>
<tr>
<td>Electronics in ambient air</td>
<td>Electronics in ambient air</td>
<td>Electronics in vacuum</td>
</tr>
</tbody>
</table>
MS Design Iteration 1

- **COTS Instrument**
 - HV tester (hardware)
 - IonCam w/ Siliconert

- **Fabrication**
 - Bell Jar MS

- **Software**
 - Three ICDs

- **Design Trades (to be detailed later)**
Future testing for other COTS boards will utilize PRTs in this manner.

IonCam operating with the IHV board in thermal vacuum.
Thermal imaging was used on the board operating in ambient air to determine location of heat sources.

Majority of heat from Blackfin processor

DIG Board

Cover was removed and temperatures were at steady-state: thermocouples were not attached. Camera setting was auto range. Vacuum-side was on.
Each electronics card is mounted to a chassis.

The various chassis are mounted to a frame which sinks heat into an interface with RESOLVE.

Interface point (4 in current design, also bottom surface of frame).

Current status: Card chassis are in fabrication. Final design of mounting frame in progress (may change from what is shown). IR Camera work in progress.
LAVA Software Overview – ETU Architecture

RESOLVE Control Unit (RCU)
(Freescale PowerPC --- a Proton Understudy)

WDD Camera Agent
NIRST Agent
Avionics Agent
Fluid System Agent

Onboard Recorder

RS-422
RS-232
CAN 500 kBit/s

LabVIEW Workstation
LabVIEW Workstation
LabVIEW Workstation

Emulated Avionics

Vacuum Chamber

GCMS Instrument Interface Computer (IIC)
(Xiphos Q6S)

GCMS Agent

GCMS Instrument Interface Computer (IIC)

USB

Ethernet

CAN 125 kBit/s

CAN-125

Sample Delivery System (SDS) Electronics

Sample Delivery System (SDS)

Mass Spectrometer (MS)

Gas Chromatograph (GC)

Water Droplet Demonstration Camera

NIRST

Fluid System Integrated Manifold

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

Pg. 29
Key Performance Parameters (KPP)

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>State of the Art</th>
<th>Threshold Values</th>
<th>R&TD Goals</th>
<th>Actual Values / Current Best Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Mass</td>
<td>15 kg</td>
<td>15 kg</td>
<td>11 kg</td>
<td>14.94 kg ETU (14.69 kg for flight)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MEL input, 5/1/13)</td>
</tr>
<tr>
<td>Average Power¹</td>
<td>80 W</td>
<td>100 W</td>
<td>80 W</td>
<td>75 W checkout (PEL, 2/28/13)</td>
</tr>
<tr>
<td>Peak Power</td>
<td>163 W</td>
<td>200 W</td>
<td>160 W</td>
<td>200 W (PEL, 2/28/13)</td>
</tr>
<tr>
<td>Water Vapor Concentration²</td>
<td>N/A³</td>
<td>0.5-95%</td>
<td>0.1-99%</td>
<td>0.1–99% (Test Data 6/3/2013)</td>
</tr>
<tr>
<td>Mass range (MS systems)</td>
<td>Ion trap 12-150 amu</td>
<td>Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-65 AMU</td>
<td>Demonstrated data collection of a full mass spectrum at a sample rate of ≥ 6 Hz for 1-80 AMU</td>
<td>6.7 Hz, 1-70 AMU (Test data, 5/3/13)</td>
</tr>
</tbody>
</table>

¹ State of the art values are based on laboratory instruments, not flight instruments
² Gas phase concentration, does not refer to percent mass in soil
³ Not stated for existing flight instruments, depends on background levels and carry over

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

Pg. 30
Vacuum Demonstration Unit GCMS Design: Integrated COTS Approach
RESOLVE AES/OCT Project Status

Gen IIIA: Field Development Unit (FDU)
- FDU System Requirements Review 03/03/11 Completed
- FDU 30% Design Review 05/25/11 Completed
- FDU 90% Design Review 08/26/11 Completed
- FDU 90% Delta Design Review 10/28/11 Completed
- Field Demo Subsystem HW Initial Delivery to KSC 02/27/12 Completed
- Field Demo HW Integration onto Rover Complete 06/29/12 Completed
- Field Demo HW Delivered to Field Test Location 07/09/12 Completed
- Demonstrate Integrated RESOLVE ops on Rover in Field Test 07/27/12 Completed
- AES Project Continuation Review 09/18/12 Completed

