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Abstract— We describe the benefit of using closed-loop 

measurements for a radio receiver paired with a counterpart 
transmitter.  We show that real-time analysis of the soft decision 
output of a receiver can provide rich and relevant insight far 
beyond the traditional hard-decision bit error rate (BER) test 
statistic.  We describe a Soft Decision Analyzer (SDA) 
implementation for closed-loop measurements on single- or dual- 
(orthogonal) channel serial data communication links.  The 
analyzer has been used to identify, quantify, and prioritize 
contributors to implementation loss in live-time during the 
development of software defined radios.  This test technique gains 
importance as modern receivers are providing soft decision 
symbol synchronization as radio links are challenged to push 
more data and more protocol overhead through noisier channels, 
and software-defined radios (SDRs) use error-correction codes 
that approach Shannon’s theoretical limit of performance. 
 

Index Terms— block codes, channel coding, codes, satellite 
communication, test equipment 
 

I. INTRODUCTION 
OFTWARE defined radios are answering today’s challenge 
of transferring more data in less bandwidth with less 

signal, more interference, and more multipath distortion by 
using aggressive error correction codes, transmit pre-filters, 
tighter constraints on signal formation, and dynamically 
adaptive filter compensation.  The corresponding decoders [1] 
[2] exhibit steep separation between performance regions and 
this separation is usually premised on additive Gaussian white 
noise (AWGN). 

But what is the performance of the receiver and what is the 
performance of the decoder in a systems environment?  How 
can we separate the implementation losses of the receiver from 
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those of the decoder for a specific transmitter implementation 
and a non-ideal but mission-representative channel?  [3]  To 
address these questions, we developed an instrument that can 
accurately measure the ratio of symbol energy to noise density 
(Es/N0) and symbol error rate (SER) at the input to the decoder 
for an arbitrarily formatted stream. 

Stand-alone receivers generally combine the demodulator 
with a bit synchronizer which reconstructs the clock and 
decides the binary value of each bit.  Many high-performance 
receivers render “soft” decisions; the binary value is supported 
by the quantized distance from the decision threshold.  A 
decoder then can gauge the certainty of each decision and 
focus on correcting bits with higher probability of error.  We 
distinguish “symbols” and “bits” by the external consideration 
of whether an encoder is used. 
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Figure 1  Closed Loop and Soft Decision Test Points 

 
Closed-loop measurements allow us to know the 

performance of an actual combination of hardware and test 
conditions while the intended application (audio, video, file 
exchange, etc.) is running.  This is essential for measuring the 
performance of error-correction algorithms in their actual 
operating environment.  The expedient of measuring link 
performance using a pseudorandom (PN) test-pattern 
sequence, then measuring the performance of the decoder and 
application, is generally a very tedious and unsatisfactory 
exercise.  Link performance changes when the link reacquires 
after the data source is reconfigured due to the lock phase and 
symbol timing, and drift can be very significant compared to 
the steepness of a decoder threshold.  Using this technique, it 
is not necessary for the instrument to depend on the data 
format or even the data rate. 

By comparing the soft-decision test point with the 
transmitted sequence and analyzing the result, we were able to 
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construct a wide variety of helpful indicators and useful figures 
of merit that accelerate the work of communications system 
development and integration. 

II. THE SOFT DECISION INTERFACE 
Every receiver we have examined has implemented the soft 

decision interface as a bus.  Bus widths vary, from hard 
decision to 3, 5, 6, 7, 8, or even 12 bits wide.  These bits 
describe the polarity and relative distance of the decision from 
the decision threshold, using sign-magnitude, one’s 
complement, or two’s complement representations.  For 
quadrature links (quadrature phase shift keyed, QPSK, where 
the channels may be staggered, SQPSK, also called offset, 
OQPSK), two busses may be provided, or a single bus may be 
commutated with the channel source possibly identified using 
a channel flag signal. 

A. Calculating Translation Tables 
The most simple and versatile interface implementation for 
interpreting the bus states is a lookup table.  Managing such a 
table can be enormously complex.  We were able to create a 
relatively simple and concise user-interface for developing 
translation tables. 

 

 
Figure 2  User Interface for Lookup Table Definition 

As illustrated in Figure 2, the user can swap the pin order or 
set pins to 0 or 1, can invert polarity of individual pins, can 
select the bus width as a subset of the physical bus width, 
invert the bus width or bit order, and select from sign-
magnitude or one’s complement representations.  Additionally, 
the decisions can be numerically offset (toward +� to 
compensate or create decision threshold imbalance, or away 
from 0 for translating to two’s complement or adding weight to 
decisions) and be scaled and clipped.  Our implementation 
translated to sign-magnitude format for internal use.  The 
internal format could then be translated for an output bus, as a 
translation service that allows us to connect one vendor’s 
receiver with another vendor’s external frame synchronizer 
and decoder. 

