

 A

April 2014

NASA/TM-2014-218242

Selecting an Architecture for a Safety-Critical
Distributed Computer System with Power,
Weight and Cost Considerations

Wilfredo Torres-Pomales
Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

 Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help Desk

at (301) 621-0134

 Phone the NASA STI Help Desk at

(301) 621-0390

 Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

 AApril

 April 2014

NASA/TM-2014-218242

Selecting an Architecture for a Safety-Critical
Distributed Computer System with Power,
Weight and Cost Considerations

Wilfredo Torres-Pomales
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Acknowledgment

I am grateful for the review comments and suggestions by Dr. Kenneth W. Eure and
Cuong Chi (Patrick) Quach from NASA Langley Research Center. I would also like to
thank Duane H. Petit and Yuan Chen from NASA Langley Research Center for allowing
me access to the reliability analysis tool used in this study. Dr. Patrick Hester of Old
Dominion University posed the original challenge that led to the work presented here.

 iii

Abstract

This report presents an example of the application of multi-
criteria decision analysis to the selection of an architecture for a
safety-critical distributed computer system. The design problem
includes constraints on minimum system availability and
integrity, and the decision is based on the optimal balance of
power, weight and cost. The analysis process includes the
generation of alternative architectures, evaluation of individual
decision criteria, and the selection of an alternative based on
overall value. In this example presented here, iterative
application of the quantitative evaluation process made it
possible to deliberately generate an alternative architecture that
is superior to all others regardless of the relative importance of
cost.

 iv

Table of Contents

1. Introduction .. 1

2. Function and System Safety ... 1

3. Problem Statement.. 2

4. Literature Review ... 4
4.1. System Architectures ... 4
4.2. Design Evaluation ... 5

5. Alternative Architectures .. 6

6. Reliability Analysis .. 9

7. Evaluation Criteria...11

8. Evaluation of Alternatives ...12

9. Concluding Remarks ...15

References ...15

1

1. Introduction

A computer system is safety critical if its failure may cause or be a cont ributing factor in in jury or
death of people, damage or loss of property, or damage to the environment (NASA, 2011). During the
development of a system, functional hazard assessments identify the potential system failure conditions
and the severity of the consequences. The guiding principle of system safety is to produce a design with
an inverse relationship between the severity and probability of occurrence of functional failure conditions
(FAA, 1988). In general, it is not possible to satisfy the safety requirements without the use of hardware
and/or software redundancy to m itigate the risks of system component failures (Miner, Malekpour, &
Torres, 2002) (FAA, 1988). For applications such as air and space vehicles, this need for redundancy to
satisfy safety requirements conflicts with other system design objectives such total weight, power
consumption and development cost. The preferred system design is one t hat maximizes safety while
minimizing weight, power and cost.

In this paper, we examine this cost-benefit relation to gain insight into the implications and trade-offs
of architectural design features for safety-critical computer systems. The approach taken here is to define
a representative system design problem and follow the basic steps of a structured decision making process
(i.e., determine alternative solutions, identify evaluation criteria, and evaluate the alternatives) (Anderson,
Sweeney, Williams, Camm, & Martin, 2011) to generate information that would help a decision maker in
choosing the best option from a set of alternative system architectures. A brief overview of function and
system safety is given in the next section. This is followed by the problem statement, a review of the
relevant literature, and the definition and evaluation of alternative architectures.

2. Function and System Safety

A high-level functional safety assessment with a basic failure model defines three possible functional
states: operational (i.e., not failed), failed passive and failed active. A passive failure state is a loss-of-
function condition in which the function is not being performed. A n active failure corresponds to a
malfunction in which the function is performed incorrectly. Passive and active failures are also known as
omission and commission failures, respectively.

The function performed by a com puter system can be modeled as a service consisting of a sequen ce
(or flow) of service items (i.e., output updates), each characterized by a value and a time of occurrence.
For a w orst-case functional safety assessment, we want to de termine the h ighest severity effect of a
system failure. For th is, we can defin e the s tate of the sy stem under an increasingly permissive
behavioral classification hierarchy in which a service can be in one of three possible states: operational, if
only proper service items are being delivered; failed passive, if it includes not-failed and failed-passive
items; and failed active, if there are not-failed, failed-passive and fa iled-active items. A n operational
service is a subset of a failed-passive service, which is a subset of a failed-active service. Notice that in
this model a failed-active service corresponds to an arbitrary failure with no constraints on the behavior
exhibited by the system. Intuitively, we want a safety-critical system to e ither operate properly or not
operate at all (i.e., stop), rather than operate in an arbitrary manner. The determination of the system state
is based on the level of behavioral constraint that can be guaranteed at a particular point in time.

