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The human factors insights of how they are incorporated into the vehicle are crucial towards designing and 
planning the internal designs necessary for future spacecraft and missions.  The adjusted mission concept of 
supporting the Asteroid Redirect Crewed Mission will drive some human factors changes on how the Orion 

will be used and will be reassessed so as to best contribute to missions success.   Recognizing what the human 
factors and health functional needs are early in the design process and how to integrate them will improve 

this and future generations of space vehicles to achieve mission success and continue to minimize risks. 

Nomenclature 
ARCM =  Asteroid Redirect Crewed Mission 
ARV  =    Asteroid Redirect Vehicle 
CAD =   Computer Aided Design 
CLO =   Crewed Lunar Orbit 
DRO =   Deep Retrograde Orbit 
ECLSS =  Environmental Control Life Support System 
EM =     Exploration Mission 
ER =    Engineering Directorate’s Software, Robotics & Simulation Division 
EVA =  Extravehicular Activity 
FCE  =   Flight Crew Equipment 
G =  Gravity 
GN&C =   Guidance, Navigation & Control 
ISS  =   International Space Station 
IVA =  Intravehicular Activity 
JSC =    Johnson Space Center 
LEO =   Low Earth Orbit 
MACES =  Modified Advanced Crew Escape Suit 
MPCV =     Multi-Purpose Crewed Vehicle 
MPCV =     Orion Multipurpose Crewed Vehicle   
O2 =  Oxygen 
PLSS =   Portable Life Support System 
TLI =  Trans-Lunar Insertion 
WMS =  Waste Management System 

I. Introduction 
AKING into account the human element and protecting for human health is critical towards having a successful 
mission.  Many elements of the mission contribute towards the necessary habitable volume design and planning. 

 The Asteroid Redirect Mission merges the Orion Program’s capabilities with the Orion vehicle with the newly 
proposed Asteriod Redirect Vehicle (ARV) to capture and retrieve an asteroid, move to a deep retrograde orbit 
(DRO) around the moon, and then send a crew out to procure a sample to return to earth for sample analysis. 

The Asteroid Redirect Crewed Mission is expected to leverage off the Orion spacecraft accommodations to meet 
the new mission design parameters.  Orion has been designed to enable crew transportation missions of less than one 
month in duration.   All of the daily habitability functions must be accommodated within the spacecraft.  These 
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Stop:  ER311, 2101 NASA Parkway, Houston, TX  77058. 
2 Habitability Design Center Manager, JSC/SF Habitability and Human Factors Branch, SF3, 2101 NASA Parkway 
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(generally called Flight Crew Equipment) such as food, water, clothing, toiletries, stowage bags and bungees, 
medical kits, radiation monitors, cameras, and survival gear which complement Orion vehicle equipment and 
consumables.  
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communication dropouts due to a combination of mission attitude requirements and blockage caused by the ARV 
solar arrays with the asteroid, so the crew will need to be sufficiently independent so as not to require 
communication during those periods.  Between EVAs, the crew will need to service and checkout the equipment 
including recharging the suit and tool batteries, cleaning the suit interiors, replacing biomed sensors, and checking 
out Exploration PLSS components.  Also, depending on the structural and GN&C assessment, exercise may be 
suspended during this docked period so as not to cause any vehicle structural damage or undue thruster firings to 
maintain attitude. 

After the five days, the vehicle will 
undock from the ARV, and during the 
12 days of return transit, the crew will 
stow the EVA equipment and samples 
and prepare for return. Again, if there 
is any crew assist needed for the 
vehicle command and controls during 
undocking and the Lunar Gravity 
Assist maneuvers, the crew will 
prepare and implement the operational 
steps to support the acitivities. Upon 
approach to reentry to Earth, the crew 
will stow any remaining items, don 
their protective MACES suits, and 
return similarly to the EM-2 mission.  
(See Table 2) 

A comparison of the two different 
timelines will show that there are 
fundamental differences in how the 
Orion vehicle will be used for the 
different missions.  Some aspects – 
such as a smaller crew of two – may make internal operational plans easier, while others – such as suiting up and 
using the Orion capsule as an airlock – are likely to add additional complexity to planned mission operations. 

