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ABSTRACT

Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and 
global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend 
with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for 
ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at 
NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring 
atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision 
measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from 
aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the 
detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at 
NASA Langley research Center.  
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1. INTRODUCTION  
Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global 
radiation budget on Earth. Generally, the CO2 role on Earth’s climate is rather complicated due to different interactions 
with various climate components that include the atmosphere, the biosphere and the hydrosphere [1-3]. These 
interactions define CO2 sources and sinks that influence the gas transport fluxes worldwide. High uncertainties exist in 
quantifying CO2 sources and sinks mainly due to insufficient spacial and temporal monitoring of the gas. Understanding 
the interactions and transport of atmospheric CO2 around the Earth is critical for carbon cycle studies and climate 
predictions through environment models [1-12]. 

Historical CO2 concentration has been predicted through analyzing trapped gas released form ice cores obtained from 
Antarctic glaciers samples. Results indicated relatively stable atmospheric CO2 concentration that fluctuates between 
180 and 290 ppm over the past 650,000 years [4]. However, since the industrial revolution the gas concentration is 
increasing rapidly to a current level of 390 ppm [5]. The recent CO2 high increase rate is attributed to human activities 
for different reasons. One reason is the temporal isotopic signature of fossil fuel burning that exists in current 
atmospheric CO2 [6]. Another reason is the spatially higher CO2 concentration in the Northern Hemisphere, where most 
of the land mass and human activities occur, than the Southern Hemisphere with higher ocean coverage [11]. 
Atmospheric CO2 observations made over the past four decades shows similar trends between the gas concentration in 
the atmosphere CO2 and industrial emission [3]. These evidences led to extensive efforts worldwide for monitoring 
atmospheric CO2 through various techniques including in-situ and passive sensors. 

CO2 in-situ sensors have been used continuously on towers, aircraft and balloons for several decades for monitoring the 
gas concentration. Results from tower sensors indicated the existence of seasonal and diurnal cycles of the CO2 
concentration, both related to biosphere activities. Seasonal cycles alternate the biosphere from source to sink between 
winter and summer respectively. Diurnal cycles respond to the respiration and photosynthesis activities [7]. For example, 
in a forested area study, tower in-situ sensors indicated a variation in the CO2 diurnal cycle of 5 to 40 ppm between 
winter and summer seasons, respectively [8, 9]. On the other hand, aircraft in-situ sensors identified that the CO2 con- 
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centration and its seasonal cycle depends on latitude [10, 11]. Results confirmed higher CO2 concentration in the 
northern Hemisphere compared to the Southern, with higher seasonal cycle amplitude [11]. Balloons and aircraft sensors 
also were used to sample CO2 concentrations versus altitude [11, 12]. Results indicated constant CO2 concentration with 
respect to altitude up to a level where global air transport patterns take place [11]. Generally, CO2 in-situ sensors 
coverage is limited due to inadequate sampling sites and time. Thus, it is required to have more rapid and accurate CO2 
monitoring with higher uniform coverage and high resolution. This was addressed by many international satellite 
missions. 

Satellites passive remote sensing of CO2 concentrations provide improved spatial and temporal coverage compared to 
the surface in-situ networks. Satellites offered many advantages including the ability of continuously measuring CO2 in 
tropical regions and over southern oceans [1-3]. Present satellite instruments monitoring CO2 from space include 
SCIAMACHY, TES, AIRS, IASI and GOSAT [13-17]. To focus only on CO2 and address the issue of the gas sources 
and sinks, OCO-2 is fully dedicated for CO2 monitoring [18]. Generally, satellite passive remote sensing relies on either 
solar radiation (shortwave infrared) or thermal radiation from Earth. Some of these systems have shown the potential to 
meet the spatial coverage to improve CO2 flux estimates on continental scales. However, they are unable to meet the 
accuracy required to aid in better quantifying the terrestrial sources and sinks. Generally satellite passive systems have 
limitations. For example shortwave infrared instruments are limited by their reliance on solar illumination which restricts 
their orbits and latitudinal coverage. On the other hand, thermal infrared systems are not sensitive to the lower 
atmosphere where the largest CO2 interactions occur. Furthermore, passive remote sensing systems involve retrieval 
complexities which suffer from aerosol and cloud contamination and radiation path length uncertainties [2-3, 19]. Active 
remote sensing of CO2 is an alternative technique that has the potential to overcome the limitation of the passive sensors. 