2

For some functions, the severity of a fa ilure depends on the dur ation of the condition. The time to
criticality after a failure is the minimum time to reach a particular severity level. From a system design
perspective, the time to criticality is how much time the system has to restore proper service and prevent a
particular failure severity level from being reached. For highly dynamic functions, the time to criticality
can be very short (about tens or hundreds of milliseconds) and failure recovery within that time may be
unfeasible or require an a utomated capability. F or less dy namic functions, manual recovery by an
operator may be adequate.

The outcome of a functional safety assessment is in the form of sy stem integrity and av ailability
requirements (Hasson & Crotty, 1997). Integrity is measured as the probability that the system will not
be in a failed-active state for a specified mission duration and operational conditions. Availability is the
probability that the system will be in the operational state at any point in time during a m ission of
specified duration and operational conditions. Availability during a m ission has two components:
reliability and recoverability (or m aintainability). Reliability is the probability that the system will
continuously deliver proper service for a specified time duration under specified operational conditions.
Recoverability is the probability that the system will restore proper service after a failure within a
specified time duration under specified operational conditions.

For some functions (e.g., aircraft flight control), the only safe condition is for the system to deliver
proper service, as both loss of function and malfunction can be equally catastrophic. In this case, the
required probabilities for both availability and integrity will be extremely high. For other functions, the
relation between availability and integrity depends on the relative severity of passive and active failure
conditions.

Because of the uncertainties in the characterization of probabilities for physical hardware faults and
for logical faults (i.e., design errors) in hardware or software, the safety requirements are often stated in
terms of the response of the system to a certain number of internal component failures. A fail-operational
(FO) requirement means that the system shall co ntinue proper service delivery after the failure of an
internal component. For a fail-passive (FP) requirement, the system service shall transition to a passive
state after an internal component failure. For ex ample, a system may be required to remain operational
after the first two internal failures and to fail passive after the third failure (i.e., FO/FO/FP). Normally, a
safety-critical computer system is required to contain at l east one internal component failure, which
means that it will be at a minimum fail-passive. Fail-operational and f ail-passive conditions are
deterministic statements of availability and integrity requirements. For a computer system, a fail-passive
requirement means that the failure must be either omissive or commissive but detectable by the service
users or monitors, who would then take action to “passivate” the received service.

3. Problem Statement

The design problem consists of selecting a processing and communication architecture for a system
with preselected input and output modules. Figure 1 illustrates the top-level system block diagram. Only
point-to-point communication links with fail-passive failure modes will be used. As shown in Table 1,
there are three different kinds of Input Modules and five different kinds of Output Modules. The Input
Modules and Output Modules of every kind are replicated, have the indicated failure modes, and require
either one- or two-way communication with the processors. These modules are common to all the system
design solutions. For system reliability calculations, a constant failure rate of 10-6 failures per hour is
assumed for each of the modules.

3

Table 1: Characteristics of Input and Output Modules

Input Modules Quantity Failure Mode Communication with the Processors
S1 3 Active One-way
S2 2 Passive One-way
S3 2 Passive One-way

Output Modules Quantity Failure Mode Communication with the Processors
A1 3 Active Bidirectional
A2 3 Active Bidirectional
A3 2 Passive Bidirectional
A4 2 Passive Bidirectional
A5 2 Passive Bidirectional

From a functional perspective, it is assumed that the processors must be able to receive valid data from
every type of Input and Output Module in order to compute updates to send to the Output Modules (i.e.,
each functional output depends on every functional input). I t is assumed that all the functions are on
demand (i.e., p roper operation is desired) for the full duration of the mission. T he performance of
individual processors and communication switches and links is assumed to be adequate to meet the
workload demand without the n eed for performance-specific architectural features such a p arallel
processing.

It is assumed that physical faults are statistically independent and that the probability of two or more
simultaneously arriving faults, or any single fault affecting multiple components, is negligible. The
logical design of the processors is classified as complex and the likelihood of a design error (i.e., a logical
fault) in hardware or software is not insignificant. The switches and links are assumed to be logically
simple devices and correct by design.

