Human Space Exploration by Antony Jeevarajan
Abstract

The Mars probe, launched by India a few months ago, is on its way to Mars. At this juncture, it
is appropriate to talk about the opportunities presented to us for the Human Exploration of
Mars. | am planning to highlight some of the challenges to take humans to Mars, descend, land,
stay, ascend and return home safely. The logistics of carrying the necessary accessories to stay
at Mars will be delivered in multiple stages using robotic missions. The primary ingredients for
human survival is air, water, food and shelter and the necessity to recycle the primary
ingredients will be articulated. Humans have to travel beyond the van Allen radiation belt
under microgravity condition during this inter-planetary travel for about 6 months minimum
one way. The deconditioning of human system under microgravity conditions and protection of
humans from Galactic cosmic radiation during the travel should be taken into consideration.
The multi-disciplinary effort to keep the humans safe and functional during this journey will be

addressed.
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Mars Mission Exploration Tools
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Cluster of Galaxies

Galaxy Cluster Abell 1689
Hubble Space Telescope * Advanced Camera for Surveys

NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew University), H. Ford (JHU), M. Clampin(STScl),
G. Hartig (STScl), G. lllingworth (UCO/Lick Observatory), the ACS Science Team and ESA
STScl-PRC03-01a

Exploring Space | Enhancing Life



CENTRAL REGION OF THE MILKY WAY
NASA'S GREAT OBSERVATORIES

NASA, ESA, CXC, S5C, AND STScI STScI-PRCO9-28A
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Near-term Human Exploration Domains e X
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@ Overview of Notional Mars Expedition
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Mars Rover Cameras
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Design Reference Architecture Mission Profile
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Life Support Requirements Mass
Breakdown

5.02 - 30.74 kg per person-day

11.3 Metric Tons Per Person-Year

DAILY INPUTS - NOMINAL

kg
Oxygen 0.84
Food Solids 0.62
Water in Food 1.15
Food Prep Water 0.79
Drink 1.62

Hand/Face Wash Water 1.82
Shower Water 5.45
Clothes Wash Water 12.50

Dish Wash Water 5.45
Flush Water 0.50
TOTAL 30.74

\ DAILY OUTPUTS - NOMINAL

kg
Carbon Dioxide 1.00
Respiration and 2.28
Perspiration Water
Urine 1.50
Feces Water 0.09
Sweat Solids 0.02
Resources and Recycling Urine Solids 0.06
eWater Regeneration Reactors Feces Solids 0.03
Air Revitalization Reactors Hygiene Water 6.68

. . lothes Wash Wat 11.
«Environmental Sensors (Chemical) Clothes Wash Water 90

. . ) Clothes Wash 0.60
eMicrobial Monitors Latent Water

Other Latent Water 0.65

Dish Wash Water 5.43

Flush Water 0.50

TOTAL 30.74
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Oxygen Generation System Femance X
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Total Organic Carbon Analyzer
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Garbage Handling e X
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Human

Salt and Pepper e marce
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@ Candies in water bubble e




Dinner at hiS Lap Per‘formance

Exploring Space | Enhancing Life




Yummy Dinner




Food for Space Missions
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Weightlessness
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Space Radiation Environment

Galactic Cosmic Rays (GCR):

- highly penetrating protons and heavy ions
of extra-solar origin

- large amounts of secondary radiation

- largest doses occur during minimum solar
activity in 11 year solar cycle

- low level background radiation: protons
(85%), Helium (14%) and HZE particles
(1%)

Trapped Radiation in South Atlantic:

- medium energy protons and electrons

- effectively mitigated by shielding

Solar Particle Events (SPE):
- medium to high energy protons
- occur during maximum solar activity

- Solar protons from the Coronal Mass
Ejections and HZE

Living with Radiation in Space April 2006
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@ Solar Flare Observed at Various Wavelengths

171 A
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Solar Flare/Aurora from Space/Earth

NASA JONNSON SPAGE CENTER
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Van Allen Belt
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@ Contribution to exposure from man-made Radiation sources
in USA

Medical X-rays
58%

Nuclear Fuel Cycle
1%

Nuclear Medicine
21%

Fallout
2%

Occupational
2%

Cg_rj_,sum'é"rflf’/roducts

Man-made 16%

radiation

Natural background
radiation

82%

Data: BEIR VII 2006, NCRP 1987



Environmental exposure to natural background
radiations: 2.4 mSv/year

Low-LET exposure
from ingestion
7%

Low-LET exposure
from earth
20%

High-LET radon
exposure
52%

Low-LET cosmic
adiation exposure
12%

High-LET cosmic

radiation exposure High-LET cosmic
120 radiation exposure

5%



" Approximate Response of a single Mammalian Cell

to 1Gy of Radration

Radiation Low- High-
LET LET
Tracks in nucleus 103 4
total SSB 103 103
total DSB ~ 40 <40
Complex DSB 20% 70%
DSB per lethal lesion 87 22
Chrom. Aberration 1 3
Dicentric per cell 0.1 0.4
Cell Inactivation 30% 85%
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Repair of DSB induced by Low and High LET Radiation
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b Trajectory of
trapped particle

Mirror point
(pitch angle of helical trajectory = 90°)

Fig. 8.2. The motion of a charged particle in a dipole magnetic field
consists of three components; a helical trajectory about the magnetic field
line, a bounce between polar mirror points, and a longitudinal drift around
Earth (Hess, 1968).

Charged Particle Motions
in Earth’s Magnetic Field



Ccomponents:

Protons: ~ 0.04 to 500 MeV
Electrons: ~0.04 to 7 MeV
Heavier lons: Low Energies

Location of peak levels is energy dependent
Location of populations shifts with time
Average counts vary slowly with solar cycle

Counts may increase by orders of magnitude with
magnetic storms

van Allen Belt Particles
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Changes during short-duration space

flight
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Treadmill in a six-degree of freedom Platform
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Integrated Visual Impairment/Intracranial Pressure
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Flame Behaviour
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/ Human

International Space Station e mance
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/ Human ~ @

The Vomit Comet :33‘.'3’?"‘?"“).(_'
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Zero-Gravity Aircraft
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Human -

Two Shuttles in the Launch Pad e ranoe K




Apollo-1 Fire Accident
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Cities of Boston, New
+ ¥~ York, Philadelphia and
Washington.

Puerto Rico



Earth at Night
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itegrated Pre/In/Post-Flight VIIP Medical and Research Testing

Preflight Exams In-flight Exams Post flight Exams

[ ) [ ) [ :] (l ( (X )
d ¢ L+10 L+30 L+60 ‘ : *s
L-90/45 +100  R-30  R.1toR+3
1+30&R-30, [T IO T~
RISk L-90/45 days L+100 if requested L0 R+1 to R+3
& R-30,
S GEIE (+/- 7 days) & (+/- 7 days) (or as soon as possible)
as clinically indicated Y
. Orbits Ultrasound Ultrasound MRI

ontrast Eye/Orbit

Fundoscop

Y - PanOptic
Ophthalmoscope

Tonometry

VISUQd

Acuity

Including Amsler

Tests -

biomicroscopy (slit
lamp), high
resolution retinal
photography, OCT
(high resolution),

Eye/Orbit

Fundoscop

Y - PanOptic
Ophthalmoscope

Tonometry

VISUd

Acuity

Including Amsler

Of Brain and Orbits
Without Contrast

Ultrasound
Eye/Orbit

Fundoscop

Y - PanOptic
Ophthalmoscope

Tonometry

VISUGC

Acuity

Including Amsler

Tests -

biomicroscopy (slit
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