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TECHNICAL MEMORANDUM

MULTIPHYSICS MODELING OF AN ANNULAR LINEAR INDUCTION PUMP 
WITH APPLICATIONS TO SPACE NUCLEAR POWER SYSTEMS

1.  INTRODUCTION

	 Fission surface power (FSP) systems, which are capable of providing consistent perfor-
mance at any location, could be used to generate power on the surface of the Moon, Mars, other 
planets and moons of our solar system, or on various near-Earth objects. This includes those areas 
near planetary poles or in other permanently shaded regions, offering the capability to provide on-
demand power at any time, even at long distances from the Sun. Fission-based systems also offer 
the potential for outposts, crew, and science instruments to operate in a power-rich environment 
while maintaining a relatively small footprint for the reactor system. NASA has been exploring 
technologies with the goal of reducing the cost and technical risk of employing FSP systems. A ref-
erence 40-kWe option has been devised that is cost competitive with alternatives while providing 
more power for less mass anywhere on the lunar surface.1–4 The reference FSP system is also readily 
extensible for use on Mars. On Mars, the system would be capable of operating through global dust 
storms and providing year-round power at any Martian latitude. 

	 One key technology associated with the reference FSP system is the pump that circulates 
liquid-metal coolant through the reactor system. The pump must be compatible with the liquid 
sodium-potassium (NaK) coolant and have adequate performance to enable a viable flight system. 
Presently, this task is accomplished in the reference design using an annular linear induction pump 
(ALIP), which circulates the reactor coolant without the use of moving components. Two sepa-
rate pumps were recently fabricated and shipped to NASA Marshall Space Flight Center where 
they were tested in a dedicated apparatus designed to quantify pump performance (the ALIP test 
circuit, or ATC). Pump efficiencies in these tests were in the 5%–6% range,5,6 underperforming 
expectations. An effort has been initiated to develop a flexible multiphysics model that accurately 
represents an ALIP to provide a better understanding of the performance scaling and develop 
design strategies that can help increase performance in later iterations. This Technical Memoran-
dum (TM) provides a present view of the state of this modeling effort. For the sake of complete-
ness, note that a similar multiphysics ALIP modeling effort was recently presented by Goldsteins 
et al.7 and general ALIP design optimization work has been presented by Maidana et al.8 
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2.  REVIEW OF ANNULAR LINEAR INDUCTION PUMP EXPERIMENTAL TESTING

	 The ATC apparatus, shown schematically in figure 1, was fabricated to allow for perfor-
mance testing of liquid-metal induction pumps. The system and testing results are described in 
detail in references 5 and 6. The pressure produced by the pump (Dp) is measured using two abso-
lute pressure transducers located at the downstream and upstream ends of the pump, while the 
volumetric flow rate ( v ) is measured using a calibrated liquid-metal electromagnetic flowmeter. 
A wattmeter provides a measure of the real input power to the pump (PIN), permitting the calcula-
tion of pump efficiency as

	 η = ( vΔp) / PIN . 	 (1)

Accumulator

ALIP

Heat Exchanger

Throttling
Valve

Immersion Heaters

Electromagnetic
Flowmeter

Flow Direction

Pump Pressure (∆p)

Flow Direction

F1_1426Figure 1.  Schematic of the ALIP test circuit configured for TDU ALIP testing.
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	 A plot of pump efficiency as a function of volumetric flow rate, like that shown in figure 2, 
will exhibit an optimum in efficiency when operating at a constant power (constant power and 
constant applied voltage are approximately equivalent in an ALIP). This is easily understood in the 
context of equation (1) and simple concepts of continuity for a closed-loop system. For the bound-
ing case of infinite flow impedance, there is a maximum Dp but v  is zero, while in the case of no flow 
impedance in the loop, there is a maximum v  but zero pressure rise across the pump.
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Figure 2.  Example efficiency (with error bars) as a function of flow rate and 

constant pump voltage for NaK at a temperature of 325 ºC and pump 
frequency of 36 Hz (repeated from ref. 5).

	 Three-dimensional renderings of two separate ALIP pumps that were tested in the ATC 
are shown in figure 3. The FSP pump in figure 3(a) was designed for the full-scale 200 kWt, 40 kWe 
fission surface power reference design. The technology demonstration unit (TDU) pump in fig-
ure 3(b) was fabricated to support the testing of a TDU, which is a one-quarter scale system (50 kWt, 
10 kWe) that uses simulated nuclear power to achieve an end-to-end demonstration. In general, an 
ALIP consists of an annular duct surrounded by a series of solenoidal copper coils positioned inside 
magnetically-permeable stators elements. An additional magnetically-permeable component is the 
torpedo, which forms the inner boundary of the annular duct. Three-phase power is applied to the 
coils, producing an axially-traveling magnetic wave inside the annulus. The high permeability sta-
tors concentrate and direct the magnetic field created by the coils radially across the annulus while 
the torpedo provides the return path for magnetic flux. The axially-traveling radial field induces 
azimuthal currents in the conducting liquid metal that interact with the magnetic field to yield a net 
Lorentz body force in the axial direction, pumping the fluid.
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Figure  3.  Models:  (a) Three-dimensional CAD model of the ALIP tested  
in reference 5 and (b) cut-away model of the ALIP tested in 
reference 6; illustrations taken from reference 8. 