The system attributes to be considered in the evaluation of alternative system architectures include
availability, integrity, weight, power, and cost. Availability and integrity are beneficial safety-related
qualities; weight, power and cos t are de trimental attributes. T he minimum probabilistic safety
requirements are unavailability ≤ 10-9 and integrity violation ≤ 10-9 for a 10-hour mission. The minimum
deterministic safety requirements are to preserve availability for one internal physical fault and to
preserve integrity for two internal physical faults (i.e., Fail-Operational, Fail-Passive). The system must

Figure 1: Top-Level Block Diagram of the System

Processors

Input
Modules

P

Output
Modules

Links

S A SW
Links Links

Switches

4

preserve availability and integrity for a minimum of one logical fault in either the hardware or software of
the processors (i.e., Fail-Operational). We are interested in achieving an optimal balance between weight,
power, or cost, and there are no specific constraints or goals for these.

4. Literature Review

To solve the design and decision problem, we need to generate alternative architecture designs and
identify an evaluation function that combines the specified selection criteria.

4.1. System Architectures
The availability and i ntegrity requirements can be satisfied with the appl ication of fault-tolerance

concepts and techniques. Nelson (1990) and Johnson (1989) offer insightful introductions to fault-
tolerant systems. Error containment is th e prevention of error pr opagation across defined bo undary
interfaces. Error recovery is the process of preserving or restoring an operational system state. Er ror
containment techniques are the means to achieve fail-passive behavior, and error recovery techniques are
used to realize fail-operational responses. Hammett (2002) describes the fault tolerance characteristics of
several system architectures. Interestingly, a module with no error detection or recovery features can be
conservatively assumed to always fail active as there is no way to guarantee passive failures. Notice that,
from a safety standpoint, a fail-operational response satisfies a fail-passive requirement. Also, note that
error recovery implies error containment, and this means that, in general, error recovery requires a higher
degree of redundancy and redundancy management activity than error containment.

Black (2005) offers an interesting summary of the amount of redundancy needed for fail-operational
response as a f unction of the failure modes of the processors and the communication system. Table 2
(next page) shows that processor redundancy for fail-operational response is directly dependent on the
failure modes of the processors and the communication system. As would be expected, the architecture
level design is s impler when the com ponents exhibit benign fail-passive behavior. A chieving passive
component failure modes requires local component-level redundancy. Thus, there is a trade-off between
component-level and architecture-level redundancy and complexity. Powell (1992) showed that although
conservative assumptions at the architecture level about component failure modes might seem intuitively
advantageous from a saf ety (and integrity) perspective, the re sultant increase in architecture-level
complexity may actually lower the reliability (and availability) of the system. Lala (1991) observed that
redundancy by itself only guarantees an increase in the arrival rate of faults and that a carefully planned
redundancy management strategy is necessary to achieve an increase in system dependability compared to
a non-redundant system of the same functionality.

Meyer (1975) showed that the probability of fault detection for a component can be made equal to
unity only if the de tector is as com plex, in te rms of the num ber of stat es, as the com ponent being
monitored. A self-checking pair configuration (Nelson, 1990; Hammett, 2002) consisting of two identical
components connected to a simple comparison-based error detector is a common arrangement to achieve
fail-passive response to physical faults. Fo r communication system components, including links and
switches whose only function is to transport data messages between communicating entities, it is common
practice to rely on message encoding and o ther forms of s tate information embedded in the messages
(such as a message sequence number) to achieve fail-passive behavior. Such approaches are in use even
for safety-critical applications regardless of the fact that they violate the assumptions in the calculations
of communication service integrity. Pau litsch, et al . (2005) recommend more technically sound
replication techniques for intermediate communication stages like switches in order to guarantee

5

compliance with communication integrity and availability requirements.

Table 2: Required processor redundancy for fail-operational fault response as a function of processor and
communication failure modes

Number of
Faults

Processor Failure
Mode

Communication Failure
Mode

Minimum Processor
Redundancy

1 Passive Passive 2
Active Passive 3
Active Active 4

2 Sequential Passive Passive 3
Active Passive 4
Active Active 5

Fault-tolerance techniques against logic design errors are similar to the techniques for physical faults.

The main difference is t hat failure independence and non -coincidence for logic components are
predicated on de sign dissimilarity. T orres-Pomales (2000) describes a n umber of fault -tolerant
architectural configurations applicable to logical component faults. The development assurance level
(DAL) of a logic component is a qualitative measure of the required development rigor, which is assumed
to be negatively correlated with the likelihood of residual design errors and positively correlated with the
cost of development. ARP4754A (SAE, 2010) describes an approach for DAL assignment that takes into
consideration fault severity mitigation using architectural features.