The versatility of this interface has been used for 
configuration checkout, to verify input and output signal 
connections line by line.  It has also been used to remap the 
least significant bit (LSB) as a copy of the sign bit (the hard 
data) to be used as a troubleshooting test point.  A systems 
integration test is an expensive effort and it needs to identify 
and list most of the incompatibilities, not stop at the first one.  
Thus, the table generator has compensated for inverted 
differential signals and other wiring conditions that could have 
held up a test. 

B. QPSK symbol order 
When the I channel transition timing is staggered mid-bit 

with the Q channel and data bits are alternated between the 
two channels, there is no sequencing ambiguity when 
reconstructing the data into a single stream.  Yet we 
encountered a receiver implementation that would sometimes 
reassemble the stream with temporally swapped bits, and there 
is also the case of QPSK that is not staggered, and so it was 
necessary to provide compensation for this condition of re-
ordered symbol pairs in the reassembled stream.  The 
condition is characterized by two correlators simultaneously 
detecting a match, causing data correlation to be indecisive 
while clock correlation is stable. 

III. ATTAINING AND MAINTAINING CORRELATION 
In order to perform closed-loop measurements, the transmit 

data stream and received data stream must be aligned with 
each other.  Closed-loop measurements presume that not only 
are the received (test) clock and data available, but also the 
transmitted (reference) clock and data for comparison.  Thus, 
this kind of measurement is usually confined to a laboratory 
setting and not normally conducted in the field on operational 
links.  With the advent of modern channel simulators it is 
becoming standard practice to sound [4] real channels where 
possible, or calculate time-varying channel impulse responses 
for critical scenarios (launch, stage separation, orbit, docking, 
re-entry) to use as repeatable test-cases. 

 
Figure 3  Quadrant Tracking and Reporting 

Phase shift key modulation achieves efficiency by 
suppressing the carrier entirely, and so the receiver has no 
phase reference.  The receiver assumes a phase, and then data 
on any channel can be demodulated as true or inverted.  
Knowing the receiver alignment (Figure 3) is important 
because it can correlate to performance.  An algorithm may 
favor certain quadrants, the developer may have only tested 
with (assumed) a specific quadrant, or imbalances may favor 
certain transmitter-receiver alignment pairs. 
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A. Clock Correlation 
If the two streams are truly phase-locked to each other, then 

the clocks should have the same average rate (barring data 
Doppler in the channel).  In this scenario, the rate of clock 
slips is constrained by the loop bandwidth of the receiver’s 
symbol synchronizer.  By persistence-filtering the difference 
between the reference and test clocks, we could monitor for 
accumulating slips. 

Correlating the reference and test clocks as well as the 
reference and test data provides two independent measures of 
slipping.  During initial setup and during receiver acquisition 
testing, the clock correlators provide the sanity check that the 
clocks are in fact coherent.  During testing, the clock 
correlators confirm that missing or extra symbols are real and 
not the symptom of a noise-induced correlation error. 

B. Data Correlation and Tracking with Slips and Rotations 
The instrument needs to maintain alignment between the test 

and reference streams when slips and rotations occur, at lower 
SNR and with more agility than the receiver, decoder, or frame 
synchronizer under test.  We implemented an entire matrix of 
variable-depth data correlators (Figure 4) to continuously 
monitor for constellation rotations and symbol slips. 

Correlation depths ranging from 16 bits to 512 bits provided 
different levels of agility.  We evaluated two correlation 
techniques, simple power correlation and a modified algorithm 
adapted from Massey [5] by Ken Andrews.  In this application 
where the data pattern is not fixed, we found that power 
correlation was simpler and more effective. 
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Figure 4  Continuous-Tracking Data Correlator Bank 
Our FPGA implementation allows correlations to be 

performed continuously, symbol by symbol.  Each interval, the 
reference (hard) and test (soft) symbols are compared in four 
quadrants, on-time as well as up to four positions slipped in 
either direction.  Voting is used to decide the winning 
correlation, which is variably persistence-filtered (slip 
threshold).  We discovered it was unnecessary to develop an 
acquisition algorithm, as disabling the persistence filter 
induces a very efficient search for alignment; however, 
systematic searching can be accelerated by stepping the entire 
nine-position window.  Tightening the filter (“slip threshold”), 
we were able to track at up to 40% SER (simulated, as this is 
well below the tracking threshold of most receivers) while still 
maintaining agility of less than 700 symbols, which is a 
fraction of a frame and less than the frequency of slipping for 
an appropriately tight symbol synchronizer loop. 