 

V. Human Factors Design Technical Challenges 

A. General Design 
 Engineering the vehicle design to incorporate the crewed volume while minimizing mass and volume impacts is 
not an easy task.  Multiple systems have to be planned for and integrated to provide the needed access and control 
points when needed while minimizing the piping, cabling and other structural adaptations needed so as to reduce 
routing and improve access to the needed operational locations.  For example, the umbilical routing for air delivery 
to the MACES suits are being assessed for the most efficient routing.  Current plans would require about 44 ft. 
configured to reach each crew around the seats and to avoid snagging. 
 In 2013 some human-in-the-loop (HITL) testing with a mockup of the Orion vehicle was conducted to evaluate 
the impact of changes to the seat attachment and attenuation system especially in the areas of crew egress and 
habitability.  The teams assessed impacts to major systems such as WMS access, volume, and obstructions, stowage 
locker accessibility, radiation shelter entry/exit, exercise locations, and post-landing ready-access water locations.  
These assessments helped to inform emergency equipment re-locations and whether proposed internal configuration 
changes were viable. 

The updated EM-2 mission and the supporting validation activities will continue to inform and identify other 
potential adjustments needed to accommodate the mission concept changes for the vehicle from the original concept. 

B. Stowage 
All of the flight crew equipment must be safely stowed or restrained for launch, launch aborts, and entry.  This 

equipment includes everything the crew needs that the vehicle does not otherwise provide, such as food, change of 
clothes, laptop, or solid waste containers. All these items must be volumetrically accommodated within the 
spacecraft.  Because of Orion’s small size, the available stowage volumes are irregularly shaped.  The items to be 

Table 2.  Planned ARCM timeline 
 

Flight Day Event 
1 Launch, Ascent, TLI 

2-5 Outbound Translunar Cruise. Suit checkout/EVA dry 
run, rendezvous/docking preparations 

5 Lunar Gravity Assist and Lunar close approach 
5-7 Lunar to DRO Cruise 
8 Rendezvous and Docking 
9 EVA 1 

10 Suit refurbishment, EVA 2 prep 
11 EVA 2 
12 Contingency margin, Housekeeping, Departure Prep 
13 Undock and Departure 

13-19 DRO to Lunar Cruise 
19 Lunar Gravity Assist maneuver 

20-26 Inbound Translunar Cruise, cabin stow 
26 Entry, crew recovery 
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stowed within Orion are also non-uniform in shape.  This creates organizational challenges to find a logical 
allocation of equipment to the available Orion stowage volumes.   

One important consideration is accessibility.  When crew members need to access a particular item, it is helpful 
to minimize the amount of other stowed items that must be moved in order to gain access to the item in question.  
This is particularly important with respect to management of small items.  One driving design consideration is the 
crew access of equipment after splashdown.  The crew will be physiologically deconditioned after several weeks in 
microgravity and the spacecraft will be floating on the ocean, thus subject to disorienting and disruptive wave 
motion.  The crew may need to access emergency equipment under these conditions.  They should not need to 
unstow unnecessary items to access post-landing equipment nor should they need to assume difficult postures to do 
so.   

Separation of food and waste is another design driver for stowage.  Orion begins the mission with a large 
quantity of stowed food and no human waste.  By the end of the mission the food volume has been largely 
consumed and there is a large quantity of human waste and trash, but it is unpalatable to stow the human waste 
where the food is stowed, leading to a driver for management of both food and waste stowage volumes. 

