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Chandra’s Advanced CCD 
Imaging Spectrometer (ACIS)

• ACIS cavity
– Collimator
– Snoot and door
– Camera top and filters
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• Chandra X-ray Observatory
– Mirror Assembly

• Transmission gratings
– Optical bench
– Science Instrument Module

• High-Resolution Camera
• Advanced CCD Imaging 

Spectrometer (ACIS)



Introduction

• Chandra has 2 focal-plane instruments, each with I & S arrays.
– High-Resolution Camera (microchannel plates) is at ambient.
– Advanced CCD Imaging Spectrometer is passively cooled.

• Heaters on ACIS housing may be set to -60°C during operations.
• Focal plane is held at -120°C to reduce charge-transfer inefficiency.

• A contaminant has accumulated on the cold optical blocking filters.
– Measured x-ray attenuation shows a column  200 g cm-2.

• Infer a mass of contaminant  1 g in entire Chandra optical cavity.
• Accumulation rate is about 30 times pre-flight estimates.

– High-resolution x-ray spectroscopy provides more information.
• Contaminant is primarily carbon C/O  11, C/F  15, C/N > 30.
• Based upon EXAFS, nearly all the carbon is aliphatic (single-bond).

– Molecular weight and vapor pressure remain unknown.
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Spatial variation
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Spatial distribution of 
contaminant on OBF
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Composition variation
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Effects of turning OFF
the ACIS housing heater
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ACIS geometric model 
(exterior view)
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ACIS geometric model 
(interior view)
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ACIS temperature distribution
(exterior)

• Late 2008: Housing heater OFF
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• Early 2008: Housing heater ON
T[°C]
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ACIS temperature distribution
(interior)

• Late 2008: Housing heater OFF
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• Early 2008: Housing heater ON
T[°C]
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ACIS temperature distribution
(camera top and filters)

• Late 2008: Housing heater OFF
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• Early 2008: Housing heater ON
T[°C]
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Temperature dependence of 
mass vaporization rate
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Molecular rate equations

• Net mass flux onto node j

• Mass vaporization rate
– Related to vapor pressure

• Clausius–Clapeyron relation
– Gives temperature dependence
– Vaporization enthalpy vH
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Simulation methodology

• Simulation methodology
– Solve coupled molecular rate equations to evolve mass column.

• Contaminant deposits on each surface from source, other surfaces.
• Contaminant vaporizes from each contaminated surface.
• If vaporization exceeds deposition, surface cleans and remains so.

– Input (thermal) geometric model for areas and view factors.
– Use thermal model to estimate temperatures on surfaces.

• Use high-resolution thermal model for ACIS cavity.
• Treat rest of Observatory’s optical cavity as warm closeouts.

– Material leaving ACIS cavity either vents or returns.
– Specify volatility of contaminant.

• Assume mass vaporization rate at reference temperature (+20°C).
• Scale temperature dependence using Clausius–Clapeyron equation.

– Governing parameter is the enthalpy of vaporization vH.
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Deposition simulation

• Simulate deposition of docosane (C22H46) onto OBF at operating T.
– View factors from contaminating nodes govern distribution.

.

NB: This 
simulated 
distribution for 
(view-factor) 
deposition-
dominated 
contamination 
differs from 
that observed.
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Summary

• Contamination-migration model has been a useful tool.
– It predicts the relative likelihood of success for scenarios.
– Utility for high-fidelity, absolute predictions is still limited.

• Absolute predictions require knowledge of contaminant’s volatility.
• Uncertainty in temperatures propagates exponentially to rate error.
• Model may require additional physics.

– Contaminant probably comprises multiple molecular species.
– Thermal emissivity depends upon mass column of contaminant.

» Temperature distribution
» Mass vaporization rate
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