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TECHNICAL MEMORANDUM

REACTOR SIMULATOR INTEGRATION AND TESTING

1.  INTRODUCTION

1.1  Background

A 40 kWe fission power system Technology Demonstration Unit (TDU) is being developed 
under the Fission Power Systems project. The TDU is composed of a non-nuclear core simulator,  
a sterling engine power conversion system, an annular linear induction pump (ALIP), liquid 
sodium/potassium (NaK) coolant, and radiator heat rejection. In support of TDU development, 
the reactor simulator (RxSim) test loop was developed to perform integrated component testing 
to verify operability prior to the TDU development. The RxSim was a NaK-filled test loop com-
prising a 37-pin reactor core simulator, NaK-gaseous nitrogen (GN2) heat exchanger (HX) (for 
simulating the thermal load of the sterling power conversion system), an electromagnetic flow 
meter, and the TDU ALIP. In addition, although not part of the TDU, the RxSim had a second-
ary bypass loop across the ALIP to test a cold trap purification design. Figure 1 shows the RxSim 
layout. This Technical Memorandum covers testing in the RxSim loop; details of the design and 
development are in a separate report (J.B. Pearson, “Reactor Simulator Design and Build,”  
unpublished data, 2013).

Heat Exchanger

Flow Meter

Cold Trap
Filter

Reactor
Core Simulator

ALIP Pump

Figure 1.  RxSim test loop layout.
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2.  REACTOR SIMULATOR OPERATION AND CONTROL

RxSim control systems were developed to provide the following five modes of operation: 
basic, power, power ramp, temperature, and reactor simulator function (RSF). Figure 2 shows the 
user interface panel for operating the RxSim.

Figure 2.  User interface panel for the RxSim control.

The basic control mode allows the operator to control the individual voltage and current 
settings for each of the 12 heater zones of the core simulator. Figure 3 shows the user interface 
panel for this control mode. This panel also provides a mechanism for calibrating the analog com-
mand used to control the current setting of each power supply.

Figure 3.  User interface panel for basic control mode.
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Each of the 12 zones can operate in constant current or constant voltage mode depending 
on the voltage and current settings. When the load attempts to draw more current than the current 
setting, the constant current mode is enabled. Otherwise, the constant voltage mode is enabled. The 
voltage and current settings for each zone are limited to 150 V and 100 A, respectively.

The power control mode allows the operator to control the total power setting for the core. 
The power delivered to the core is distributed to each of the 12 heater zones according to weighting 
factors specified by the operator. For all operations to date, all weighting factors have been set to 1 
so that the power is distributed evenly among all 12 heater zones. The power to a zone is controlled 
by operating its power supply in constant current mode. Current and voltage measurements for 
each zone are used to calculate the load resistance and the target set points required to achieve the 
desired power setting. As new measurements are taken, the current setting is adjusted to compen-
sate for changes in the load resistance. When starting from a power setting of zero, the current and 
voltage settings of a zone are gradually increased until useable current and voltage measurements 
are obtained. The total power setting and power rate of change are limited and constrained by the 
maximum power and slew rate setting specified by the operator. The power control configuration 
dialog shown in figure 4 is provided for the operator to specify the maximum power, maximum slew 
rate, and weighting factors.

Figure 4.  User interface for configuration settings of the core power control mode.



4

 The power ramp control mode allows the operator to ramp the total power from a starting 
set point to a new set point over a specified period of time. Once the desired power is achieved, the 
control mode switches to the power control mode to maintain the new power setting. The ramp 
rate is limited by the maximum slew rate specified in the power control configuration dialog.

 The temperature control mode allows the operator to control the NaK outlet temperature 
of the core. This mode uses two control loops to achieve temperature control. When the difference 
between the outlet temperature measurement and the set point is less than a specified limit, a tem-
perature control loop is used. Otherwise, a temperature rise rate control loop is used. This ensures 
that the temperature does not rise or fall too rapidly when the difference between the measurement 
and set point are large. Each of the control loops combines a feedback (closed-loop) proportional-
integral-derivative (PID) controller with a feed-forward (open-loop) control. The feed-forward 
control uses knowledge about the system to estimate the power setting required to achieve the 
desired set point, whereas the PID controller responds to differences between the set point and the 
actual measured temperature and adjusts the power setting to eliminate those differences. Although 
the open-loop estimate is not perfect, it does provide most of the power setting required to achieve 
the set point. The combination of the feed-forward control and the PID controller greatly improves 
overall system performance compared with the PID controller alone. The open-loop power setting 
estimates for temperature control are given by equation (1) and the temperature rise rate is given by 
equation (2):

 �m cptTt � cpiTi( ) +A�� Tt
4 �Tc

4( ) (1)

and

 mccpc
�To + �m cpoTo � cpiTi( ) +A�� To

4 �To
4( )  . (2)

 To ensure bumpless transfer when the temperature control mode is activated and when 
switching between the temperature and temperature rise rate control loops, both loops continue to 
perform control calculations even when inactive. Figure 5 shows the user interface for tuning these 
control loops.
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Figure 5.  User interface for tuning temperature and temperature rise rate control loops.