4.2. Design Evaluation
In evaluating alternative system architectures, we seek an explic it and quantitative method that can

measure the relative merit of the alternatives, rank them, and iden tify the be st choice. T he system
evaluation problem can be div ided in tw o parts: evaluation of ind ividual criteria and ag gregation of
criteria into an overall value metric.

The design evaluation criteria (or objectives) include availability, integrity, weight, power, and cost.
All these system attributes can be obtained from attributes of the lower-level components and models of
the system architecture. Availability and integrity can be ev aluated using Reliability Block Diagrams,
Fault Trees and Mark ov Models (Geist & Trivedi, 1990; Reibman & Veeraraghavan, 1991; Butler &
Johnson, 1995; NASA, 2002). Representative values for component fault rate, weight, power, and cost
can be obt ained from vendors and pub lished sources, including (Hodson, et al., 2011). Lap rie, et al.
(1990) present a life-cycle cost model for various software-fault tolerant configurations. We will assume
that all hardware components use commercially available (COTS) products. Notice that all the design
alternatives must satisfy minimum safety requirements.

Buede (2009) and Ca llopy (209) lis t a num ber multi-attribute value analysis methods, including
analytical hierarchy process (AHP), percentaging, fuzzy algorithm, quality function deployment (QFD),
and Pugh Matrix. A ccording to B uede, these methods are eithe r not well founded or other analytical
concerns have been raised about them. Marl er and Arora (2004) surveyed the m ulti-objective
optimization methods and cl assified them based on the articulation of preferences among objectives: a
priori, a posteriori, and no articulation. Only a-priori methods are of interest here, as we want our metric
of overall value to reflect the relative importance of the system attributes. A-priori methods include the

6

weighted global criterion method, weighted sum method, lexicographic method, weighted min-max
method, and exponential weighted criterion method among others. The most common multi-objective
optimization method is the weighted sum method, in which the global objective function is the sum of the
weighted value of the individual criteria. This is the value function we have chosen to evaluate the
alternative system architectures. The formula for the overall value is:

where x is the vector of individual system evaluation criteria (or objectives), xi is the absolute value the i-
th objective, vi is the relative value or utility of xi, and wi measures the relative importance of objective xi.
The wi weights are commonly normalized to sum to 1, and the vi functions are defined on a common
normalized range from 0 to either 1, 10, or 100.

Buede (2009) describes the linear, concave, convex, and S-curve general forms of the value functions
vi(xi) that represent the change in utility of xi as it varies in the range from the threshold to the goal value
specified by the system requirements.

Meya and Swoy (1992) describe two different utility (i.e., value) functions: endpoint and ratio. The
endpoint function is similar to Buede’s linear value function and consists of a linear interpolation between
the utilities assigned to the endpoints of xi. For the ratio function, the utility vi of a beneficial attribute is
defined as log(xi/xi,min), where xi,min denotes the minimum value of xi. The value of a detrimental attribute
is defined as log(xi,max/xi), where xi,max is the maximum value of xi. The ratio function has the advantage
that it scales xi based on order of magnitude relative to the actual range of values of xi and no other
subjective utility function is needed.

If the system requirements do not specify the threshold or the goal for some attribute xi, the endpoints
of xi could be taken as the minimum and maximum over all the alternate system designs in order to enable
a meaningful and balanced evaluation using the value curves described by Buede (2009).

Meya and Swoy (1992), Buede (200 9), and Ca llopy (2009) acknowledge the hi erarchical nature of
value in the sense that the top-level value of a system can be expressed as a composition of increasingly
refined evaluation criteria. Mey a and Swoy (1992) refer to this as an attribute tree. From this
perspective, the v alue of a com posite criterion is defined in t erms of the ag gregate value of i ts sub-
criteria.

Callopy (2003) considered the impact of technical risk on the overall value of a system. Technical risk
is the uncertainty in the performance of a system or its components. System value risk is related to the
sensitivity of the ob jective hierarchy to uncertainty in lower objectives. The top ic of risk is outside the
scope of this paper and is not pa rt of the system evaluation criteria. H owever, a simple sensitivity
analysis will be performed.