The ARC mission requires mission-unique items to be stowed either within the standard cabin stowage volumes 
beneath the seats or on cabin mounts.  These items include equipment to support the EVAs and the sample return 
container.  A feasibility study was conducted to assess whether the ARC mission equipment would fit within the 
remaining volume left after accommodating the typical Orion flight crew equipment for this crew size and mission 
duration.  Volumes of both sets of items were increased by 30% to account for packing inefficiencies (typically 
20%) and an additional uncertainty of 10%.  The total adjusted volume of all stowed items for the ARM were within 
the total stowed volume the vehicle can accommodate.  As the ARM planning matures, it will build off of the EM-2 
stowage work to examine which bays the ARM equipment would fit within while meeting the other design 
considerations previously described. 

C. Exercise 
 Exercise in general can be difficult to 
include in vehicle design.  In order to 
understand how best to integrate exercise 
activities, it helps to understand the 
reason exercise is needed during 
spaceflight.  Throughout the first four to 
six weeks the human body goes through 
an acute adaptation period to the 
microgravity environment that affects 
many physiological systems.  (See Table 
3)  For example, muscular strength 
decreases rapidly during this adaptation 
period.  (See Fig. 12)   
 The decrease in muscular strength 
could keep the crew from successfully 
getting to safety in an off-nominal Orion 
landing event or having sufficient 
endurance to conduct successful EVAs.  
The International Space Station crew 
actively exercises 1.5 hours six days of 
every week to recover from the effects of 
spaceflight.  Operationally Orion could 
support up to an hour per crew per day for four crew, however the protocol objectives are to complete the required 
exercise needed in 30 minutes per crew per day.  Exercise is primarily used to counteract the muscle and aerobic 
losses experienced in the on-orbit environment; however, exercise requires a relatively large operational volume 
within the vehicle.  Of the many vehicle design integration aspects required to incorporate exercise, some of the 
most difficult to accommodate can be identifying the space required to allow for crew movement with the equipment 
and designing atmospheric systems that can process the higher CO2, heat, and humidity created during exercise. 

Table 3.  Mean percent change on Shuttle landing day from 
pre-flight mean, for skeletal muscle and concentric and 
eccentric strength of various muscle groups (average duration 
of 10 days). 5 

 
Muscle Group Test Mode  
 Concentric Eccentric 
Back -23 (+/- 4)* -14 (+/- 4)* 
Abdomen -10 (+/- 2)* -8 (+/- 2)* 
Quadriceps -12 (+/- 3)* -7 (+/- 3) 
Hamstrings -6 (+/- 3) -1 (+/- 0) 
Tibialis Anterior -8 (+/- 4) -1 (+/- 2) 
Gastroc/Soleus 1 (+/- 3) 2 (+/- 4) 
Deltoids 1 (+/- 5) -2 (+/- 2) 
Pects/Lats 0 (+/- 5) -6 (+/- 2)* 
Bicepts -6 (+/- 6) 1 (+/- 2) 
Triceps 0 (+/- 2) 8 (+/- 6) 
* Preflight >R=) (p< 0.05); n=17.  Landing day (R+0) versus 
average of 3 preflight measures.  
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F. Contingency Challenges 
 While some aspects of contingency planning seem obvious – such as positioning equipment where it can be 
conveniently accessed, other concerns are not as obvious.  One of the challenges in a small space vehicle is 
protecting the crew from radiation events.  Should an event be detected in time, the plan is for the crew to shift 
equipment and take shelter in the central stowage compartments under the front two seats.  The removed stowed 
items would be placed around 
them to add additional 
protection until the event 
subsides.   Cabin design and 
planning for this event includes 
assessing air flow into the 
stowage compartments to 
prevent localized CO2 buildup. 
 Protecting for medical 
events not only includes 
effective planning on what is 
being flown, but also planning 
for the operational space needed 
to provide access and care to an 
ill or injured crewmember. The 
amount of medical capability is 
based on a combination of duration of the mission, complexity of the mission and access to additional care. Orion 
nominal operational plans require a Level III level of care (See Table 4).    
 