Gen IIIB: Engineering Test Unit (ETU)
- ETU SRD Initial Delivery 12/16/11 Completed
- Complete ETU System Requirements Review 08/29/12 Completed
- ETU 30% Design Review 12/14/12 Completed
- ETU 90% Design Review 07/26/13 Completed
- AES Project Continuation Review 09/13
- OCT Project Evaluation/Continuation Review 09/13
- ETU Subsystem Environment Testing Complete 05/12/14
LAVA Software Overview – Flight Architecture

RESOLVE Control Unit (RCU)
(Space Micro Proton)

- Fluid System Agent
- Avionics Agent
- NIRST Agent
- WDD Camera Agent
- GCMS Agent
- VML
- Onboard Recorder

Ground Link
(DDS to CCSDS)

Space Link
(CCSDS to DDS)

Ethernet Switch

Ethernet

CAN 500 kBit/s

RS-422

USB

Can 125 kBit/s

Avionics Stack

Fluid System Integrated Manifold (w/SDS)

NIRST

Water Droplet Demonstration Camera

Gas Chromatograph (GC)

Mass Spectrometer (MS)

LabVIEW Workstation

LabVIEW Workstation

LabVIEW Workstation

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Brassboard GC/MS for RESOLVE

Ken Wright (Inficon); Andres Diaz (NTCR); Bob Kline-Schoder, Paul Sorensen, Brandon Smith (Creare)

INFICON's Transpector MPH:
- Ultra Fast Measurements (0-65 m/z @ 8.5Hz).
- Smaller and Lighter (>30% weight reduction)
- Nine Decades of Dynamic Range.
- New High Performance and Field Replaceable EM/FC Detector (Developed with Detector Technology Inc.).
- Field Replaceable Dual Filament Assemblies (W or Y2O3/Ir).
- Easy to Use Programming Interface - JSON over HTTP or LabVIEW.
Continuing Challenges

Budgetary Cuts
Requirements evolving
Commercial Partners Deliveries/IP issues
Flight Forward Plans

- Stand down on purchases until payload matures
- Ground Calibration
- Failure Mode Testing
- Material off-gassing testing
- Vibe tests
- Verification and Validation
- Compare results from SBIR Phase II

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Complete RESOLVE Mission Traverse

- 9 of 12 'hot spots' found
- >1 km total traverse
- ~500 m between auger/cores
Key RESOLVE Mission Design Trades

<table>
<thead>
<tr>
<th>Mission Attributes</th>
<th>Base</th>
<th>Mid</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Long duration sunlight</td>
<td>Min. Sun/Shadowed</td>
<td>Permanent Shadow</td>
</tr>
<tr>
<td>Sample Site Selection</td>
<td>Surface features/minerals</td>
<td>Neutron Spec on Rover</td>
<td>Neutron Spec with GPR</td>
</tr>
<tr>
<td>Subsurface Sample Acquisition</td>
<td>Arm/scoop</td>
<td>Auger w sample transfer</td>
<td>Core Drill/Push Tube w sample transfer</td>
</tr>
<tr>
<td>Sample of Interest</td>
<td>Rock/regolith</td>
<td>Ice</td>
<td>Polar volatiles</td>
</tr>
<tr>
<td>Sample Depth</td>
<td><0.75 m</td>
<td>1.0 m</td>
<td>2.0 m</td>
</tr>
<tr>
<td>Sample Measurement</td>
<td>Downhole Optical for ice</td>
<td>Oven w Tunable Diode Lasers</td>
<td>Oven with GC/MS and Near IR</td>
</tr>
<tr>
<td>Sample Preparation</td>
<td>None</td>
<td>Crushing</td>
<td>Thin Section</td>
</tr>
<tr>
<td>Mineral Characterization</td>
<td>None</td>
<td>Single instrument - Near IR</td>
<td>Multiple Instruments</td>
</tr>
<tr>
<td>Regolith/Dust Physical Characterization</td>
<td>None</td>
<td>Camera & Drill Response</td>
<td>Microscope & Geotechnical Instruments</td>
</tr>
<tr>
<td>Volatile/Product Collection</td>
<td>None</td>
<td>Water</td>
<td>Water and gas volatiles</td>
</tr>
<tr>
<td>Oxygen Extraction from Regolith</td>
<td>None</td>
<td>H₂ Reduction w Same Oven</td>
<td>Separate demo</td>
</tr>
<tr>
<td>Temperature/Radiative Environment Characterization</td>
<td>None</td>
<td>External temp sensor</td>
<td>Instrumented Radiator</td>
</tr>
<tr>
<td>Mobility</td>
<td>None - Lander</td>
<td>Hopper</td>
<td>Rover</td>
</tr>
<tr>
<td>Power</td>
<td>Non-recharge battery</td>
<td>Battery/Solar Array</td>
<td>Nuclear</td>
</tr>
<tr>
<td>Communications</td>
<td>Direct to Earth-rover</td>
<td>Direct to Earth-lander; rover relay</td>
<td>Comm Relay Satellite</td>
</tr>
</tbody>
</table>