At a 50Msps data rate, the correlators perform up to 1.4 
billion multiplications and 1.8 billion additions per second.  
To achieve this, we adopted the sign-magnitude internal 
format so that a multiplication uses a single gate.  These 
figures assume that intermediate product terms are not 
recalculated and so the complexity does not increase with the 
window size. 
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Figure 5  Realignment Detection and Recovery 

After the scores have been calculated, a voting algorithm 
determines the winning correlation (Figure 5).  We found that 
some adjustable filtering is necessary before responding to the 
vote.  We also found that the tie-breaker algorithm was 
important, following the principle of “hold steady when blind.”  
The most probable winner needs to be selected, which is the 
current alignment if it is a contender. 

To accommodate catastrophic events larger than the slip 
window, a “watch-dog” was implemented to return the 
correlators to the proper alignment.  And of course an 
instrument that can detect slips, rotations, and glitches, can 
also collect statistics on the distribution of these events in a 
given scenario. [6] 

IV. SOFT DECISION HISTOGRAMS 
A receiver has the task of estimating the ideal signal from a 

noisy and distorted copy of a non-ideal transmission.  The 
receiver can estimate the signal-to-noise ratio using the error-
vector-magnitude, the soft decision statistics, or other 
techniques such as split symbol moment. 

 
Figure 6.  Example of an Uncorrelated Histogram 

As Figure 6 illustrates, a receiver estimating SNR for very 
noisy (or very clean) signal conditions is confounded by 
quantization, clipping of large values, symbol errors, and 
deviations from the premise of Gaussian white noise. 
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A. Correlated and Decomposed Histograms 
Using a closed-loop technique produces correlated 

histograms, as in Figure 7.  Since the instrument knows what 
the ideal signal is (the reference), it can measure the SNR at 
the output of the receiver, into the decoder, with absolute 
accuracy.  In the figure, the black line shows actual 
measurements, and the red curve is a fitted Gaussian 
distribution.  This measurement technique has been used to 
calibrate SNR estimators, and it has been observed that some 
decoders require an accurate estimate to achieve their 
performance claims. 

 
Figure 7.  Example of a Correlated Histogram 

But knowing the data sequence allows the instrument to go 
deeper.  We implemented a matrix of histograms (Figure 8), 
separating statistics depending on the transmitted symbol 
polarity, the channel the symbol was transmitted on, and either 
the symbol that preceded it, or activity on the other channel. 
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Figure 8.  Example of a Family of Histograms 

In Figure 8, taken from a real radio frequency (RF) link, we 
see that some symbols sent as “1” after “0” on the “Q” channel 

are nearly crossing the decision threshold, while there is no 
ambiguity about symbols sent as a “0” following another “0” 
using either channel.  We can say that the zero-to-one 
transition causes quantifiable inter-symbol interference (ISI) 
on the Q channel. 

Another example of additional information in a correlated 
histogram is provided in Figure 9, which depicts a non-
Gaussian behavior.  In the correlated histogram, we can see 
that although most of the decisions have very low amplitude, 
most of them are also correct.  This phenomenon was caused 
by saw-tooth oscillation in the receiver’s symbol scaler. 

 
Figure 9.  Example of Correlated and Uncorrelated Views 

of an Anomalous Receiver Behavior 
We discovered that by publishing histogram summary 

information to a file while running SER performance curves, 
we had data that could be further analyzed to illustrate and 
quantify phenomenon such as average symbol amplitude droop 
at low SNRs. 
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In Figure 10 for example, by further exploring data logged 
during SER test runs, we can see that different receiver designs 
use different algorithms to maintain their specified average 
symbol amplitude in noisy environments.  Thus it becomes 
obvious that an algorithm for scaling symbols to a log-
likelihood ratio, for example, cannot assume that the 
translation depends on the standard deviation alone. 

B. Analysis of Performance 
This instrumentation separates the performance of the 

receiver from the performance of the symbol processor 
because it directly measures the Es/N0 at the input to the 
symbol processor.  This was valuable, as it decoupled the 
performance of the frame synchronizer, prescaler, and decoder 
from that of the preamplifier, down-converter, filters, and 
demodulator and equalizer. 

The histograms can be analyzed to produce measurements 
of decision threshold imbalance, channel imbalance, and inter-
symbol interference (ISI) or inter-channel interference (ICI).  
We produced a measurement in decibels by using the “Q” 
function to relate each SER to an Es/N0 and then differencing.  
The instrument provides not only the measurement but also 
interpretation of the confidence interval around it.  
Additionally, we used the comparative amplitude and standard 
deviation in the correlated soft decisions to produce a decibel 
difference between the sample sets. 

This technique was also used for comparing to a baseline, 
for example to quickly sweep the degradation of receiver 
performance caused by symbol jitter introduced at the 
transmitter, for a range of signal-to-noise ratios, jitter rates, 
modulation indices, and loop parameters.  [6]  This data would 
not otherwise have been feasible to collect, and it lead to a 
new understanding of how to model the effects of jitter. [7] 

The histograms can be analyzed in other ways as well.  The 
computational cutoff rate in coding theory is a reflection of the 
shape of the distribution, and can be applied to identify 
contributors such as radio-frequency interference (RFI).  [8]  
Also, the relative sample sizes can be used to calculate the data 
transition density (DTD) and average binary value for the 
source data. 