 The RSF mode enables remote control of the core power by a LabVIEW™ application run-
ning on a National Instruments cRIO-9024 real-time controller. The application runs a Simulink 
model that simulates the response of a real nuclear reactor. Two Transmission Control Protocol 
(TCP) network connections are used to communicate with the application. Feedback in the form 
of the core inlet temperature, NaK pressure, and NaK mass flow rate is provided to the application 
over one connection. The core power setting and various model outputs are returned over the other 
connection. The RSF mode can only be enabled when both TCP connections are active with no 
errors and when the core outlet temperature is within an operator-specified range. If  either connec-
tion is lost or the outlet temperature goes out of range, the control mode switches to the tempera-
ture control mode to take the system back to the operator-specified temperature set point. Figure 6 
shows the user interface for specifying the temperature limits and configuring the TCP  
communication.
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Figure 6.  User interface for specifying temperature limits and TCP 
communication regarding the RxSim function control mode. 
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3.  CONTROL FOR ANNULAR LINEAR INDUCTION PUMP OPERATION

Two modes of operation are provided for operating the ALIP: voltage and flow rate.  
Figure 7 shows the user interface for operating the ALIP.

Figure 7.  User interface for ALIP operation.

The voltage control mode allows the operator to control the line-to-line voltage setting of 
the ALIP power supply. To ensure that there are no abrupt changes in voltage while the pump is 
operating, new settings are limited by an operator-specified slew rate. The voltage setting is limited 
to 150 VAC.

The flow rate control mode allows the operator to control the NaK mass flow rate. This 
mode is implemented with a control loop that combines a feedback (closed-loop) PID controller 
with a feed-forward (open-loop) control. The feed-forward control uses knowledge about the sys-
tem to estimate the voltage setting required to achieve the desired set point, whereas the PID con-
troller responds to differences between the set point and the actual measured flow rate and adjusts 
the voltage setting to eliminate those differences. A linear curve fit of the measured flow rate at 
various voltage settings was used for the open-loop estimate. The differences due to nonlinearity 
and changes in temperature-dependent fluid characteristics were easily compensated for by the PID 
controller. The combination of the feed-forward control and the PID controller greatly improves 
overall system performance compared with the PID controller alone. To ensure bumpless transfer 
when flow rate control is activated, the control loop continues to perform control calculations even 
when inactive. Figure 8 shows the user interface for tuning these control loops.
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Figure 8.  User interface for tuning ALIP operation control loops.
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4.  TESTING

 RxSim testing involved operational checkouts of the loop control and instrumentation 
system, and the gas and vacuum test support equipment. To accomplish this, the RxSim was 
operated at TDU representative temperatures and flow rates (800 K and 1.75 kg/s). Vacuum and 
gas support equipment were used for NaK transfer operations (evacuating the RxSim loop, lower 
reservoir or accumulator, applying an argon pressure head, and actuating a remote operating 
valve). The gas system also supported the TDU ALIP by supplying and regulating (relief  valve 
and regulator in conjunction) helium pressure in the electrical areas of the ALIP. In the past, 
this support equipment was provided by the test facility. These gas and vacuum racks were built 
to provide dedicated support equipment for the TDU. The vacuum and gas support equipment 
proved to be operational. The system’s control and instrumentation program provided control 
algorithms to operate the loop at targeted core outlet temperatures and either mass flow rates 
or pump voltage. The control algorithms also controlled the slew rate within constraints. These 
algorithms proved to be sufficient and effective.

4.1  Reactor Simulator Heat-Ups, Steady State, and Transients 

 Figure 9 shows the effect of the control loop operation to constrain temperature ramp  
rates and maintain set point temperature. Figure 10 shows the control system responses to maintain 
a steady target temperature as pertubations are made to the RxSim loop during testing. Perturba-
tions included changes in the NaK flow rate, the HX N2 flow rate, and the temperature set point. 
The system performed well in controlling the target temperature over a wide range of operating 
conditions by controlling the rate of heat addition, which was provided by the core simulator.  
The control system autonomously controlled heat addition to counter balance the HX heat load 
that was manually controlled by the operator. 
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 Under certain conditions, instabilities could occur in the control system, as shown in  
figure 11. This was seen in circumstances when the time it took for temperature to respond, rela-
tive to changes in power input, was much longer than the control loop sample period, such as when 
operating at low flow rates. Controlling the temperature under these conditions would require the 
use of gain scheduling and an increase in the sample period. However, these conditions correp-
sonded to operating regimes much different from nominal operation and did not pose difficulities 
for testing.  
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Figure 11.  Example of the development of control instability. In this case, the  
instablity resulted in an operating regime corresponding to slow mass 
flow rates. 

4.2  Pump Testing: Maximum Permissible Flow

 During the first series of tests, pump voltages and frequencies were ramped up and varied to 
achieve the maximum flow rate. It was found that the maximum flow rate obtainable in the RxSim 
loop with the TDU ALIP pump was about 1.33 kg/s (when the ALIP was provided 120 V at 55 Hz 
and a NaK temperature of 800 K). Thus, it was decided to extend the pump to a maximum of 150 V 
in which a maximum flow rate of 1.53 kg/s was obtained (fig. 12).
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Figure 12.  Expanded pump testing up to 150 V at Tcore
out = 800 K. Maximum mass flow rate 

observed for the TDU ALIP in the RxSim test loop was 1.5 kg/s at 150 V and 73 Hz.