	 ALIP experimental data for tests conducted with two separate pumps are found in refer-
ences 5 and 6. As expected, when efficiency is graphed as a function of volumetric flow rate, these 
data exhibit an optimum. Other key findings were that the efficiency curves were generally reduced 
for both higher temperature and at lower power. It was shown that there exists an optimum fre-
quency at which the efficiency of the pump is maximized. This corresponds to the frequency that 
establishes a traveling magnetic wave velocity that is most conducive to transferring power from 
the electromagnetic field into the fluid (also known as the condition of minimal ‘slip’). The present 
computational effort aims to produce a model that can replicate these observed phenomena.
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3.  MULTIPHYSICS MODEL

	 The ALIP tested in reference 5 was modeled using the commercially available COMSOL 
Multiphysics version 4.3b. The electromagnetics problem was modeled using the alternating cur-
rent (AC)/direct current (DC) module while the fluid problem was performed using the computa-
tional fluid dynamics (CFD) module. Models were developed separately for each component of 
the pump, with simplifying assumptions employed to produce an approximate model that could 
qualitatively reproduce experimental results without requiring intense detailed modeling of any ele-
ment in the system. The various component models and applied physical properties and boundary 
conditions are discussed in sections 3.1 through 3.7. 

3.1  Domain

	 The ALIP physical model, shown in figure 4, is representative of the full-sized test appara-
tus. The model is two-dimensional and axisymmetric, implying no azimuthal variation. For sim-
plicity, the steel casing around the stator and the steel walls of the torpedo were not included in  
the model. Additionally, the curved, aerodynamic profiles of the front and rear of the torpedo were 
simplified as conical shaped. The infinite element feature of the program was used for the outer-
most domain to mathematically simulate a domain that extends indefinitely without the need of 
unnecessary mesh points. 

Coil 1 (of 12) Stator

Air/VacuumHiperco Flux ReturnNaK

C L

96.5 cm (38 in)

19
.1 

cm
 (7

.5 
in)

F4_1426

Figure 4.  Schematic showing the physical layout of the COMSOL model of ALIP.
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3.2  Coils

	 The ALIP coils were modeled using the multiturn coil domain (MTCD) feature, which 
implements a homogenized model of a coil using a specified number of wire turns and the cross-
sectional area of the wires. The wires used in the experimental ALIP were ribbon-like in shape, 
measuring 510 mm × 13.6 mm (0.020 × 0.535 in), and were wound 85 times for each coil. The 
MTCD feature is good for modeling coils with wire diameters that are less than the skin depth 
of the wire, which is defined as

	 δ = 2 / (ωµσ ) , 	 (2)

where w is the angular frequency of the current, m is the magnetic permeability of the material, 
and s is the electrical conductivity. Using the maximum tested operating frequency of 60 Hz, 
m = 4p × 107 H/m, and s = 6 × 107 S/m for copper, the value for the skin depth was calculated to 
be roughly 8.4 mm (0.33 in). This is significantly larger than the thickness of a single turn of the 
conductors in the coils, meeting the MTCD sizing requirement. However, while the MTCD feature 
was used in this particular model, investigation to gain a more complete understanding of this fea-
ture’s limitations as it applies to ALIP modeling could be a useful avenue of study in future work. 
(For example, while the depth of one coil winding is 510 mm, the total depth of all 85 turns is over 
43 mm and may represent a problem for the MTCD feature.)

	 The coil domains are further constrained using the Global Equations feature to correctly 
implement the physical coil configuration of the ALIP (see fig. 5(a)). The Global Equations con-
straints ensure that the total voltage drop across each leg of the delta configuration sums to the 
appropriate applied voltage. This yields the effective phase angles for each set of windings based 
upon the wiring of the pump, as shown in figure 5(b). The coils were assigned the material proper-
ties of copper from the COMSOL material database. 
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F5_1426Figure 5.  Configurations:  (a) Electrical coil configuration and (b) effective phase configuration 
for the coils in the ALIP. 
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3.3  Stator