The ARCM mission introduction of EVAs also introduces additional medical contingency planning.  Medical is 
a perhaps understated impact of adding EVAs.  EVAs can create physical trauma that can require minor medical 
treatment. Specific injuries related to EVAs can include decompression sickness, shoulder injuries, fingernail 
trauma, and other hand injuries.  These injuries are not likely to occur during IVA activity and therefore may not be 
addressed by the Orion medical outfitting planned for EM-2.  Orion’s planned medical kit contains medicine, first-

Table 4.  Medical Care Capabilities and Level of Care 
 

Level of 
Care    

Mission Capability 

I LEO < 8 days Space Motion Sickness, Basic Life Support, 
First Aid, Private Audio, Anaphylaxis Response 

II LEO < 30 day Level I + Clinical Diagnostics, Ambulatory 
Care, Private Video, Private Telemedicine 

III Beyond LEO < 30 day Level II + Limited Advanced Life 
Support, Trauma Care, Limited Dental Care 

IV Lunar > 30 day Level III + Medical Imaging, Sustainable 
Advanced Life Support, Limited Surgical, Dental Care 

V Mars Expedition Level IV Autonomous Advanced Life 
Support and Ambulatory Care, Basic Surgical Care 

 
Figure 15.  An example mobility aid to assist the second row crew to exit their seats  
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aid supplies, and basic life support equipment for minor medical situations not requiring extensive treatment. EVA-
related injuries cannot be mitigated through crew selection and may require the appropriate hardware to be added to 
the medical kit or adoption of a risk posture to not treat injuries incurred as the result of nominal EVA operations. 

Upon an off-nominal landing event that would cause issues such as problems with maintaining the Command 
Module’s floatation or providing a toxic interior cabin environment, the crew would need to rapidly egress the 
vehicle.  Vehicle design planning to protect for this capability requires that the activities such as configuring the 
crew’s survival gear, deploying the life raft, and egressing the side (or top) hatch also needs to take into account the 
aerobically and muscularly deconditioned crew that may be experiencing orthostatic intolerance effects.  Exercise is 
meant to help mitigate the aerobic and muscular deconditioning, while other mitigations are being investigated to 
mitigate the other orthostatic intolerance effects.  Mobility aids are being assessed (See Fig. 15) to help crew exit 
their seats. 

G. Sleep Locations and Meal Planning 
Although several approaches are being reviewed, there are no defined locations for crew sleep or meal planning.  

For crew sleep it is assumed that crew members will strap crew restraints to random surfaces of the cabin.  Limited 
CAD modeling demonstrated that it is possible to position four crew members in sleep-like postures.  However, 
many factors that have not yet been modeled will drive which sleep positions are actually viable, such as internal 
temperature variations, humidity, noise, and lighting. 

Given the small size of the vehicle volume, there is no constraint to maintain meal consumption within a specific 
distance of meal preparation equipment.  Consequently, cabin configuration for meals will be a matter of crew 
preference.  The primary constraint will be mitigation of task interference between crew member(s) responsible for 
meal preparation.  This will likely mean that any meal preparation or clean up is done in an area that is not used for 
access to vehicle displays and controls, nor the WMS, nor exercise.  This suggests either the aft bulkhead, or the 
ceiling above the WMS, or potentially a corner outboard of the display and control panel.  Crew dining locations 
will probably vary from crew to crew, and possibly from meal to meal, but when all four crew eat as a group the 
center of the cabin volume will likely be a popular volume.  When individual crew members eat alone, they will 
probably find the most comfortable, “out of the way” corner to occupy. 

H. Trash 
The plan for trash management is also still in developmental stages.  Crew waste is expected to use the same 

WMS cans with charcoal odor filters that were used successfully on Shuttle.  Food disposal plans are still in work to 
identify effective storage solutions that can contain both the trash and the odors effectively as Orion does not have 
the constant ventilation system that kept odors down in Shuttle.  Stowage teams will also need to identify how to 
manage trash location so that food is kept apart from waste and other trash items.  The trace contaminant control 
system may be able to help remove odors from the compartment, but will not limit the odors at the sources of the 
concerns – nor is the level of performance capability well understood just yet. 

