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Abstract

The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate
the effects of errors in sensor measurements, mass properties, and aircraft geometry on the
accuracy of identified parameters in mathematical models describing the flight dynamics
and determined from flight data. Measurements from a typical flight condition and system
identification maneuver were systematically and progressively deteriorated by introducing
noise, resolution errors, and bias errors. The data were then used to estimate nondimensional
stability and control derivatives within a Monte Carlo simulation. Based on these results,
recommendations are provided for maximum allowable errors in sensor measurements, mass
properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy.
Results using additional flight conditions and parameter estimation methods, as well as a
nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these
recommendations.
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Nomenclature

Roman
A multisine total amplitude [rad]
ax, ay, az body frame translational acceleration [ft/s2]
ak multisine amplitude [rad]
b wingspan [ft]
C nondimensional coefficient
c̄ mean aerodynamic chord [ft]
e error vector
I inertia [slug · ft2]
J(θ) cost function
j imaginary number,

√
−1

K set of available excitation frequencies
M total number of excitation frequencies
m mass [slug]
N number of data samples
p, q, r body frame roll, pitch, yaw rates [rad/s]
q̄ dynamic pressure [lbf/ft2]
R noise covariance matrix
< real part
S wing area [ft2]
T data record length [s]
t time [s]
V airspeed [ft/s]
X regressor matrix
y model output
z measurement

Greek
α angle of attack [rad]
β sideslip angle [rad]
∆ perturbation value
δ control surface deflection [rad]
θ parameter estimate vector
ρ air density [slug/ft3]
Σ(θ) parameter estimate covariance matrix
σ standard deviation

φ, θ, ψ Euler roll, pitch, yaw angles [rad]
φk multisine phase angle [rad]
ω frequency [rad/s]

Superscripts
˙ time derivative
† complex conjugate transpose
ˆ estimated value
−1 inverse

Subscripts

0 trim value

a aileron
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e elevator

l, m, n body frame roll, pitch, yaw moments

r rudder

X , Y , Z body frame longitudinal, side, heave forces

x, y, z body axis components

Acronyms
CAD Computer-Aided Design
GTM Generic Transport Model
NASA National Aeronautics and Space Administration
RPF Relative Peak Factor
SIDPAC System IDentification Programs for AirCraft
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1 Introduction

A routine goal of system identification, within the context of aircraft flight dynamics, is to
estimate from experimental flight test data a set of nondimensional stability and control
derivatives, and their uncertainties, within a linear system of differential equations. These
results comprise a dynamic model of the aircraft, which then enables applications including
performance and handling qualities analysis, aircraft redesign, flight simulator development,
and control law synthesis. It is important to understand how errors in the flight test and
system identification processes manifest in the parameter estimates to have confidence in
the results and to adequately instrument the hardware. Failure to do so will lead to poorer
system identification results that may require additional time and money to correct.

The consequences of incurring measurement noise, unmodeled dynamics, and informa-
tion deficiency due to lack of excitation on system identification results are well under-
stood [1–3]. Although not in common practice, methods were developed to identify models
from quantized data [4, 5]. In the 1970’s, studies [6–9] were conducted to determine the
consequence of flight instrumentation errors on the aircraft stability and control derivative
estimates, in dimensional form, using the output-error method in the time domain [1, 10]
with linear simulation models and doublet excitation inputs. These works focused on time
skews; filter lags; sensor position, misalignment, bias, and scale factor errors; and accelerom-
eter and air flow angle correction errors. Because the estimates were in dimensional form,
results were not valid for other flight conditions or for other aircraft. These studies were not
able to take advantage of modern excitation input design and parameter estimation tech-
niques, nor did they consider nondimensionalized stability and control derivatives, nor did
they examine the effect of sensor resolution, mass and inertia errors, and geometry errors.

One sector of current research and development that could benefit from this information
is the design of subscale, unmanned air vehicles. Although envisioned as cheaper alternatives
to manned flight vehicles, these aircraft may become prohibitively expensive due to the cost
of high quality onboard sensors that are also small and light weight. Understanding the
trade offs between sensor quality and modeling accuracy helps designers create better aircraft
system solutions faster and more cheaply. Mass distribution and aircraft geometry properties
are found using intricate computer aided drawing (CAD) models or by experiment, both
of which are time consuming processes that introduce error and must be repeated for new
configurations. Designers would benefit from a set of guidelines and recommendations that
relate the accuracy of these measurements to the accuracy of dynamic models identified
from experimental flight test data.

This report presents such guidelines. Section 2 describes a high-fidelity, nonlinear simu-
lation of a transport style aircraft, as well as a maneuver designed for system identification.
Section 3 presents the model structure for the aerodynamic force and moment coefficients,
and explains the equation-error method for estimating nondimensional stability and con-
trol derivatives in the frequency domain using experimental flight test data. In Section 4,
increasing errors are sequentially introduced to each measurement while nondimensional sta-
bility and control derivatives are estimated and recorded within a Monte Carlo simulation.
A summarizing table with recommendations to meet 2%, 5%, and 10% error budgets on
the most important stability and control derivatives is presented. This table is the primary
contribution of this paper and will give designers guidelines for selecting instrumentation
and measurement accuracies. These recommendations are compared with additional flight
conditions, parameter estimation methods, and aircraft simulations.