	 The stator is one of the few components of the ALIP that has significant azimuthal varia-
tion. In the tested ALIP, the stators are constructed as six separate finite sections positioned at 
regular azimuthal intervals around the axis (see fig. 3(a)). Each stator section consists of alternat-
ing azimuthal layers (laminates) of steel and an alloy that is itself  comprised of 50% Hiperco® 50 
and 50% cobalt iron alloy. The alternating azimuthal laminations and the fabrication of the stators 
as six discreet sections serve to minimize induced circumferential eddy currents. The high magnetic 
permeability of the stator laminations serve to guide and concentrate the magnetic flux radially 
into the fluid. As a simplification, and to establish an upper limit on performance, the stator was 
modeled entirely as Hiperco 50 with zero electrical conductivity, yielding the best magnetic proper-
ties while completely suppressing eddy current losses. Future work aimed at understanding how to 
better model the properties of the three-dimensional stator configuration within a two-dimensional 
axisymmetric framework could be a useful path to increase the accuracy of the work discussed in 
this TM.

3.4  Material Properties

	 The material properties used in the ALIP model are presented in table 1. Included in this 
table are the associated model domains occupied by each type of material listed. The material 
properties for copper and air were obtained from the COMSOL program material libraries and 
the Hiperco 50 values were obtained from the manufacturer, Carpenter Technology Corporation, 
Reading, PA. The nonlinear B-H curve for Hiperco 50 is provided in the appendix. Two entries are 
listed for Hiperco 50, one with finite electrical conductivity for the flux return in the torpedo, where 
eddy currents are permitted, and the other with zero conductivity for the stators. This follows from 
the previous discussion of stator simplification. The material properties of NaK (specifically the 
eutectic NaK-78 mixture) are summarized in reference 9. The present work only considered an 
ALIP operating at room temperature conditions (roughly 20 °C, with the corresponding proper-
ties for that temperature given in table 1). However, NaK material property curves in reference 9 
are  given as a function of temperature over the entire ALIP operating envelope (room temperature 
to roughly 525 °C). 
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Table 1.  Material properties and associated domains used in the ALIP model. 

Electromagnetic Properties

Material

Electrical
Conductivity

(S/m)

Relative
Magnetic

Permeability

Relative
Electrical

Permittivity Domain
Copper 6.0 × 107 1 1 Coils
Hiperco 50 
(with conductivity)

2.5 × 106 Nonlinear B vs H curve 
(in the appendix)

1 Flux return

Hiperco 50 
(no conductivity)

0 Nonlinear B vs H curve 
(in the appendix)

1 Stator

NaK-78 (at 20 °C) 2.38 × 106

(from ref. 9)
1 1 Fluid

Hydrodynamic Properties (From Ref. 9)

Material 
Density
(kg/m3)

Kinematic
Viscosity

(Pa-s)

Thermal
Conductivity

(J/kg-K) Domain
NaK-78 (at 20 °C) 875 575  950 Fluid

3.5  Governing Equations

	 The COMSOL model solves Maxwell’s equations within the AC/DC module over all 
domains while the incompressible, laminar flow, Navier-Stokes equations within the CFD flow 
solver module are solved within the fluid domain. The fluid equations are affected by the Lorentz 
body force that arises from the interaction of eddy currents in the flow and the externally-applied 
magnetic field. The motion of an electrically conductive fluid through a magnetic field also induces 
a back-electromotive force (EMF) that affects the electromagnetic solution of the problem. 

	 The governing equations are solved using nonlinear segregated solvers, one for each type of 
problem (electromagnetics and CFD), with Maxwell’s equations solved first in the solution process. 
After this first solution is generated, the model can be solved in time to yield a time-dependent 
solution of the problem. The model can also be constructed to use a version of Maxwell’s equa-
tions that assume a cyclic solution. This latter, simplified version of the equation set, also referred 
to in COMSOL as frequency domain equations, do not permit the incorporation of nonlinear 
material properties into the model. However, this method can be useful in the initial development 
and implementation of new model features. 

3.6  Boundary Conditions

	 The fluid domain has no-slip boundary conditions applied to all wall boundaries. A conser-
vation of mass condition is applied to the inlet and outlet of the pump model domain such that the 
total fluid mass in the domain is conserved. The value of the pressure is pinned to a specified value 
at one point within the domain and the pressure drop is specified using a periodic flow boundary 
condition. This allows the user to specify the pressure drop that would occur through the rest of 
the system as fluid flows through it. In the calculations performed to date, the pressure was pinned 
to zero at a single corner point in the model. In future work, this can be pinned to values that are 
close to the measured static pressure in the model. An alternative problem formulation would be 
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to construct a two-dimensional axisymmetric model representing the length of the entire flow loop, 
where for self-consistency, the pressure at the flow outlet and flow inlet of the simulation domain 
are equal. It is assumed that there is no magnetic flux out of the computational domain (no flux/
zero magnetic potential), with an axis of symmetry condition applied at the centerline. 