VI. Adjusting to New Mission Paradigms 
There are particular philosophies that consciously or subconsciously guide the assumptions and decisions that 

are made by engineers within any given industry.  Within the space industry there are a number of paradigms that 
have formed as the result of more than fifty years of human spaceflight.  However, these paradigms are shaped by 
particular experiences that are not valid in all spaceflight architectures.  The majority of human spaceflight 
experience is within Low Earth Orbit, which has given rise to paradigms that may be harmful in missions taking 
place beyond this regime. 
 In flight maintenance philosophies have been heavily driven by our LEO experience.  The Space Shuttle program 
employed a philosophy known as Redundancy Management (RM), where the Orbiter spacecraft employed 
functional redundancy in all critical systems, such that if any given component failed there was a backup component 
ready to take over its function.  Flight rules were established to determine how long the vehicle could rely on 
backups and once a particular threshold was crossed, the crew was required to immediately prepare the vehicle for 
deorbit and conduct a mission abort.  Multiple runways were on standby around the world, such that the crew could 
return home at any time.  Once on the ground, the Orbiter would be repaired and placed back in the launch 
preparation flow. 
  The International Space Station cannot land, so unlike the shuttle it employed an Orbital Replacement Unit 
(ORU) philosophy.  In this case, should any component fail, either the function would be suspended or a backup 
would take over.  Meanwhile, a replacement would be scheduled for installation – whether the replacement unit was 
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already on the station or it needed to be launched on an upcoming logistics resupply flight.  In the event of a failure 
that left the station uninhabitable, it could always be abandoned with the crew taking a docked spacecraft to land on 
Earth. 

  Both RM and ORU philosophies break down beyond LEO.  At a DRO, trajectories are constrained both by 
distance and orbital phasing.  There are specific windows where spacecraft can transit back to Earth.  Unlike the 
shuttle, an Orion at a DRO is days away from an Earth return and cannot operate with nonfunctional critical system 
during a return cruise.  Also unlike the ISS, the Orion will not receive regular logistics resupply flights.  Thus, a new 
maintenance philosophy is needed that will be appropriate to Orion missions in DRO. 

  A similar challenge is faced in the area of crew health.  Both ISS and Shuttle enjoyed the luxury of their 
proximity to the surface of the Earth.  Hospital-quality medical care was never more than 72 hours away for an 
orbiting space crew.  At DRO such medical care is as much as one to two weeks away from the point of declaration 
of an emergency.  This implies the need to develop a new paradigm for the maintenance of crew medical care. 

  What is the philosophy on trash?  Shuttle missions were typically 14 days or fewer and trash was stored in 
specialized compartments, some of which used vacuum venting as a method of odor control.  ISS stores trash in 
logistics modules which periodically undock from the station and are disposed of by burning them up in the 
atmosphere.  Orion cannot offload trash to other modules and the capsule does not have any form of vacuum venting 
or other odor control methods. 

   Finally, the confinement experienced by Orion crews is unlike prior human spaceflight experience.  Both 
Skylab and ISS missions have exceeded ARM missions in duration, but with considerably greater habitable volumes 
and much more diverse crew tasks.  The physiological and psychological challenges of the much smaller Orion 
capsule presents unknown challenges.  Apollo crews (and some shuttle crews depending on internal outfitting) 
experienced similar volumes as Orion, but for much shorter missions.  New paradigms in this arena may impact not 
only crew selection but also crew timelines. 

VII. Operational Validation 
In order to validate the operational plans and identify additional technical challenges, human factors and human 

systems engineering assessments have peen performed simulating key mission tasks such as crew ingress, 
emergency egress and various systems configurations.  As these assessments are done, critical performance factors 
are identified that occasionally lead to internal systems modifications.  For example, under the new mission concept, 
the crew will use the Orion vehicle as an airlock, so room must be available and equipment configured so as not to 
damage the MACES EVA suits upon egress and entry for all the crew.  As those same suits are the safe haven for a 
cabin depressurization event, the suits must also be designed for rapid donning by all crew before the Orion ECLSS 
system loses the ability to maintain cabin pressure. 