All of the input design, signal processing, and system identification work presented in this
paper was done using software written in MATLAB R© called System IDentification Programs
for AirCraft (SIDPAC) [1], which was developed at NASA Langley Research Center and is
continually being expanded and improved. SIDPAC has been applied successfully to a
wide variety of flight and wind tunnel experiments at NASA Langley Research Center and
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elsewhere, and is used at more than 80 institutions worldwide.

2 Materials

2.1 NASA Generic Transport Model

This work used the NASA Generic Transport Model (GTM), which is a nonlinear, rigid-
body, flight dynamics simulation of a subscale, transport aircraft having mass and geometry
parameters listed in Table 1. The GTM was selected for analysis because it is a high-fidelity,
nonlinear simulation of a subscale aircraft. The GTM represents a conventional transport
aircraft, having relatively well-known flight dynamics and behaviors. Additionally, the GTM
was chosen because parameter estimation results can be compared to the true parameters
determined using numerical linearization.

The GTM simulates the nonlinear, six degree of freedom, rigid body dynamics of the
aircraft. Aerodynamic control surfaces include the elevator, aileron, rudder, spoilers, stabi-
lizers, and flaps. The aerodynamic model used in the GTM is derived from a series of wind
tunnel tests conducted at the NASA Langley Research Center [11]. A 5.5% scaled wind
tunnel test article was used in the 14- by 22-Foot Subsonic Tunnel under static and forced
oscillation testing to generate aerodynamic tables. These tables were augmented with data
from rotary balance tests conducted using a 3.5% scaled wind tunnel test article in the
20-Foot Vertical Spin Tunnel. A polynomial-based aerodynamic model was then extracted
from the data using multivariate orthogonal functions, expanded in the aircraft states and
controls, and is implemented in the simulation [1, 12, 13]. The GTM also includes two tur-
bojet engines, the dynamics for which are modeled as first order lags from the pilot throttle
input to the thrust output. This model is based on multivariate orthogonal functions iden-
tified from ground testing, with additional ram drag corrections that vary with altitude and
airspeed.

The GTM simulation software was written in MATLAB R©. The user provides an initial
state vector and a time history of control surface inputs. The simulation then computes time
histories of the aircraft translational and rotational positions, velocities, and accelerations,
as well as power and thrust states. Additional tools are provided to trim the aircraft and
compute linear perturbation models about those trim conditions.

2.2 Reference Excitation Maneuver

Simulation data for a single reference flight maneuver were examined. For this maneuver, the
GTM was trimmed for straight and level flight at a 1200 ft altitude and a 130 ft/s airspeed,
which is a typical flight condition for this aircraft [14]. The simulation code determined trim
values of +4.52 deg angle of attack, +1.40 deg elevator deflection, and 15% throttle for this
condition.

Orthogonal phase-optimized multisine control input perturbations [1,15] were chosen to
excite the GTM for system identification. These multiple-axis inputs are commonly used
for system identification at NASA Langley Research Center and have led to good modeling
results in a variety of flight conditions including hypersonic, high sideslip stall, and post-stall
flight, as well as normal flight conditions [15, 16]. Each of the elevator, aileron, and rudder
control surface deflections had the form

δ(t) = δ0 + ∆δ(t)

= δ0 +
∑
k∈K

ak sin

(
2πk

T
t+ φk

)
(1)
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where δ0 is the trim value, ∆δ(t) is the perturbation, ak is the amplitude, T is the excitation
record length, φk is the phase angle, ωk = 2πk/T is the excitation frequency, and K is the
set of available frequencies for that input.

The excitation record length was chosen as T = 35 s, which corresponds to a fundamental
frequency of 0.0286 Hz, to provide sufficient information content for system identification.
Excitation frequencies were selected as integer multiples of this fundamental frequency and
between the range 0.2 Hz and 2.0 Hz, where the rigid body dynamics of interest typically
reside. Because the excitation frequencies are harmonic multiples of the fundamental fre-
quency, the excitation inputs are mutually orthogonal and were excited simultaneously to
shorten experiment durations without correlating data and deteriorating estimation results.
Excitation frequencies were assigned to the inputs in an alternating manner so that each
input has wide-band frequency content. For simplicity, amplitudes were selected to have
uniform power and normalized such that the elevator, aileron, and rudder have perturbation
amplitudes

A = ak
√
M (2)

of 2.0 deg, 0.5 deg, and 1.5 deg, respectively, where M is the number of frequencies used in
the input. These amplitudes are typical of those used in practice [16]; smaller amplitudes
result in lower signal-to-noise ratios and larger amplitudes can excite nonlinear motions.
The phase angles were determined using a simplex search optimization to minimize the
relative peak factors

RPF =
max[∆δ(t)]−min[∆δ(t)]

2
√

2 · rms[∆δ(t)]
(3)

of the inputs to keep the aircraft near the trim condition for linear modeling. These excita-
tion inputs are parameterized in Table 2.

The GTM was simulated with these inputs at the reference flight condition and the
resulting time history data is shown in Figure 1. Dynamic responses are small enough to
remain within expected linear regimes and large enough so measurements are above realistic
noise floors. Airspeed, air flow angles, and rotational velocity outputs are all within the
regions of validity for the aerodynamic database [11].