4.3  Cold Trap Thermal Test

The thermal performance of a cold trap design with heat regeneration was tested. The 
design, shown in figure 13, consisted of a bellows-jacketed GN2-NaK HX for cooling and accom-
modating thermal expansion. The NaK flow path consisted of a down-comer flow through alter-
nating disk and donut baffles to create cross flow and increase NaK residing time within the cold 
trap. The volume between the baffles was packed with stainless steel wool to provide a reaction sur-
face for oxide precipitation. The return flow path was through a tube running up the centerline of 
the cold trap and then terminating in a coil that was bathed in hot NaK from the inlet at the top of 
the cold trap. A cold temperature of 480 K was the targeted goal of the cold trap design, as analy-
sis had indicated that purification of the NaK could be obtained within a reasonable period of 
time with this cold temperature. The analysis also indicated that a return flow through a coil would 
provide sufficient heat regeneration, so cold NaK would not be put back into the system acting as 
a thermal load. However, for this performance, the analysis indicated that a very slow NaK flow 
rate was required. The design proved to provide a good cooling capacity to reach a sufficiently low 
cold temperature with slow NaK flow rates as predicted. Heat regeneration was observed to occur 
more effectively within the cold trap return line than predicted, but not as effectively within the coil 
regenerator. An outlet temperature of about 750 K was predicted, but 636 K was observed.
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Figure 13.  Cold trap design.

Figure 14 compares the cold trap thermal model and measured temperatures. The mod-
eled flow rates were 0.00635 kg/s (NaK) and 0.078 kg/s (nitrogen (N2)). The actual NaK flow rate 
through the cold trap was not measured, but in the primary loop it was 0.068 kg/s with the cold 
trap loop bypass valve open a quarter turn. The actual N2 flow rates were not measured, but the 
supply pressure was 6 psi above ambient. The modeled inlet temperature was set to an actual cold 
trap inlet temperature of 800 K. The NaK and GN2 mass flow rates were then tweaked to get 
modeled Tc approximately equal to measured Tc. The circles shown are model temperature predic-
tions at locations expected to correspond with thermocouple probe locations, which are depicted as 
triangles.
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Figure 14.  Cold trap performance.

 4.4  Reactor Simulator Predictions and Interactions with RxSim Loop Control

Figure 15 shows the system behavior for a $0.01 reactivity insertion. Figure 15(b) shows 
the model prediction of the transient. As an initial evaluation, the dampening behavior gives some 
indication that the simulation is reasonable. The predicted outlet temperature was based upon the 
initial conditions for inlet temperature and mass flow rate. For comparison, these were set to values 
of measured experimental data that correspond to figure 15(a), which shows the RxSim core out-
let temperature during a transient driven by the reactor model simulator when utilizing the RxSim 
control function. Comparison between the measured/experimental outlet temperature (fig. 15(a)) 
to the predicted model/simulated outlet temperature (fig. 15(b)) shows close agreement and gives 
confidence in the RxSim model heat transfer calculations.
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Figure 15.  Comparison of RxSim behavior for a simulated $0.01 reactivity insertion.  
Reactor outlet temperature in (a) corresponds to the measured experimental  
values while (b) corresponds to the simulated/predicted values.

Also, while debugging, three tests were run utilizing various reactivity feedback coefficients. 
In the three cases, the reactivity coefficients were set to one-eighth of the default values, the default 
values, and eight times the default values, respectively. The model default reactivity coefficients were 
αfuel = – 6.254 × 10– 4, and αcoolant = –9.09 × 10– 4. In each case, there was a $0.02 reactivity insertion 
with the initial core power, outlet temperature, and ∆T of  20 kW, 450 K and 23 K, respectively. 
These tests demonstrated the RxSim loop would reflect the various possible system stability 
responses (stable, marginally stable, and unstable), as shown in figure 16.
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Figure 16.  RxSim transient stability dependency on reactivity feedback coefficients:  
(a) Corresponds to a stable system due to (b) sufficient overcooling;  
(c) corresponds to a marginally stable system due to (d) a marginally 
cooled system; and (e) corresponds to (f) an unstable system response 
due to the system being undercooled.
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5.  CONCLUSIONS

 Integrated testing of the TDU control and instrumentation, vacuum and gas ground test 
support equipment, and reactor core simulator components in the RxSim test loop demonstrated 
them to be operationally ready for TDU integration. The ALIP pump was found to not produce 
the desired flow rate for the RxSim test loop and is thus being considered as a backup pump for 
TDU testing. In addition, the heat regeneration design feature for cold trap purification was dem-
onstrated with thermal testing of a cold trap integrated into the RxSim test loop. The RxSim 
model functionally integrated with the RxSim control loops to drive the RxSim system response  
in a manner more representative of nuclear reactor dynamics.
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