Blue Bold = Baseline
Red Italic = Backup
Modified High Voltage Board

- **General requirements**
 - Retain current board dimensions and part location of larger parts
 - Boards should be manufactured under J-STD-001 E
 - Follow NASA recommendations for vacuum parts as much as practical
 - Do not install test points

- **Modifications**
 - Attempt to protect low voltage DAC (U33)
 - The DAC is usually destroyed when HV arcing occurs
 - Improve emission current measurement and control
 - Designing a new power control
 - Design of a new emission current control
 - New firmware to support changes
 - See "docushare" for design documentation (BOM, schematics) and control loop simulation
IHV Board - Filament Control Function

For tuning and start up the electron emission is controlled by a power set-point. After the Electron Impact ionizer is tuned and stable, the control can be switched to emission control.

0 to 2 seconds:
Power mode set to 2.6 W
Software ramp 2 W/ s

2 to 4 seconds:
Switch to emission control (at 42 uA). No instabilities, small randomness bump added.

4 to 4 to 6 seconds:
In emission control set to 2 uA.

6 to 10 seconds:
In emission control set to 20 uA

8 to 10 seconds:
Power mode set to 2.6 W
IHV Board – Timeline & Risks

August 5 - Deliver 1 modified IHV to JPL for vacuum testing
September 2 – Deliver 1 modified IHV to KSC as part of Phase II MS

• July 24 receive assembled board at OI
 – EMCO DC/DC has long lead time
• General risks
 – Manual routing of the IHV board invites errors
 – Scale factors and component values were estimated and might need adjustment
 – J-STD-001 E will not allow patches but will require spinning the board
• Off-set for emission measurement is not controlled
Merged Detector Board

- Redesign IonCCD detector
 - Merge Detector Board and Personality Board
 - Reduce surface area, size, and weight
 - Eliminate board to board connector, improve routing
 - Incorporate DCRs
 - Improve mounting and ruggedization of detector
 - See "docushare" for design documentation (BOM, schematics)

- Ceramic PCB substrate
 - Better temperature equalization across the IonCCD die
 - Reduces VOC outgassing (low coefficient of thermal expansion)

- Standards to be used
 - AMS2404 for Nickel plating
 - AMS2422 and MIL-G-45204 for Gold plating
Merged Detector Board - Dimensions

L: 91.44 mm
W: 40.64 mm
H: 2.50 mm
Weight: 50 g max

Front with IonCCD

Back with components
Mass Spectrometer

- Mass = 1.5 kg
- Overall Dimensions = 61 mm x 100 mm x 256 mm
Mass Spectrometer
Ion Source With Column Transfer

- **Mass**: 0.067 kg
- **Thermal**
 - Heat Source: 15 W cartridge heater
 - Max Temperature: 200°C
- **Column Transfer**
 - Beswick compression fitting: 1/16” compression with 0.067” dia bore
 - Ferrule: Restek 1/16” dual column, Vespel/Graphite
 - Column transfer fitting heated indirectly from ion source heater
 - Alumina 92% electrical insulator used to isolate fitting from 1000 VDC on ionizer block
- **Ionizer Block**
 - Ionization volume unchanged from existing IONCAM systems
Ion Source With Column Transfer

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Ion Source With Column Transfer