3 Methods

3.1 Aerodynamic Models

Observing the conventional simplifying assumptions for a rigid body flight dynamics model
of a fixed-wing aircraft [1, 17, 18], the nonlinear equations of motion can be rearranged to
compute the nondimensional aerodynamic force and moment coefficients

CY = (may)/(q̄S)

CZ = (maz)/(q̄S)

Cl = [Ixxṗ− Ixz(ṙ + pq) + (Izz − Iyy)qr]/(q̄Sb)

Cm = [Iyy q̇ + (Ixx − Izz)pr + Ixz(p
2 − r2)]/(q̄Sc̄)

Cn = [Izz ṙ − Ixz(ṗ− qr) + (Iyy − Ixx)pq]/(q̄Sb) (4)

by substituting measured data on the right side of Equation 4 [1]. The longitudinal coeffi-
cient CX is not included here because it is more closely associated with the slower phugoid
mode and is often excluded from a control law design. The mass, inertia, wing reference
area, mean aerodynamic chord, and wingspan of the aircraft are typically known before
the flight test. Dynamic pressure, rotational velocities, and translational accelerations are
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measured by onboard sensors. Angular velocity measurements are numerically smoothed
and differentiated to compute angular accelerations [1].

The aerodynamic force and moment coefficients in Equation 4 were modeled in terms of
the aircraft states and controls with the linear expansions [1, 17,18]

CY = CYβ∆β + CYp
b∆p

2V
+ CYr

b∆r

2V
+ CYδa∆δa + CYδr∆δr

CZ = CZ0 + CZα∆α+ CZq
c̄∆q

2V
+ CZδe∆δe

Cl = Clβ∆β + Clp
b∆p

2V
+ Clr

b∆r

2V
+ Clδa∆δa + Clδr∆δr

Cm = Cm0
+ Cmα∆α+ Cmq

c̄∆q

2V
+ Cmδe∆δe

Cn = Cnβ∆β + Cnp
b∆p

2V
+ Cnr

b∆r

2V
+ Cnδa∆δa + Cnδr∆δr (5)

which are valid for small deviations about the trim condition, where ∆ indicates a perturba-
tion. This is a commonly used aerodynamic model and application of step-wise regression [1]
confirmed that this model is statistically appropriate for the reference flight maneuver data.

3.2 Equation-Error Parameter Estimation in the Frequency Do-
main

Given the measurements of the aerodynamic coefficients in Equation 4 and the model struc-
ture in Equation 5, it is a parameter estimation problem to determine the unknown nondi-
mensional stability and control derivatives that best match the equations to the data. The
equation-error method in the frequency domain [1] was used to estimate the stability and
control derivatives. This method ignores sensor noise and modeling error at higher frequen-
cies, has produced good results in practice, and provides an analytical solution amenable to
Monte Carlo simulation.

The first step is to transform the data into the frequency domain using the Fourier
transform. A measured signal z(t) has the finite Fourier transform

z(jω) =

∫ T

0

z(t)e−jωtdt (6)

which, for relatively fast sampling frequencies, can be approximated by the discrete Fourier
transform

z(jωm) ' ∆t

N−1∑
i=0

z(i∆t)e−jωmi∆t (7)

where ∆t is the sampling period and N is the number of data samples. A high-accuracy
chirp-z transform with cubic polynomial interpolation [1, 19] was used to implement the
Fourier transform using frequencies between 0.1 Hz and 2.5 Hz, in 0.025 Hz increments.

Each force and moment coefficient parameter estimation problem in Equation 5 was
arranged into the least-squares framework as

z = y + e

= Xθ + e (8)

where y is the Fourier transform of the model output, e is the Fourier transform of the
modeling error, X contains Fourier transforms of the explanatory variable time histories,
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and θ are the unknown nondimensional stability and control derivatives. Minimizing the
least-squares cost function

J(θ) =
1

2
(z−Xθ)†(z−Xθ) (9)

where † denotes the complex conjugate transpose, results in the parameter estimates and
associated uncertainties

θ̂ =
[
<{X†X}

]−1<{X†z}

Σ̂(θ̂) = σ̂2
[
<{X†X}

]−1
(10)

where the equation-error variance σ̂2 was estimated from the model residuals [1] and <
denotes the real part of a complex number. The bias terms CZ0

and Cm0
cannot be estimated

with frequency domain techniques because the data is detrended prior to analysis, but these
terms are not used in a linear dynamics model.

3.3 Error Models

This section describes the mathematical models for the errors used to corrupt the measure-
ments. The first type of error examined is due to quantization, which occurs when sensor
measurements are converted into digital numbers. Quantization is an important issue in
system identification because it changes the amplitude and frequency content of the data.
This source of error remains a problem because although data systems can sample over a
large range, system identification maneuvers are often designed to elicit small-amplitude
responses that can be near the resolution floor of the avionics hardware. Errors due to
quantization affect the computation of the aerodynamic coefficients in Equation 4 and the
nondimensional stability and control derivatives in Equation 5. For a given measurement
z(t), the quantized measurement is

quant{z(t)} = ∆z · round

(
z(t)

∆z

)
(11)

where ∆z is the resolution of the measurement and round is a function that rounds the
argument to the nearest integer. Figure 2 shows for example the progressive quantization
of the angle of attack measurement from the reference excitation maneuver. The first plot
is the original time history with added measurement noise. The next three plots show this
measurement as the resolution ∆α is degraded to 0.6 deg, 1.2 deg, and 1.8 deg.