5. Alternative Architectures

Looking at Figure 1, the Input and Output Modules are given, and the design problem is to determine
the configuration for the processors and the communication network. To satisfy the deterministic safety
requirements, the processors and the network must incorporate redundancy and fault tolerance capabilities
for error containment and recovery. It is given that the links have passive failure modes. The switches

7

are logically simple devices, which means that they are assumed not to have logical design errors and to
fail only due to physical faults. Thus, simple replication-based redundancy can be used to realize switch-
fault tolerance. The processors are modeled as consisting of an application layer, a processing platform
layer including the com putation hardware and an op erating system, and a co mmunication end sy stem
element to handle the interaction with the network. The processor hardware and software are assumed to
be complex, and thus, they can fail due to residual design errors. The hardware components can also fail
due to physical faults. The end systems are assumed to be logically simple components. There are two
main approaches to deal with design errors: acceptance tests and diversified design (Laprie, Arlat,
Beounes, & Kanoun, 1990). Based on the re sults presented by Hammet (2002) and Meyer (1975), the
only way to ensure near perfect error detection coverage and containment is to have a detector that is as
complex as the monitored system. This essentially demands the use of full component replicas, or in the
case of design errors, component variants with similar functionality but di ssimilarity in requ irements,
design, or implementation. Thus, dis similar redundancy will be used to re alize fault tolerance for the
applications and the processing platform.

Laprie, et al. (1990) and Hodson (2011) identify two basic forms of r edundancy management
approaches: voting based and pairwise-comparison based. In both cases, it is assumed that the redundant
replicas or variants receive the same input sequence and are required the produce the same or equivalent
outputs. The voting approach uses a majority voter to decide the final correct output for a set of replicas
or variants (Torres-Pomales, 2000). For the pairwise comparison approach, pairs of replicas or variants
are compared and on ly pairs w ith agreeing outputs are a ssumed to be c orrect. T he final output for a
configuration with pairwise comparison is taken from one of these agreeing pairs.

Four different fault tolerant configurations were considered in the generation of alternative
architectures. For redundancy with (identical) replicas to tolerate only physical faults, there is the voted
replica (VR) configuration in which a voter is used to decide the final output from multiple replicas, and
the self-checking replica (SR) configuration consisting of pairwise comparisons and the logic for
selecting a good output from a pai r of agreeing replicas. For redund ancy with dissimilar variants, the
voted variant (VV) configuration uses voting as t he decision logic, and the self-checking variant (SV)
configuration uses pairwise comparison and selection. Thus, the VR and SR configurations are applicable
to the n etwork switches, and the VV and S V configurations are relevant to the applications and the
processing platform.

For the definition of alternative system architectures, it was assumed that different physical faults or
design errors are triggered (i.e., cause the generation of data errors) sequentially such that, at any time, the
system has to deal with at most one active component failure and can recover from it before another fault
is triggered. This is a critical assumption that is given in the problem statement and is consistent with the
definition of deterministic safety requirements.

In a voting configuration, the individual redundant elements can be fail-active as the voter acts to both
contain and mask component failures. T he realization of a fa il-operational, fail-passive response with
voting fault tolerance requires a minimum redundancy of three, such that the voter can mask the fi rst
component failure (i.e., fail-operational response) and the system gets reduced to two operational
components, and then on the second failure, the voter detects a discrepancy and stops the generation of
outputs (i.e., fail-passive response).

For a s elf-checking configuration, a f ail-operational, fail-passive response requires two redundant
pairs. The first component failure causes a redundant pair to fail passive and the output decision logic to
select the other pair, thus realizing the fail-operational response. If the second component failure affects

8

the second redundant pair, the decision logic will detect the discrepancy and stop the generation of output
as required for fail-passive response. Note that voting and selection of redundant data are performed at
the receivers of the data rather than at the sources. T his ensures failure independence between the
redundant sources and the decision logic for redundancy management.

Table 3 shows the specifications of the basic components used for the system architectures. The cost,
weight and power specifications were obtained from equipment manufactures’ websites for representative
off-the-shelf devices. The costs for applications and processors are for high-assurance designs, and the
values were determined using the cost multipliers for step increases in development assurance levels
given in (HighRely, Inc., 2009):

Cost(DAL D) = 1.05 x Cost(DAL E, not safety relevant)

Cost(DAL C) = 1.30 x Cost(DAL D)

Cost(DAL B) = 1.15 x Cost(DAL C)

Cost(DAL A, highest safety criticality) = 1.05 x Cost(DAL B)

The hardware-software cost ratios given by Dörenberg (1997, p. 33) and Spi tzer (2007, pp. 14-2) were
used to estimate the cost of software:

Software cost = 3.35 x Hardware cost

For evaluating the architectures, 300-ft point-to-point data communication links were assumed for all the
connections to t he network switches. T he failure rate for the software applications was taken from a
paper by Bleeg (1988) on fly-by-wire architectures. All other failure rates were taken from the report by
Hodson, et al. (2011) on avionics architectures.