Several methodologies exist that can inform design planning and validate that intended performance criteria 
were met.  Historical data from similar spaceflight programs can qualitatively help in assessing planned numbers in 
a vehicle design – if both the historical data and design data are well understood for their similarities and 
differences.  This historical data is often incorporated for use in parametric assessments which can be used to 
qualitatively rate the planned estimates.  A “bottoms-up” assessment may be used once enough fidelity in the 
planned implementation is defined wherein known capabilities are defined and understood to the individual items 
and specific implementation details and then integrated up through the various subsystems to provide a vehicle level 
integration picture. Example analog missions may be used to validate design planning and performance once 
subsystem components are available for assessment or when operations are sufficiently defined.  Analog mission 
activities can drive consideration of crew timelines and activities in ways that can be otherwise overlooked during 
design studies.  They can also reveal critical architectural gaps before vehicle maturity has progressed to the point 
where corrective measures can become prohibitively expensive.  For instance, there may be conflicts between crew 
exercise, mission science, WMS usage, and spacecraft operations that may not show up during standalone human-
in-the-loop evaluations of the cabin.  However, during a multi-day analog mission evaluation the crew is responsible 
for completing a specific set of science objectives while responding to spacecraft operation tasks, conducting daily 
exercise, using the WMS, eating, sleeping, and conducting other habitation tasks.  In such a scenario it becomes 
readily apparent when vehicle configuration (volumes, layouts, orientations, and co-locations) negatively impacts 
crew productivity or safety.  Vehicle mock-ups depending on fidelity to planned equipment may provide a 1G 
insight into operational space, organization, accessibility, and other vehicle system aspects that may be difficult to 
assess in models.  

However models play a critical function in vehicle design and planning.  A recent assessment incorporating 
higher fidelity equipment models into the vehicle model identified additional habitation volume was needed for 
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there are generally fewer options available and those tend to be more expensive and less capable than what could 
have been accommodated earlier. 

Flying to trans-lunar space carries with it the standard crewed vehicle challenges of designing for appropriate 
space for the transiting crew, but also introduces additional risks due to the inability to easily return to Earth in 
contingency situations.  The addition of the asteroid mission introduces additional complexities and operational 
challenges for the crew due to the planned EVAs, sample collections, and longer mission. 

The Orion is intentionally a small spacecraft compared to the Space Shuttle, which places some limitations on 
the capabilities of the vehicle to provide the human factors and human health capabilities to support its crew.  Other 
limitations have been built into the vehicle as a result of the design reference missions used to baseline spacecraft 
requirements.  These limitations correspondingly scope how the vehicle may be used in both current and future 
operational paradigms.  In some missions, Orion will function as an independent spacecraft, operating as the sole 
pressurized volume for a human space mission.  However, in other missions it will be necessary to supplement 
Orion with additional pressurized volumes, whether in the form of logistics modules, space habitats, function-
specific modules, or other volumes as dictated by the desired resulting mission capability.  Adjustments to the 
changing mission concepts will continue to be assessed and evaluated against the vehicle performance capabilities. 

Understanding how the human interface and interaction considerations drive the vehicle design and operations 
will not only improve the vehicle but also protect needed capabilities for subsequent missions.  

 

Acknowledgments 
The authors thank Paul Boehm and Rich Ellenberger for their insights into the latest Orion configuration design 

plans. 

References 
4James C. Maida, Tom Sullivan, and Mihriban Whitmore.  "Crew Exploration Vehicle Net Habitable Volume, ISS 

Configuration, DAC2".  Habitability and Human Factors Branch, Habitability and Environmental Factors Division, NASA 
Johnson Space Center.  James C. Maida, Tom Sullivan, and Mihriban Whitmore. May 15, 2006. 

5 Human Research Program,  “Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance,” 
NASA Johnson Space Center, HRP-47072, March 2008. 