The second source of error considered is bias error in the aircraft mass distribution and
geometry parameters. The mass distribution of the aircraft can be measured experimentally
using balancing and swinging techniques, or can be computed using CAD software. In either
case, errors occur in determining the aircraft mass and the inertia tensor. Similarly, errors
are incurred in the description of the aircraft geometry, namely the mean aerodynamic
chord, the wingspan, and the wing reference area. These parameters are important because
they affect the computations in Equation 4 and 5. For example, the pitch moment of inertia
is modeled as Iyy + ∆Iyy , where ∆Iyy is a constant, uniformly distributed bias.

Several error models were not considered in this report. While realistic noise sequences
were applied to the data, the amplitude and statistical characteristics of the noise sequences
were not varied because analytical and experimental results for describing the accuracy of
estimated parameters using noisy data already exist [1–3]. Other studies [6,8,9] investigated
the effects of bias and scale factor errors on sensor calibrations, as well as alignment, instal-
lation, and correction errors. In the frequency domain analysis used here, bias errors are all
removed during detrending, before the Fourier transforms are applied, and are not a factor
in the linear dynamic modeling. Scale factor errors manifest as multiplicative errors which
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are directly proportional to the estimated stability and control derivatives. Finally, a study
using output-error parameter estimation was already conducted to investigate the effects
due to time skews between sensor measurements and signal-conditioning filter lags [7].

4 Results

This section presents the results of dynamic modeling accuracy dependence on sensors mea-
surements, mass properties, and aircraft geometry. A baseline case is first presented, where
nondimensional stability and control derivatives were estimated without corrupting the mea-
surements, except for adding Gaussian white noise. Afterwards, errors were systematically
introduced into the measurements to determine thresholds for meeting 2%, 5%, and 10%
accuracies on the estimated parameters. Last, the analysis was repeated using different trim
conditions, parameter estimation methods, and aircraft simulations to investigate sensitivi-
ties to these changes.

Monte Carlo simulations were used to produce the results. During investigation of the
measurements of the aircraft mass properties or geometry, these values were first given a
known random bias, distributed uniformly on a domain described by a percentage of the
nominal value. Then measurements of the system outputs, for example the angle of attack
and sideslip angle, were corrupted with a random Gaussian white noise sequence that imple-
ments a signal-to-noise ratio of 20:1, based on the root mean square of the variation in the
data. The elevator, aileron, and rudder deflections were not corrupted with noise because
these measurements are typically of high quality. During investigation of sensor measure-
ments, the appropriate signals were then quantized. One thousand runs were performed for
each level of accuracy and for each measurement corrupted. This number of runs was found
to be beyond the amount needed for statistical convergence.

The estimated nondimensional stability and control derivatives diverged from the nom-
inal estimates and exhibited increasing variation as the measurements were progressively
corrupted. The damping derivatives, e.g. Cnr , and off-axis derivatives, e.g. Cnδa , are less
important in the dynamic model and are more difficult to estimate using system identi-
fication because the dynamic responses are smaller. Therefore, only the more important
on-axis derivatives, e.g. Cnδr , are reported. Stability and control derivative estimates are
plotted versus the accuracy level, as shown, for example, in Figure 4. Each point represents
the mean value of the Monte Carlo simulations, using one thousand different measurement
corruptions and noise sequences. The error bounds on each point represent the two standard
deviation spread of the Monte Carlo simulations. The dashed lines represent the 10% vari-
ation of the finite difference results. Perturbations for computing numerical finite difference
values were selected as the maximum deviations from the trim values in the flight data.
Nondimensional stability and control derivatives computed using finite differences are listed
in Table 3. Once any part of the two standard deviation interval crossed the 10% variation
line for any of the reported on-axis stability and control derivatives, that level of accuracy
was reported in Table 4 as the minimum needed to meet 10% error. For clarity, the 2% and
5% error bound levels are not shown in the plots, but those results are also listed in Table
4. This table, describing minimum accuracy levels for several measurements, is the main
contribution of this work.

4.1 Nominal Estimation Results

Equation-error parameter estimation was used in the frequency domain with the reference
flight data to estimate the nondimensional stability and control derivatives in the aerody-
namic model. Figure 3(a) shows the model fits to the force and moment coefficients in the
frequency domain, and Figure 3(b) shows the residuals, which are plotted at one tenth the
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amplitude scale. The model fits had coefficients of determination above 0.99, the residuals
had standard deviations two orders of magnitude less than the data, and estimated error
bounds were all within 3.7% of the estimated model parameters. These metrics indicate
that the model is appropriate for this set of data.

Nominal estimates of the nondimensional stability and control derivatives are provided
in Table 3. The equation-error results were within two standard deviations of the finite
difference results and thus were in statistical agreement. Differences between the results are
mainly due to measurement noise and linearization effects. Table 3 also shows stability and
control estimates using other methods of parameter estimation. Since all of these results
are in statistical agreement, these results are consistent and there is sufficient information
content in the data to identify accurate dynamics models.

4.2 Sensor Resolution Effects

This section discusses the effects of sensor quantization on the accuracy of dynamic models.
Figures 4 through 11 illustrate the results and Table 4 contains the values at which the 2%,
5%, and 10% error criteria are violated.