Table 3: Attributes of system components

Component Cost ($) Weight (lbs) Power (W) Failure Rate (failures per hour)
Application (Single variant) 85,158.94 0.0 0.0 1.00x10-7

Processor (Hardware and Software) 24,723.56 2.0 38.0 3.33x10-5

End System 7,000.00 0.5 6.5 5.04x10-6

Switch 25,000.00 8.0 28.0 5.04x10-6

Link (300 ft) 500.00 6.6 0.0 1.30x10-6

Table 4 l ists the alternative architectures generated for evaluation. T he abbreviations VV, SV, e tc.
correspond to the fault tolerant configurations used for the corresponding components as indicated in the
table. The subscripts x,y indicated the number of replicas or v ariants per redundant channel and the
number of channels in the configuration. For example, for VV1,4 there was one variant per channel and 4
channels in the configuration, for a total of 4 variants of the corresponding component. Architecture SA7
had 4 proc essing channels, each w ith one pro cessor variant and 3 application variants with a voted
configuration. O n architecture SA7, the same set of app lication variants was replicated on each
processing channel to take advantage of the low failure rate of individual application variants and to limit
the total cost of the applications to only three variants.

9

In each configuration, every processor, Input Module and Output Module had one bidirectional link to
each switch.

Table 4: Alternative System Architectures

Architecture Applications Processing Switches
SA1 VV1,4 VV1,4 VV1,4

SA2 VV1,4 VV1,4 SR2,3

SA3 SV2,3 SV2,3 VV1,4

SA4 SV2,3 SV2,3 SR1,3

SA5 VV3,1 SV2,3 VV1,4

SA6 VV3,1 SV2,3 SR2,3

SA7 VV3,1 VV1,4 SR2,3

The architectures were modeled using reliability block diagrams. All faults were assumed permanent,

and fault recovery was assumed to be instantaneo us until the point of to tal system failure due t o
exhaustion of ope rational resources. With th is assumption, the ev aluation of availability is s imply an
evaluation of reliability.

Reliability was evaluated using a commercial off-the-shelf tool (PTC, 2013). All the a rchitectures
required a hig her degree of redundancy to m eet the probabilistic safety requirements than what was
strictly needed to meet the deterministic requirements. Furthermore, every model was too complex to
complete the full-system reliability analysis without running out of memory resources. The main source
of model complexity comes from the need to a ccurately describe th e conditions under w hich proper
operation is preserved as l ink failures occur. I nstead of com puting the reliability for whole systems,
multiple overlapping sections of the models were analyzed separately to achieve some confidence that the
overall design met the availability and integrity requirements. An implication of this is that the actual
probabilities for these architectures are not available. This was taken into consideration in the evaluation
and comparison of the architectures as described in Section 8. Section 6 provides additional information
about the reliability analyses.

The structure of the fault tolerant configurations used in the alternative architectures, combined with
the assumption of sequential fault triggering, ensures that satisfying the reliability requirement will also
satisfy the integrity requirement.

6. Reliability Analysis

Reliability block diagrams (RBD) were used to compute the reliability of the alternative architectures.
RBD models capture the inter-components dependencies that must be satisfied for the system to remain in
an operational state. A series configuration with two or more components means that all of tho se
components must remain operational in or der for the system to rem ain operational. A basic 1 -of-m
parallel configuration means that at least one component must remain operational. In general, an n-of-m
parallel configuration represents a dependence relation such that the system will remain operational if at
least n of the m redundant paths (or channels) are operational.

Figure 2 shows the RBD model for architecture SA7. The RBD is composed of sections for the

10

various architectural components: applications (App); processing (Proc); switches (SW); S1, S2, and S3
input modules; and A1, A2, A3, A4, and A5 output modules. Most of the complexity in the model is due
to the need to accurately capture the conditions that guarantee successful communication between
network terminals (i.e., processors and input and output modules). Four operational internal data flows
are required in order for the system to remain operational: from input modules to processors, from output
modules to processors, from processors to processors, and from processors to output modules. As links
fail, only certain combinations of connections between the terminals and the switches can guarantee
successful end-to-end dataflow. As the system is intended for safety-critical applications, the reliability
calculation (and thus the RBD) must be made with respect to conditions for which an operational state
can be guaranteed (i.e., must do a pessimistic, worst-case analysis).