Receiver performance depends on the quality of the 
transmitter and also the channel.  Components such as phased 
arrays or switched antenna elements also contribute phase and 
amplitude dynamics.  The ability to decompose situational 
receiver implementation loss into quantified contributors 
enables designers to systematically focus on specific 
countermeasures for specific distortions. 

V. EXTRAS 
Some valuable support features can be provided by this 

platform with relatively little additional investment. 

A. Receiver Acquisition Time 
Receiver acquisition time requirements are tedious to verify, 

and good statistical significance is important to assure that 
durable false-locks do not occur.  Independently measuring 

receiver acquisition times requires an external trigger signal 
“RF On” marking the time that the signal became available to 
the receiver.  Then the analyzer can efficiently observe the 
time to symbol synchronizer phase lock, and data correlation, 
and report the elapsed time in reference clock cycles.  This 
required an extra state machine to govern the otherwise pre-
existing instrumentation. 

B. Run Lengths 
Run lengths in the reference stream are easily instrumented 

in an FPGA.  Short runs can be analyzed by histogram to 
determine the randomness of the source data, a quality 
affecting clock recovery at the receiver.  Long runs are 
significant as they tend to correlate with link disruptions; and 
so we trapped these. 

 
Figure 11.  Run Length Distribution Measurement 

In the example of Figure 11, the source data stream is a 
repeating pseudo-random pattern that contains two runs of 12, 
one run of 13 “1”s, and one run of 14 “0”s. 

C. Historical Record 
Less frequent events such as symbol slips, constellation 

rotations, and larger glitches, can be time-stamped and 
recorded for correlation with causal phenomena observed by 
other instruments.  Maintaining a log file helped the 
productivity of long runs; for example, to measure 
performance of a decoder at a discard rate expected to be near 
10-7, we could leave instrumentation configured over a 
weekend. 

In such a case, the SDA log files were used to identify a 
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periodic glitch (once an hour-- to the second) that was 
impeding our ability to perform overnight runs.  These glitches 
were so brief and so infrequent that they were impossible to 
capture and ascribe, except that the logs made the nature of the 
glitch completely obvious.  The problem was then trapped and 
quickly traced to a queue overflow in the data generator and 
several good overnight runs followed. 

In another case, timestamps in the log file were compared to 
an oscilloscope to separate decoder losses caused by the 
operating Es/N0 from those caused by unstable receiver lock.  
A modern oscilloscope was placed into a “fast-frame” mode 
and returned a file of time-stamps for trigger events caused by 
receiver loss of lock, which could then be ignored as sources 
of decoder problems. 

D. Channel Simulation 
We incorporated a channel simulator that over-writes the 

soft part of incoming soft decisions.  It was invoked to provide 
sanity checks on symbol processor performance, to isolate 
performance factors including scaling and binning, ISI, 
receiver clock recovery, lack of repeatability, and SNR 
estimation accuracy.  The channel simulator we implemented 
was crude but served the needs of the developers. 

Additionally, our implementation can rotate the quadrant of 
the outgoing decision stream.  This was used in practice to 
provide controlled instantaneous quadrant changes for the 
symbol processor under test, as well as to cycle through and 
verify each quadrant, or select a specific quadrant when 
quadrant correction in the symbol processor was not yet 
implemented. 

E. Discrete Programmable Test Points 
Discrete signals are important for triggering external capture 

devices like logic analyzers and oscilloscopes.  For example, 
when a slip is detected, an oscilloscope could be triggered and 
the capture analyzed by a jitter package to provide insight into 
the phenomenon. 

There are many conditions one might use for triggering or 
otherwise correlating events, and we balanced sophistication 
with complexity by providing only four test points, but each of 
these could be used to probe any of a long list of signals:  
slips, rotations, slips or rotations, clock phase lock, correlation 
lock, watch-dog events, long runs.  Additionally event pulses 
can be width-encoded to communicate the direction and 
magnitude of an event, and modern oscilloscope triggers can 
filter the characteristics of the event.  This selectivity enables 
an engineer to quickly trace the specific causes of individual 
problems in an operating region where performance is 
stretched near breaking. 

VI. CONCLUSION 
The instrument described here has been used extensively in 

the deployment of Low Density Parity Check (LDPC) codes 
with Consultative Committee for Space Data Systems 
(CCSDS) standard framing [9] and Internet Protocol packets 
in a Tracking and Data Relay Satellite (TDRS) System 

(TDRSS) environment.  However, it could also support turbo 
codes or other data formats used on serial RF links, and could 
be applied for example to commercial communication 
satellites links. 
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