When frequency domain equation-error parameter estimation is applied, resolution errors
manifest as increased biases in the parameter estimates, shown in the figures as diverging
oscillations. Although these results were obtained using Monte Carlo simulation with unique
noise sequences, there is very little spread in the results, as indicated by the small error
bounds, suggesting low sensitivity to varying random noise sequences at the noise level used
here.

Overall, the longitudinal dynamics were more robust to quantization errors than the
lateral/directional dynamics because the lateral/direction dynamics are more tightly coupled
and contain more parameters to estimate. When one parameter begins to diverge, the other
parameters become biased and also diverge. The damping derivatives depart first, followed
by the control derivatives and then the static derivatives. Damping derivatives are typically
the most difficult to estimate in aircraft system identification, whereas static derivatives
are strong parameters and there is good excitation available for estimating the control
derivatives.

The first measurements investigated were the angle of attack and sideslip angle, which
are made with air flow vanes. These are important measurements because the aerodynamic
forces and moments depend strongly on them. Corrections are often made for bias and scale
factor calibrations, as well as offsets from the center of gravity. These measurements do not
affect the aerodynamic coefficient calculations in Equation 4, but serve as explanatory vari-
ables in Equation 5. As the quantization level increases, making measurements of the angle
of attack and sideslip angles progressively more coarse, the average values of the estimated
stability and control derivatives from the Monte Carlo simulations diverge from the original
values. The remainder of the linear nondimensional stability and control derivatives are
shown in Figure 5 for completeness. As these are weaker parameters, they diverge sooner
than the derivatives shown in Figure 4. Some of these parameters, for example Cnδa , violate
the 10% error criterion even before quantization.

Gyroscopes measure the body-fixed rotational velocities. They are subject to bias errors
and drifts, alignment errors, and effects due to structural flexibility of the aircraft. Gyro-
scope measurements and their derivatives are used in both the aerodynamic coefficients and
the aerodynamic model. Figure 6 shows that the static terms CYβ and CZα are relatively
robust to gyroscope errors. In this case Clδa shows a particular sensitivity to measurement
noise, as indicated by the larger spread in the Monte Carlo results.

Accelerometers measure the translational accelerations of the body and are subject to
bias errors, position errors due to sensor offset from the center of mass, and alignment errors.
Accelerometers only affect the computation of the aerodynamic force coefficients CY and
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CZ in Equation 4. Results are shown in Figure 7. The derivative CYδr limits the resolution
because the side acceleration is much smaller than the heave acceleration, as seen in the
flight data in Figure 1.

Angle of attack and sideslip angle measurements can also be reconstructed when flying
about trimmed flight conditions [20], such as the reference maneuver studied here. The
differential equations

β̇ ' αp− r + (sinφ cos θ + ay)/V

α̇ ' q − βp+ (cosφ cos θ + az)/V (12)

may be integrated from initial conditions to reconstitute air flow angle measurements. While
bias and drift errors accumulate during numerical integration of noisy data, these are re-
moved prior to applying the Fourier transformation and do not affect the parameter esti-
mates determined in the frequency domain. Figures 8 and 9 show nondimensional stability
and control derivative estimates using reconstructed air flow angles and quantized gyroscope
and accelerometer measurements, respectively. Corruption of the airspeed measurement in
Equation 12 did not significantly deteriorate the estimates. For the stability and control
derivatives under consideration, applying airflow angle reconstruction with degraded sensor
resolutions quickly violated the error bound criterion due to additional biases and increases
in the spread of the Monte Carlo simulation results. Here, not only are the rotational veloc-
ity and linear acceleration measurements degraded, but also the reconstructed air flow angle
measurements. The lateral/directional derivatives were more susceptible than the longitu-
dinal derivatives, and the air flow angle derivatives were more susceptible than the control
derivatives. While stability and control derivative estimates were accurate, reconstructing
air flow angle data relies on less information and is more susceptible to errors in this data,
as previously noted [20].

Airspeed measurements are computed from pressure measurements, which are usually
corrupted by bias and scale factor errors. Dynamic pressure measurements are used to
nondimensionalize the aerodynamic coefficients. Figure 10 shows that after about 5 lbf/ft2

quantization error in dynamic pressure, the parameter estimates diverge quickly. The lim-
iting factor, CZδe , is the most sensitive because there is high excitation in the heave accel-
eration, and errors in the dynamic pressure magnify errors in the parameter estimation.

Control surface deflections are measured with potentiometers, and these are typically
low in noise and correction errors. These measurements are of paramount importance in
system identification, especially when using methods such as output-error that integrate the
equations of motion using the input time histories. In the equation-error approach, these
measurements only appear as explanatory variables in the aerodynamic model and the
associated estimated model parameters have a reduced sensitivity to error. Figure 11 shows
that the control derivative estimates diverge first as the quantization error in the control
surface position measurement increases. After quantization at 1.4 deg, the contributions
due to the aileron can no longer be deciphered.

It is important to note here that the error decreases with the square root of the number
of data points. If time and money allowed for repeated testing at the same flight condition,
additional data could help mitigate the effects of poor measurement resolution.

4.3 Mass and Geometry Bias Effects

This section discusses the effects on the dynamic model parameters due to errors in mea-
suring the mass and geometry properties of the aircraft. Figures 12 through 14 illustrate
the results and Table 4 contains the values at which the 2%, 5%, and 10% error criteria are
violated.