Figure 2: Reliability Block Diagram for Architecture SA7

The reliability analysis tool was unable to complete the analysis of a full architecture before running
out of memory resources. Because of this, it was decided instead to compute the reliability for sections of

Applications Processing Switches S1 S2 S3

A1

A2

A3

A4 A5

11

the model. Table 5 show s the calculated unreliabilites (= 1.0 – reliability) for each o f the alternative
architectures. O nly the m antissas are given, and a factor of 10-10 is im plicit. T he switches had an
insignificant contribution to the overall system unreliability. I t is l ikely that most of th e unreliability
contribution comes from the processors and the valid patterns of degradation of the network paths.

Table 5: Unreliabilities for Various Sections of the Alternative Architectures (x10-10)

Model Section SA1 SA2 SA3 SA4 SA5 SA6 SA7
App-Proc 3.32 3.03 4.57 4.34 4.56 4.34 3.04
SW 0.00 0.01 0.00 0.01 0.00 0.01 0.01
App-Proc-SW 3.33 3.04 4.57 4.34 4.56 4.35 3.05
SW-Sall 5.01 5.01 5.01 5.01 5.01 5.01 5.01
SW-A1 3.01 3.01 3.01 3.01 3.01 3.01 3.01
SW-A2 3.01 3.01 3.01 3.01 3.01 3.01 3.01
SW-A3 1.01 1.01 1.01 1.01 1.01 1.01 1.01
SW-A4 1.01 1.01 1.01 1.01 1.01 1.01 1.01
SW-A5 1.01 1.01 1.01 1.01 1.01 1.01 1.01

7. Evaluation Criteria

The original intent was to compare the architectures based on the criteria of availability, integrity, cost,
weight and power. H owever, because it was not possible to g et the actual availability and integrity
values, these were not used in the overall evaluation. Instead, the availability and integrity requirements
were simply taken as constraints that must be satisfied by the architecture, and any excess availability or
integrity beyond the minimum constraints were not taken into account as beneficial to the overall value of
the architectures. Thus, only the detrimental attributes of cost, power, and weight were considered in the
overall evaluation.

The cost of a fault-tolerant configuration must take into consideration the life cycle cost, including
requirements, specification, design, implementation, validation, verification, and maintenance. Laprie, et
al. (1990) present a simple cost model for dissimilar redundancy configurations. The cost model gives
the maximum, minimum, and average cost multipliers for various fault tolerant configurations. That
model was applied by using the average multiplier for variants and the minimum multiplier for replicas.
Table 6 shows the multipliers used to estimate the cost of redundant configurations.

Table 6: Multiplicative Cost Factors for Redundant Configurations

Redundancy 3 4 6
Voted Variants 2.25 3.01 --
Self-Checking Variants -- 3.01 4.63
Voted Replicas 1.78 2.24 --
Self-Checking Replicas -- 2.24 3.71

The value (or utility) function for each criterion was defined over the range of all th e alternatives as

the problem statement set no constraints or goals for any of the detrimental criteria. The value functions

12

were defined as linearly decreasing from 1.0 at the minimum value of the criterion to 0.0 at the maximum
value of the criterion. Let xi,min and xi,max denote the minimum and maximum values for the i-th criterion.
The value of xi is given by:

vi(xi) = (xi,max - xi)/(xi,max - xi,min).

The criteria were divided in two groups: weight and power, and cost. This is consistent with the
typical program objectives of performance and cost (as well as schedule) and allows the examination of
the trade-off between performance and cost for the set of alternative architectures. The relative
importance of cos t versus power and w eight was varied from 0.0 to 1.0, and the re lative importance
between power and weight was held constant at 0.5 each.

8. Evaluation of Alternatives

Figures 3, 4, an d 5 s how the total cost, power, and weight for the alternative architectures. The
general cost patterns are that self-checking switches increase the cost of an architecture by about 5%, and
using both self-checking processors and switches increases the cost by about 42%. Se lf-checking
switches also increase the power by about 17%, and self-checking processors and switches increase the
power consumption by about 43%. The upside for self-checking switches is that they tend to reduce the
weight by about 20%, but the use of self-checking processors and switches reduces the total weight only
3% more (23% total).