Active remote sensing of CO2 has been demonstrated using the differential absorption lidar (DIAL) technique [20-30]. 
Both 1.6 and 2.0 um are considered suitable for atmospheric CO2 measurements due to the existence of distinct 
absorption feathers for the gas at these particular wavelengths. Although CO2 DIAL systems demonstrations were 
provided for systems validity from ground or airborne, a complete CO2 DIAL mission that contributes to the science 
community has not been established [3]. A number of worldwide teams have been engaged in developing CO2 DIAL 
instrument using different laser transmitters and detection methods. In France, a CO2 DIAL was developed based on 2.0-

m pulsed crystal-open path cavity transmitter and heterodyne detection [20]. In Germany a 1.6-um pulsed optical 
parametric oscillator transmitter with direct detection has been developed [21]. In Japan similar systems were developed 
for ground based-measurement [27, 28]. In the USA, the National Research Council (NRC) Decadal Survey 
recommended an active laser-based CO2 mission, “Active Sensing of CO2 Emissions over Night, Days, and Seasons 
(ASCENDS)”, to dramatically increase our understanding of CO2 sources, sinks, and fluxes worldwide [1]. Research 
groups at NASA are currently involved in developing different CO2 DIAL instruments. Two of these instruments operate 
at 1.6 m have been developed and deployed as airborne systems for atmospheric CO2 column measurements [22, 25-
26]. One instrument is based on an intensity modulated continue wave (CW) approach [25-26], the other on a high pulse 
repletion frequency (PRF), low pulse-energy approach [22]. These airborne CO2 DIAL systems operating at 1.57- m 
utilize mature laser and detector technologies by taking advantage of the technology development outcomes in the 
telecom industry. CO2 DIAL operating in the 2- m band offer better near-surface CO2 measurement sensitivity due to 
the intrinsically stronger absorption lines. Using a 2.05- m CW laser absorption spectrometer employing coherent 
detection method, airborne measurements of CO2 column abundance has been demonstrated [24]. This paper focuses on 
the current role played by NASA Langley Research Center (LaRC) in developing a 2- m pulsed DIAL systems for 
monitoring atmospheric CO2 [23, 29-30]. For more than 15 years, NASA LaRC has been involved in maturing the 
transmitter technology and system capabilities that are focused onto meeting the science objective of the CO2 
measurement described by the decadal survey and A-Scope [1, 2]. Furthermore, the requirement and the potential of 
scaling such technology to a space mission will be addressed. 

 

2. SINGLE-PULSED 2-MICRON CO2 DIAL SYSTEMS DEMONSTRATION 
Atmospheric CO2 DIAL measurement using single-pulse 2- m laser have been demonstrated by NASA LaRC [23, 29-
30]. The wavelength of the output laser pulses alternate between on-line and off-line positions at a relatively slow rate 
(5-10 Hz). Using heterodyne detection, CO2 DIAL measurements were attempted based on a 90 mJ, 140 ns, 5 Hz pulsed 
Ho:Tm:LuLiF laser transmitter. The laser transmitter adopted a wavelength control to precisely tune and lock the 
operating wavelength at any desired offset up to 2.9 GHz from the center of a CO2 absorption line. Once detuned from 
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4. CONCLUSION 
Understanding atmospheric CO2 interactions and transport dynamics is important for studying carbon cycle and global 
radiation budget on Earth. In suit and satellite based passive remote sensors have several limitations that could be 
recovered with active remote sensors. CO2 active remote sensing has been demonstrated at NASA LaRC using the DIAL 
technique. The demonstration was limited to 2- m single-pulsed transmitter based on heterodyne and direct detection. 
This resulted in limited instrument capabilities in terms of measurement accuracy. Currently, NASA LaRC is developing 
a pulsed, high energy 2- m IPDA lidar instrument for CO2 concentration measurement by implementing the integrated 
path differential absorption lidar technique (IPDA). The IPDA transmitter is a unique double-pulsed Ho laser capable of 
producing ~100mJ energy per pulse; and it is compactly and ruggedly packaged. High accuracy, stable and repeatable 
wavelength control and switching unit have been demonstrated. This unit is upgraded and engineering packaged to 
become a flyable unit. The IPDA also include a high quality 16 inch telescope and a commercial detector that has been 
purchased and characterized. Data acquisition unit, electrical control unit and thermal control unit are being developed 
and tested. The integrated IPDA lidar structure is being designed to fit in B-200 research aircraft. It is expected to 
provide a unique instrument tool for measuring atmospheric CO2 concentration. Field-testing of the developed 
instrument will be conducted from ground and aircraft. This unique capability could be scaled for future space missions.  
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