Figures 12 through 14 show that mass and geometry errors do not change the mean
value of the nondimensional stability and control derivative estimates and instead increase
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the spread of the results. The longitudinal and lateral/directional derivatives are affected
similarly, unlike the sensor quantization results. The static, damping, and control derivative
uncertainties all grow at approximately the same rate. Due to some biases on the damping
derivatives, these will surpass the error criteria quickly, and so the same set of on-axis static
and control derivatives illustrated in Figure 4 were used to create Table 4.

Figure 12 shows the results for increasing errors in the aircraft mass and inertias, where
the errors were modeled as uniformly distributed, random biases. In practice, these values
are determined by CAD models and/or experimental techniques, and errors directly alter
the aerodynamic coefficients. Errors would also affect center of mass corrections performed
on many of the sensors, but this is not modeled here because the effects would be very small.
There is essentially a one-to-one correspondence between the mass property error and the
parameter estimation error; for example, 10% error in the mass quantities results in the two
standard deviation spread of CZδe surpassing the 10% error criterion. However, the values
presented in Table 4 are less than this because parameter estimates are biased from the
finite difference values.

The product of inertia Ixz is difficult to obtain accurately from experiments, but not
a problem when using CAD modeling. Figure 13 was generated to address whether this
quantity is needed for accurate dynamic modeling. The product of inertia Ixz only affects
the Cl and Cn moment coefficients in Equation 4, and while it did not increase the rate of
growth of the error bounds of the estimated parameters, it led to larger differences between
the Monte Carlo and finite difference results, which in turn led to lower error requirements
for meeting the same error criteria.

Figure 14 shows the results when corrupting the aircraft geometry measurements, which
are either measured directly or computed using CAD programs. These values nondimen-
sionalize the aerodynamic coefficients and appear in the nondimensional rate terms in the
aerodynamic model. Errors impact the moment coefficients more than the force coefficients
because the wing reference area is multiplied by either the mean aerodynamic chord or the
wing span, thereby magnifying the error.

4.4 Additional Flight Conditions

The previous analysis was performed on the GTM nonlinear flight simulation for one single
maneuver. To investigate how the measurement recommendations might change with the
flight condition, the analysis was repeated for trim angles of attack between 0 deg and 10
deg, as described in Table 5. The same input sequence described in Table 2 was applied
to the GTM in each trim condition. As the trim angle of attack increased and the trim
airspeed decreased, the perturbations in the angle of attack increased while the rotational
velocities became smaller. All flight data remained within the regime of validity for the
GTM simulation.

Figure 15 shows estimation results for the pitching moment derivatives as the gyroscope
resolution is progressively degraded, for several trim conditions. The 10% error criteria is
based on the finite difference values listed in Table 5. At 0 deg angle of attack, these values
are surpassed sooner because additional biases exist in the estimated parameters, perhaps
due to the larger excursions from trim experienced. As the trim angle of attack increases, the
manner in which the estimated stability and control derivatives diverge remains the same,
and the values at which the error criteria are violated remain consistent. Therefore, the
recommendations provided in Table 4 are independent of the flight condition, for straight
and level flight below stall. If the model structure in Equation 5 changes, for example
with unusual aircraft configurations or trim conditions, then these values would have to be
determined again.
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4.5 Additional Parameter Estimation Methods

The previous results employed the equation-error method in the frequency domain. Another
common method for parameter estimation is to apply equation-error in the time domain.
The same procedure is used, except that the Fourier transform in Equation 7 is not applied.
While this process still retains the analytical solution, there are several disadvantages to
the time domain analysis. For instance, more data points are used, resulting in longer
computation times. There is no automatic filtering of frequency content away from the
rigid body dynamics of interest, so higher frequency content such as noise and unmodeled
dynamics must first be filtered. Time-domain residuals are typically colored, so that the
estimated parameter error bounds must be corrected [1].

Results for degrading air flow angle measurements for the GTM reference maneuver are
shown in Figure 16 using equation-error method in the time domain. The on-axis parameters
diverged much faster than using the equation-error method in the frequency domain. The
spread of some parameters including Clβ and Clδa violate the 10% error criteria even with
no quantization, due to the added noise on the measurements.

Another popular method of parameter estimation is the output-error method in the
time domain [1, 10]. In this approach, a nonlinear optimization is used to iteratively find
the stability and control derivatives that best match the model outputs to the experimental
data. Equations 14 through 17 describe the equations of motion for the longitudinal and
lateral/directional variables, as well as the model outputs. Again, the phugoid mode was not
modeled. The output-error method integrates these equations from initial conditions using
the time history of the inputs to obtain the outputs. The stability and control derivatives
are then optimized so that the model outputs best match the measured outputs according
to the cost function

J(θ) =
1

2
(z− y)T R̂−1(z− y) (13)

where R is the noise covariance matrix.
The results of using output-error estimation in the time domain for the GTM refer-

ence maneuver and air flow angle quantization are shown in Figure 17. The output-error
method worked very well in the case of the CZ and Cm coefficients. However as the quan-
tization increased up to 1 deg, the estimates of the lateral derivatives quickly degraded.
The lateral/directional dynamics are more coupled and there are more parameters to esti-
mate, which degraded sooner than using the frequency domain equation-error method. For
the case of quantized input measurements, the output-error method performed particularly
poorly because of the numerical integration involved, consistent with previous research.