3.7  Other COMSOL Settings
	
	 Many other settings in COMSOL are changed from their default values to achieve con-
vergence. The fluid elements are set to have second-order discretization and the ‘consistent stabi-
lization’ (numerical dissipation) option was set to ‘streamline diffusion.’ For the time-dependent 
solver, the option to exclude algebraic errors from the error estimation was enabled to prevent the 
inclusion of time-independent errors from the continuity equation. Linear vector elements are used 
to discretize the magnetic vector potential. This selection can be increased to quadratic elements 
(recommended) for a more accurate solution to the magnetic field. The Jacobian update option is 
set so it occurs after every iteration of the electromagnetic solver. 



10

4.  MODEL RESULTS

4.1  Axially-Traveling Magnetic Wave

	 Snapshots of the radial component of the magnetic field located at the midpoint of the 
annulus as a function of axial location are presented in figure 6. The magnetic field output by the 
model is presented in figure 6(a) while measured field values taken from reference 5 are given in 
figure 6(b). The numerical data were obtained from one time-step of a time-varying solution. These 
data were generated for the case where convecting NaK was in the annulus. The experimentally-
acquired data, on the other hand, was obtained at ambient conditions with air filling the annulus. 
The measurements were performed using a Hall probe that was inserted into the annulus at various 
axial stations. The model inputs were matched to those used during the experimental measurements 
and the model was solved using the nonlinear Hiperco 50 properties for the flux return and sta-
tors. In these figures, the magnetic wave travels from left to right. The inclusion of NaK within the 
domain, with its associated Lorentz body force and back EMF, makes it difficult to quantitatively 
compare these data. In addition, the assumptions that the stator (a) is continuous in the azimuthal 
direction but permits no flowing circumferential eddy currents and (b) is comprised completely of 
Hiperco 50, serve to significantly overestimate the calculated radial magnetic field values. While the 
absolute values of the two curves do not match, likely owing to all the simplifications in the pres-
ent model, a qualitative comparison between the shapes of the two data sets shows good agreement 
and suggests that the coil configuration given in figure 5 was correctly implemented in the model.
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Figure 6.  Radial magnetic field Br as a function of axial position within the pump obtained 
from (a) the computational COMSOL model and (b) experimental measurements 
presented in reference 5 (measurements obtained when the annulus was evacuated 
of NaK).
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4.2  Efficiency Curves

	 A comparison of the pump efficiency as a function of flow rate calculated using the model 
and experimentally measured and documented in reference 5 are presented in figure 7. The model 
curve was generated using the frequency domain equations with linear material properties and is 
therefore not quantitatively comparable to the experimental data since the Hiperco 50 could not 
experience saturation and because the model was solved at 20 °C where the kinematic viscosity 
was unrealistically high. Regardless, the existence of a peak in efficiency is promising in terms of 
providing a check that the physics currently implemented into the model are qualitatively behaving 
as expected.
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Figure 7.  Comparison of (a) modeled and (b) experimental pump efficiency curves for the 
ALIP of reference 5, operating at three different NaK temperatures (as indicated) 
with a peak AC voltage of 120 V and frequency of 36 Hz.



12

4.3  Transient Startup

	 The average velocity of the fluid as a function of time during a startup transient is presented 
in figure 8. These data were generated as part of a simplified test case to explore the usage of the 
model’s fully nonlinear, time-dependent solution package. For this case, the pressure at the inlet 
and exit of the pump were set equal to each other (minimal pump flow impedance). The model 
was not solved for a long enough time to obtain a steady-state solution, but the solution does 
appear to be approaching an asymptote. This simulation shows that a fully time-dependent, fully 
nonlinear solution can be generated for the problem and geometry of interest.
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5.  CONCLUSIONS

	 The COMSOL Multiphysics model developed in this work, while still incomplete and very 
simplified, has demonstrated the capability to qualitatively capture many of the experimental data 
trends observed in testing of an ALIP. The intricate three-phase coil configuration correctly rep-
licates the observed axial-traveling magnetic wave and establishes a net Lorentz body force on the 
fluid, forcing NaK through the pump. Furthermore, the boundary conditions and input parameters 
can be easily varied to simulate pump operation over a range of operating conditions, permitting 
the generation of pump performance curves (efficiency as a function of flow rate). While it may not 
be desirable to generate fully nonlinear, fully time-dependent solutions of the problem, there are 
several less accurate or simplified methods with which the model can be solved that can be used to 
provide a rapid check on the solution methodology being employed. Though additional validation 
is still required, a simplified solution method and the approximate model presented in this TM may 
be very useful in developing a systematic understanding of measured ALIP performance scaling as 
a function of different physically controllable parameters.
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APPENDIX—HIPERCO 50 B-H DATA

	 The nonlinear B-H curve for Hiperco 50, as provided by the manufacturer, Carpenter 
Technology Corporation, Reading, PA, is presented in figure 9.
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