SECTION A-A
SCALE 1.5:1

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Detector Assembly

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QTY.</th>
<th>DESCRIPTION</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>TOP CLAMP SLIDE BASE</td>
<td>6061-T6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>TOP CLAMP SLIDE</td>
<td>6061-T6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CLAMP SPRING RETAINER</td>
<td>6061-T6</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>SPRING, COMPRESSION</td>
<td>MUSIC WIRE OR 302SS</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>ROLL PIN</td>
<td>4xx SS</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>SCREW, #6-32</td>
<td>18-8 SS</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>YOKE</td>
<td>ASTM A36 Steel</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>CCD BOARD ASSY</td>
<td>ALUMINA</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>BOTTOM CLAMP SLIDE</td>
<td>6061-T6</td>
</tr>
</tbody>
</table>

- IonCCD, Magnet, Upper and Lower Clamp
- Mass: 0.611 kg
- Field: 7400G +/-20G
Compact HDMR Magnet

- Mass = 0.503 kg (± 0.222 kg)
- Field = 7400G \pm 20G
- Magnetic Gap = 1 mm
Optical Bench

- Mass = 0.350 kg
- Material: PEEK 30% GF
- Plating
 - Base layer: Copper
 - Top Layer: Nickel
- Monolithic Construction
Optical Bench

- Traces for some electrical connections will be machined into plating
- Plating will provide continuous ground path similar to the all metal vacuum chamber of the IONCAM
Dust Cover

- Mass = 0.337 kg
- Material: 6061 Al
- Unvented
- Monolithic construction
Mounting

NOTES:

(1) ALL DIMENSIONS ARE IN mm UNLESS NOTED.
(2) TOLERANCES, UNLESS NOTED:
 X ± 0.50mm
 X.X ± 0.15mm
 X.X.X ± 0.07mm
(3) ASSEMBLY WEIGHT: APPROX. 1.50 kg
(4) VIEW SHOWN WITHOUT DUST COVER OR MU SHIELD.
(5) MOUNTING CONTACT SURFACE AREA BETWEEN OPTICAL BENCH AND MOUNTING PLATE: 10965 mm²

OPTICAL BENCH MATERIAL: PEEK, 30% GLASS REINFORCED

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Thermal Study +40°C Ambient

- 40°C Loads
 - Static
 - Heat Loads
 - 3W filament wire
 - 0.2W at CCD face (0.1W for CCD and 0.1W for board components)
 - 13.75W for cartridge heater
 - Radiation
 - Large Peek faces; Inside of the dust cover; Ion source mounting block and heater body
 - Temperature
 - 40°C on the bottom face of the bench
 - -10°C on the bottom face of the magnet tie bar (for certain simulations)
 - Transient
 - Heat Loads
 - 3W filament wire
 - 0.2W at CCD face (0.1W for CCD and 0.1W for board components)
 - 15W for cartridge heater, which is controlled by a thermostat set at the RTD location to keep the temperature between 205 and 210
 - Radiation
 - Same as above
 - Temperature
 - 40°C on the bottom face of the bench
 - 40°C initial temperature
Thermal Study +40°C Ambient

- With tie-bar at -10°C
Thermal Study +40°C Ambient

- With tie-bar at -10°C
Thermal Study +40°C Ambient

- With tie-bar at -10°C
Thermal Study +40°C Ambient

- With **NO** tie-bar heat sink
Thermal Study +40°C Ambient

- With NO tie-bar heat sink
Thermal Study +40°C Ambient

- With NO tie-bar heat sink
- Ionization volume temperature virtually unaffected by presence of tie bar under the Detector Assembly
Thermal Study +40°C Ambient

Study name: Transient03
Plot type: Thermal Thermal2
17:10 Monday June 03 2013

X Title: Time (sec)
Y Title: Temp (Celsius)

Point	X min	Y1 (Location 1)	Y2 (Location 2)
1 | 0 | 40 | 1
2 | 240 | 100 | 2
3 | 480 | 120 | 3
4 | 720 | 140 | 4
5 | 960 | 160 | 5
6 | 1200 | 180 | 6
7 | 1440 | 200 | 7
8 | 1680 | 220 | 8
9 | 1920 | 240 | 9
10 | 2160 | 260 | 10
11 | 2400 | 280 | 11
12 | 2640 | 300 | 12
13 | 2880 | 320 | 13
14 | 3120 | 340 | 14