4.6 F-16 Nonlinear Simulation

A nonlinear simulation of the General Dynamics F-16 fighter aircraft was also used to check
if results change with the aircraft size. The F-16 is a piloted, full-scale, fighter aircraft with
properties listed in Table 1. The nonlinear simulation is a MATLAB R© implementation [1]
of the FORTRAN simulation presented by Stevens and Lewis [18], which utilizes modified
aerodynamic tables from wind tunnel tests and engine dynamics identified from ground
tests [21].

The F-16 simulation was trimmed at 10,000 ft altitude, with an airspeed of 450 ft/s and
a 5 deg angle of attack. Perturbation inputs described in Table 2 were super-imposed on
trim settings for the nonlinear F-16 simulation.

Parameter estimation results using equation-error in the frequency domain were similar
to those found using the GTM. A representative case, showing parameter estimates with
varying mass and inertia accuracy, is shown in Figure 18, exhibiting similar trends for
varying flight conditions. The use of nondimensional stability and control derivatives and
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percent errors allow recommendations in Table 4 to be applicable to other aircraft. This
is expected because the nondimensional stability and control derivatives remove the known
dependence on aircraft mass and geometry properties.

5 Conclusions

This report investigated the effects of errors in sensor measurements, mass properties, and
aircraft geometry on the accuracy of dynamic model parameters estimated from experimen-
tal flight test data. The NASA GTM nonlinear simulation was excited using orthogonal
phase-optimized multisine perturbations on the elevator, aileron, and rudder inputs while
in trimmed flight. Each case was run one thousand times using unique noise sequences, and
the equation-error method was applied in the frequency domain to estimate longitudinal
and lateral/directional nondimensional stability and control derivatives.

The findings and contributions of this report are:

1. A list of recommended measurement resolutions needed to meet 2%, 5%, and 10%
errors budgets on estimated nondimensional stability and control derivatives using
equation-error in the frequency domain are provided in Table 4.

2. Estimates of stability and control derivatives can be obtained by reconstructing an-
gle of attack and sideslip angle measurements from gyroscopes and accelerometers;
however, these sensors require better resolution in this case, especially the gyroscopes.
Nonetheless, this method appears to be a viable alternative to using air flow angle
vanes for system identification, as these sensors disturb the flow, add cost and com-
plexity to the aircraft, and are difficult to calibrate.

3. The product of inertia Ixz was found to have a small impact on stability and control
derivative estimates for typical fuselage-heavy aircraft. Here, this quantity can be
safely approximated or neglected to save time and money if aircraft mass distributions
are being determined experimentally, assuming small perturbation flight tests starting
from wings-level flight conditions at relatively low angles of attack.

4. Repeated analysis showed that the results listed in Table 4 were not sensitive to
variations in trim conditions below stall.

5. Equation-error parameter estimation in the frequency domain produces better results
than in the time domain, due to noise sensitivities and unmodeled dynamics. Except
for quantized control surface deflections, the output-error method produced excellent
results up to a certain threshold, when large biases and standard deviations were
incurred.

6. Results in Table 4 were found to scale with vehicle size, per analysis using an F-16
simulation.
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Tables

Table 1. Mass and geometry values used in aircraft simulations

Parameter Symbol GTM F-16 Units
center of mass position xcg 0.25 0.25 %c̄

mean aerodynamic chord c̄ 0.9153 11.320 ft
wing span b 6.8488 30.000 ft

wing reference area S 5.9018 300.00 ft2

mass m 1.5416 637.16 slug
roll inertia Ixx 1.3270 9496.0 slug·ft2

pitch inertia Iyy 4.2540 55814 slug·ft2

yaw inertia Izz 5.4540 63100. slug·ft2

roll/yaw coupling inertia Ixz 0.1200 982.00 slug·ft2
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Table 2. Orthogonal phase-optimized multisine input description (record length T = 35 s)

Elevator Aileron Rudder

A = 2.0 deg A = 0.5 deg A = 1.5 deg
ak = 0.6667 deg ak = 0.1091 deg ak = 0.3273 deg

M = 22 M = 21 M = 21
RPF = 1.2445 RPF = 1.2136 RPF = 1.0658

Index Frequency Phase Index Frequency Phase Index Frequency Phase
k k/T [Hz] φk [rad] k k/T [Hz] φk [rad] k k/T [Hz] φk [rad]
7 0.2000 3.6221 8 0.2286 3.9280 9 0.2571 5.8733
10 0.2857 4.1272 11 0.3143 6.0649 12 0.3429 4.9406
13 0.3714 3.2037 14 0.4000 0.8306 15 0.4286 3.1968
16 0.4571 2.6584 17 0.4857 1.5477 18 0.5143 0.0323
19 0.5429 0.0811 20 0.5714 2.2952 21 0.6000 3.3582
22 0.6286 2.5869 23 0.6571 1.4435 24 0.6857 4.3454
25 0.7143 6.0820 26 0.7429 6.2755 27 0.7714 3.9451
28 0.8000 0.0769 29 0.8286 3.1900 30 0.8571 5.7802
31 0.8857 1.6735 32 0.9143 0.0810 33 0.9429 4.4729
34 0.9714 1.7690 35 1.0000 2.0319 36 1.0286 3.3028
37 1.0571 0.6256 38 1.0857 3.0491 39 1.1143 0.0384
40 1.1429 5.0289 41 1.1714 3.8835 42 1.2000 3.6866
43 1.2286 2.5389 44 1.2571 2.3799 45 1.2857 4.8036
46 1.3143 5.3888 47 1.3429 1.6406 48 1.3714 0.3270
49 1.4000 0.8353 50 1.4286 5.3963 51 1.4571 0.8943
52 1.4857 0.6303 53 1.5143 2.3521 54 1.5429 1.1219
55 1.5714 2.2350 56 1.6000 5.2871 57 1.6286 5.7885
58 1.6571 2.3720 59 1.6857 1.8165 60 1.7143 3.7299
61 1.7429 0.9076 62 1.7714 1.7858 63 1.8000 5.4749
64 1.8286 5.1943 65 1.8571 0.6440 66 1.8857 2.8322
67 1.9143 1.2656 68 1.9429 5.5245 69 1.9714 3.7967
70 2.0000 3.4607
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Table 3. Nondimensional stability and control derivative estimates for the GTM (h0 = 1200
ft, V0 = 130 ft/s, α0 = 4.52 deg)

