"Badhwar-O’Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements"
Pat M. O’Neill – NASA / JSC
Myung-Hee Y. Kim - Universities Space Research Association

ABSTRACT

The Badhwar-O’Neill Galactic Cosmic Ray (GCR) Model based on actual GCR measurements is used by deep space mission planners for the certification of micro-electronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth’s magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n – 20 GeV/n is provided for ions from hydrogen to uranium.

This work describes the most recent version of the BO GCR model (BO’11). BO’11 determines the GCR flux at a given time applying an empirical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO’11 update – modern data from BESS, PAMELA, CAPRICE, and ACE emphasized more than the older balloon data used for the previous BO model (BO’10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010.

The BO’11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried outward by a constant solar wind.

A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so empirical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation – such as the Sun’s polarity and modulation dependence on gradient and curvature drift.

This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its performance will be presented.
Badhwar-O'Neill 2011 Galactic Cosmic Ray Model
Update and Future Improvements

Pat O'Neill
Myung-Hee Kim

NASA Johnson Space Center
Engineering Directorate

281-483-5180 patrick.m.oneill@nasa.gov

February 12, 2014
NASA HEALTH PHYSICISTS
CREW RADIATION EXPOSURE

NASA ELECTRONIC’s ENGINEERS
MICROELECTRONIC COMPONENT
FAILURE

FLUX ENERGY SPECTRA
- PROTONS (Z=1) TO IRON IONS (Z=26) -
- VS TIME (~5 SOLAR CYCLES)

LOW ENERGY
100's MeV/n
Solar Min - Higher Flux

HIGH ENERGY
Constant Flux > ~3 GeV/n
Protons & Helium - Balloon instruments and IMP Satellite

Ft Churchill, Manitoba, Canada

1952 - present, 3 day float at 130,000 ft

Best low & hi energy quiet time P+ & He
- BESS, CAPRICE, IMAX

IMP-8
launched 1973 - died 2005
32 years = 3 solar cycles
orbit - half way to moon
Proton & Helium Flux
(BO'13)

- Proton
 - Hi Energy - 1992 (IMX)

- Helium
 - Low Energy
 - 1999 phi=745 MV (BES)

#/(m² sr MeV/n) vs. Energy, MeV/n

50 500 5000 50000 500000
Protons and Helium account for 99% of all GCR's*!

HOWEREVER...

More than 60% of the "dose" from heavier ions are even more critical to electronics.

The Space Radiation Environment: An Introduction - Walter Schimmerling
Heavier ions - Li, Be, B, C, N, O, ... Fe come from NASA's ACE

ACE (Advanced Composition Explorer)

August 25, 1997 - present

L1 libration point 1/10th distance to sun

Best measure of Low Energy quiet time

Sparse balloon & IMP ion data
Limited for C,N,O, ... Fe
NO DATA for rare ions: F, Mg, Al, P, ...

ACE has a large collecting power - its area is over 50 cm**2 - that's ~4" in diameter!

Even so, it still takes 10 days to collect enough Oxygen to get a good measurement
ACE DATA - Oxygen Low Energy (BO'13)

![Graph showing the energy distribution of oxygen ions with energy values of 4.6% in 1997 and 5.5% in 2001.](image)

- 1997: 452 MV, 4.6%
- 2001: 1032 MV, 5.5%
High Energy Heavy Ion Data

NASA Spacecraft

High Energy Astronomical Observatory (HEAO)

44 deg/500 km
1980 - 8 Months
Large - 700 cm**2 sr
Be (z=4) to Fe(z=26)
Easy to fit, exponential form
Balloon Data too, Oxygen Hi Energy (BO'13)

- '80 HEAO(EFS) - 5.6%
- '72 ORTH - 74% (tri)
- '72 JUL - 16% (sq)
MODEL SENSITIVE TO SOLAR MODULATION (PHI)

MODULATION ~ # OF SUNSPOTS AT TIME DATA WAS TAKEN

MODEL - SUNSPOTS AT TIME OF DATA

DATA - ACTUAL MODULATION AT TIME & PLACE OF DATA

- FLUX IS SHIFTED UP OR DOWN

- COULD ALSO BE DUE TO SYSTEMATIC INSTRUMENT ERROR

THE ERROR CAN BE SIGNIFICANT!

PHI MODEL = 450 MV

PHI DATA = 500 MV
LOW ENERGY - Solar Modulation (PHI)

WHEN MODEL & DATA HAVE SAME SOLAR MODULATION (PHI): GOOD FIT (RMS ERROR~2%)
BO'10 PHI (MODEL) & PHI (DATA)

- BO'10 Model
- Oxygen (IMP 1973-2005)
- ACE (1997-present)
- Proton GCR data
BO’11 Emphasized Solar Minimum - but, way off around Solar Maximum

Better fit at solar min than BO’10
BO'13 Corrects Fit at Max with better Min fit