40°C Ambient Condition Temperature Response Point 1

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Thermal Study +10°C Ambient

- **10°C Study**
 - **Static**
 - Heat Loads
 - 3W filament wire
 - 0.2W at CCD face (0.1W for CCD and 0.1W for board components)
 - 15W for cartridge heater
 - Radiation
 - Large Peek faces; Inside of dust cover; Ion source mounting block and heater body
 - Temperature
 - 10°C on the bottom face of the bench
 - -10°C on the bottom face of the magnet tie bar (for certain simulations)
 - **Transient**
 - Heat Loads
 - 3W filament wire
 - 0.2W at CCD face (0.1W for CCD and 0.1W for board components)
 - 15W for cartridge heater, which is controlled by a thermostat set at the RTD location to keep the temperature between 205 and 210
 - Radiation
 - Same as above
 - Temperature
 - 10°C on the bottom face of the bench
 - 10°C initial temperature

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Thermal Study +10°C Ambient

- With tie-bar at -10°C
Thermal Study +10°C Ambient

- With tie-bar at -10°C
Thermal Study +10°C Ambient

- With tie-bar at -10°C
Thermal Study +10°C Ambient

- With tie-bar heat sink
- Ionization volume temperature virtually unaffected by presence of tie bar under the Detector Assembly
Thermal Study +10°C Ambient

- With NO tie-bar heat sink
Thermal Study +10°C Ambient

- With NO tie-bar heat sink
Thermal Study +10°C Ambient

- With NO tie-bar heat sink
Thermal Study +10°C Ambient

Study name: Transient1-10
Plot type: Thermal Thermal2
19:35 Monday June 03 2013

X Title: Time (sec)
Y Title: Temp (Celsius)

<table>
<thead>
<tr>
<th>Point</th>
<th>X (Location 1)</th>
<th>Y1 (Location 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240</td>
<td>4 69.829</td>
</tr>
<tr>
<td>2</td>
<td>480</td>
<td>8 103.05</td>
</tr>
<tr>
<td>3</td>
<td>720</td>
<td>12 122.39</td>
</tr>
<tr>
<td>4</td>
<td>960</td>
<td>16 134.91</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td>20 143.75</td>
</tr>
<tr>
<td>6</td>
<td>1440</td>
<td>24 150.41</td>
</tr>
<tr>
<td>7</td>
<td>1680</td>
<td>28 155.69</td>
</tr>
<tr>
<td>8</td>
<td>1920</td>
<td>32 160.02</td>
</tr>
<tr>
<td>9</td>
<td>2160</td>
<td>36 163.66</td>
</tr>
<tr>
<td>10</td>
<td>2400</td>
<td>40 166.78</td>
</tr>
<tr>
<td>11</td>
<td>2640</td>
<td>44 169.48</td>
</tr>
<tr>
<td>12</td>
<td>2880</td>
<td>48 171.85</td>
</tr>
<tr>
<td>13</td>
<td>3120</td>
<td>52 173.92</td>
</tr>
<tr>
<td>14</td>
<td>3360</td>
<td>56 175.76</td>
</tr>
<tr>
<td>15</td>
<td>3600</td>
<td>60 177.4</td>
</tr>
<tr>
<td>16</td>
<td>3840</td>
<td>64 178.85</td>
</tr>
<tr>
<td>17</td>
<td>4080</td>
<td>68 180.15</td>
</tr>
<tr>
<td>18</td>
<td>4320</td>
<td>72 181.32</td>
</tr>
<tr>
<td>19</td>
<td>4560</td>
<td>76 182.37</td>
</tr>
<tr>
<td>20</td>
<td>4800</td>
<td>80 183.31</td>
</tr>
</tbody>
</table>

10°C Ambient Condition
Temperature Response Point 1

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10°C</td>
</tr>
<tr>
<td>10</td>
<td>110.63</td>
</tr>
<tr>
<td>20</td>
<td>118.98</td>
</tr>
<tr>
<td>30</td>
<td>125.35</td>
</tr>
<tr>
<td>40</td>
<td>130.45</td>
</tr>
<tr>
<td>50</td>
<td>134.66</td>
</tr>
<tr>
<td>60</td>
<td>138.21</td>
</tr>
<tr>
<td>70</td>
<td>141.27</td>
</tr>
<tr>
<td>80</td>
<td>143.93</td>
</tr>
<tr>
<td>90</td>
<td>146.26</td>
</tr>
</tbody>
</table>