Numerical Central Frequency Domain Time Domain Time Domain
Parameter Finite Difference Equation-Error Equation-Error Output-Error

θ θ̂ ± σ̂(θ̂) θ̂ ± σ̂(θ̂) θ̂ ± σ̂(θ̂)
CYβ −1.0125 −1.0065± 0.0037 −1.0066± 0.0022 −1.0084± 0.0124
CYp +0.0543 +0.0735± 0.0158 +0.0727± 0.0095 +0.0903± 0.0553
CYr +0.8574 +0.8877± 0.0238 +0.8863± 0.0139 +0.9548± 0.0761
CYδa −0.0177 −0.0155± 0.0032 −0.0156± 0.0020 −0.0315± 0.0136
CYδr +0.3387 +0.3390± 0.0012 +0.3390± 0.0006 +0.3446± 0.0027
CZα −4.8370 −4.8345± 0.0077 −4.8344± 0.0040 −4.8932± 0.0179
CZq −27.102 −27.609± 0.5040 −27.590± 0.2823 −28.735± 0.9357
CZδe −0.4807 −0.4801± 0.0093 −0.4799± 0.0052 −0.4540± 0.0187
Clβ −0.1432 −0.1393± 0.0029 −0.1396± 0.0017 −0.1393± 0.0021
Clp −0.3542 −0.3333± 0.0123 −0.3342± 0.0073 −0.3322± 0.0096
Clr +0.1331 +0.1535± 0.0186 +0.1518± 0.0110 +0.1645± 0.0140
Clδa −0.0760 −0.0735± 0.0025 −0.0736± 0.0015 −0.0722± 0.0024
Clδr +0.0290 +0.0293± 0.0009 +0.0293± 0.0005 +0.0291± 0.0006
Cmα −1.6349 −1.6134± 0.0068 −1.6129± 0.0051 −1.6241± 0.0053
Cmq −41.215 −41.292± 0.4441 −41.301± 0.3319 −42.008± 0.3408
Cmδe −1.7744 −1.7924± 0.0082 −1.7925± 0.0061 −1.8238± 0.0061
Cnβ +0.2165 +0.2147± 0.0009 +0.2150± 0.0006 +0.2180± 0.0023
Cnp −0.0408 −0.0461± 0.0039 −0.0449± 0.0024 −0.0366± 0.0106
Cnr −0.3840 −0.3892± 0.0059 −0.3875± 0.0037 −0.3796± 0.0159
Cnδa −0.0025 −0.0032± 0.0008 −0.0031± 0.0005 +0.0027± 0.0025
Cnδr −0.1691 −0.1692± 0.0003 −0.1691± 0.0002 −0.1704± 0.0005

Table 4. Recommended measurement resolutions for achieving specified error budgets

Measurement Symbol 2% 5% 10% Units
Air Flow Angles α, β 0.1014 0.2024 0.4048 deg

Dynamic Pressure q̄ 0.0089 0.1446 2.2406 lbf/ft2

Gyroscopes p, q, r 1.8707 4.2064 5.5439 deg/s
Accelerometers ax, ay, az 0.0127 0.0262 0.0524 g
Potentiometers δe, δa, δr 0.0389 0.2457 0.4526 deg

Mass Distribution m, Ixx, Iyy, Izz, Ixz 0.0057 0.1858 4.1271 %
Mass Distribution m, Ixx, Iyy, Izz, Ixz = 0 0.1798 1.0323 1.4596 %
Aircraft Geometry c̄, b, S 0.2684 1.4223 3.0958 %

Table 5. Additional GTM trim conditions (h0 = 1200 ft) and finite difference values

α0 [deg] V0 [ft/s] δt0 δe0 [deg] Cmα Cmq Cmδe
0 338.33 0.72 +5.19 −1.6437 −44.889 −1.8122
2 177.10 0.24 +3.56 −1.5378 −43.258 −1.7993
4 136.42 0.15 +1.84 −1.6211 −41.628 −1.7750
6 115.51 0.17 +0.18 −1.4117 −40.027 −1.8237
8 102.39 0.15 −1.00 −0.9992 −38.425 −1.8550
10 092.97 0.14 −1.79 −0.8814 −31.095 −1.8230
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Figure 2. Noisy angle of attack measurement with progressive quantization
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Figure 3. Frequency domain data modeling for the GTM reference excitation maneuver
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