Next generation lightweight mirror modeling software

William Arnold
Defense Acquisitions, Inc.

Matthew Fitzgerald
NASA Marshall Space Flight Center

Philip Stahl
NASA Marshall Space Flight Center

SUBMITTED to:

SPIE Conference on
Opto-mechanical Engineering
San Diego CA
August 25-29, 2013

ABSTRACT

The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core
low temperature fusion, Corning’s continued improvements in the Frit bonding process and the
ability to cast large complex designs, combined with water-jet and conventional diamond
machining of glasses and ceramics has created the need for more efficient means of generating
finite element models of these structures. Traditional methods of assembling 400,000 + element
models can take weeks of effort, severely limiting the range of possible optimization variables.
This paper will introduce model generation software developed under NASA sponsorship for the
design of both terrestrial and space based mirrors. The software deals with any current mirror
manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to
merge submodels into a single large model. The modeler generates both mirror and suspension
system elements, suspensions can be created either for each individual petal or the whole mirror.
A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes,
much of that time being variable input time. The program can create input decks for ANSYS,
ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade
studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a
particular set of parameters and make small or large changes with ease. The input decks created
by the modeler are text files which can be modified by any editor, all the key shell thickness
parameters are accessible and comments in deck identify which groups of elements are
associated with these parameters. This again makes optimization easier. With ANSYS decks,
the nodes representing support attachments are grouped into components; in ABAQUS these are
SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large
望远镜 or satellite models possible.