10°C Ambient Condition
Temperature Response Point 2

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10°C</td>
</tr>
<tr>
<td>10</td>
<td>110.63</td>
</tr>
<tr>
<td>20</td>
<td>118.98</td>
</tr>
<tr>
<td>30</td>
<td>125.35</td>
</tr>
<tr>
<td>40</td>
<td>130.45</td>
</tr>
<tr>
<td>50</td>
<td>134.66</td>
</tr>
<tr>
<td>60</td>
<td>138.21</td>
</tr>
<tr>
<td>70</td>
<td>141.27</td>
</tr>
<tr>
<td>80</td>
<td>143.93</td>
</tr>
<tr>
<td>90</td>
<td>146.26</td>
</tr>
</tbody>
</table>

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction

Pg. 76
Thermal Study -20°C Ambient

-20°C Study
 - Static
 • Heat Loads
 - 3W filament wire
 - 0.2W at CCD face (0.1W for CCD and 0.1W for board components)
 - 19W for cartridge heater
 • Radiation
 - Large Peek faces; Inside of dust cover; Ion source mounting block and heater body
 • Temperature
 - -20°C on the bottom face of the bench
 - -10°C on the bottom face of the magnet tie bar (for certain simulations)
 - Transient
 • Heat Loads
 - 3W filament wire
 - 0.2W at CCD face (0.1W for CCD and 0.1W for board components)
 - 20W for cartridge heater, which is controlled by a thermostat set at the RTD location to keep the temperature between 205 and 210
 • Radiation
 - Same as above
 • Temperature
 - -20°C on the bottom face of the bench
 - -20°C initial temperature
Thermal Study -20°C Ambient

- With tie-bar at -10°C
Thermal Study -20°C Ambient

- With tie-bar at -10°C
Thermal Study -20°C Ambient

- With tie-bar at -10°C
- Ionization volume temperature virtually unaffected by presence of tie bar under the Detector Assembly

RESOLVE: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction
Thermal Study -20°C Ambient

- With NO tie-bar heat sink
Thermal Study -20°C Ambient

- With NO tie-bar heat sink
Thermal Study Heat Dissipation

+40 deg C

<table>
<thead>
<tr>
<th>No Tie Bar</th>
<th>Mounting screws: 6.9 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/m²²</td>
<td>Average: 7069.7</td>
</tr>
<tr>
<td></td>
<td>Max: 26292</td>
</tr>
<tr>
<td></td>
<td>Min: 386.58</td>
</tr>
<tr>
<td></td>
<td>Magnet Tie Bar: 2.1 W</td>
</tr>
<tr>
<td></td>
<td>Average: 1465.5</td>
</tr>
<tr>
<td></td>
<td>Max: 10280</td>
</tr>
<tr>
<td></td>
<td>Min: 0.38284</td>
</tr>
<tr>
<td></td>
<td>Aluminum Heat Sink Bar: 3.0 W</td>
</tr>
<tr>
<td></td>
<td>Average: 30829</td>
</tr>
<tr>
<td></td>
<td>Max: 1.19e+05</td>
</tr>
<tr>
<td></td>
<td>Min: 4384.6</td>
</tr>
</tbody>
</table>

-20 deg C

<table>
<thead>
<tr>
<th>No Tie Bar</th>
<th>Mounting screws: 9.5 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/m²²</td>
<td>Average: 9745.3 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Max: 36035 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Min: 533.63 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Magnet Tie Bar: 2.8 W</td>
</tr>
<tr>
<td></td>
<td>Average: 1980.4 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Max: 11563 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Min: .93043 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Aluminum Heat Sink Bar: 3.9 W</td>
</tr>
<tr>
<td></td>
<td>Average: 40863 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Max: 1.575e+05</td>
</tr>
</tbody>
</table>

Tie Bar

<table>
<thead>
<tr>
<th>Tie Bar</th>
<th>Mounting Screw: 9.3 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/m²²</td>
<td>Average: 9469.7 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Max: 35640 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Min: 522.4 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Magnet Tie Bar: 2.8 W</td>
</tr>
<tr>
<td></td>
<td>Average: 525.93 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Max: 1989.7 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Min: 1.0277 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Aluminum Heat Sink Bar: 3.9</td>
</tr>
<tr>
<td></td>
<td>Average: 41018 W/m²²</td>
</tr>
<tr>
<td></td>
<td>Max: 1.5811e+05</td>
</tr>
</tbody>
</table>