Figure 3: Total Cost for Alternative Architectures

0.00
100,000.00
200,000.00
300,000.00
400,000.00
500,000.00
600,000.00
700,000.00

SA1 SA2 SA3 SA4 SA5 SA6 SA7

Co
st

 ($
)

System Architectures

Total Cost

13

Figure 4: Total Power for Alternative Architectures

Figure 5: Total Weight for Alternative Architectures

Figure 6 shows the ov erall value of the con figurations as the r elative importance of cost v aries from
0.0 (not important) to 1.0 (only important criterion). A rchitectures SA3 and SA4 with self-checking
applications and processors decrease in value as the importance of cost increases, while all other
architectures show an increase in value. An interesting result is that the value of SA2 remains constant.
This is an indication of a good balance between voting configurations for applications and processors and
a self-checking configuration for the switches. Architecture SA7, which was deliberately added to the set
of alternatives after examining the results for the other architectures, takes this balance one step further by
using the VV3,1 application configuration from SA5 and SA6 to reduce the cost of the applications using
voting of three variants within each processing channel and replicating the application variants on each
channel. This application configuration increases the reliability and integrity of e ach channel. The
drawback of the VV3,1 application configuration is that the minimum required processing capacity per
channel is the largest of all. This is not reflected in any of the criteria or the overall value calculation.

0.00

100.00

200.00

300.00

400.00

500.00

SA1 SA2 SA3 SA4 SA5 SA6 SA7

Po
w

er
 (W

)

System Architectures

Total Power

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

SA1 SA2 SA3 SA4 SA5 SA6 SA7

W
ei

gh
t (

lb
s)

System Architectures

Total Weight

14

Figure 6: Overall Value for Alternative Architectures

Figure 7 show s the change in the u nreliability (= 1.0 – reliability) for the combination of the
processors and switches of architecture SA7 when the failure rates of the end system, processing, and
switch components are reduced or increased by a factor of 10. The Input and Output Modules are not
included in this analysis due to the limitations of the reliability analysis tool. Figure 7 shows that the
failure rate of the processing components is the most important determinant of system reliability for this
architecture.

Figure 7: Sensitivity of System Reliability to Component Failure Rate

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

O
ve

ra
ll

Va
lu

e

Relative Importance of Cost Criterion

Overall Value of Architectures

SA1

SA2

SA3

SA4

SA5

SA6

SA7

0.285
0.963

0.003

7.820

520.311

3.361

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

End System Processor Switch

U
nr

el
ia

bi
lit

y
Ch

an
ge

 R
el

at
iv

e
to

Ba

se
lin

e

Component under Consideration for FR Change

Unreliability Change for Processor and Switch
Combination in SA7 Architecture

Unreliability
decrease for
Component
Failure Rate x 0.1

Unreliability
Increase for
Component
Failure Rate x 10

15

9. Concluding Remarks

An example application of multi-criteria decision analysis has been presented for the selection of an
architecture for a safety-critical distributed computer system with power, weight, and cost considerations.
Seven alternative architectures were produced in an iterative process that leveraged the ov erall multi-
criteria quantitative evaluation to deliberately generate an architecture that is superior to all others. A
reliability sensitivity analysis of the selected architecture showed that the failure rate of the processing
platform, including the hardware and operating system, is the m ost important component that should be
targeted for further development to enhance the system reliability.

This example was a high-level analysis performed on abst ract system models that did no t include
details that could be significant in the validity of the analysis for an actual realization of the system. The
models for c ost, weight, and power would normally be refin ed and v alidated before making a final
architecture selection. Additionally, the reliability models would also need to be simplified (to enable a
full analysis) and validated. Finally, the trade-off between using standard off-the-shelf components and
high quality components would need to be examined to determine if any architectural simplification
achievable with high quality components can be justified in a multi-criteria decision process.

References

Anderson, D. R ., Sweeney, D. J., Williams, T. A., Camm, J. D., & Martin, K. (2011). An Introduction to
Management Science: Quantitative Approaches to Decision Making, Thirteenth Edition. USA: South-Western
Cengage Learning.

Black, R., & Fletcher, M. (2 005, December). Next Generation Space Avionics: Layered System Implementation.
IEEE Aerospace and Electronic Systems Magazine, pp. 9 - 14.

Bleeg, R. (1988). C ommercial Jet Transport Fly-By-Wire Architecture Considerations. 9th AIAA/IEEE Digital
Avionics Systems Conference. AIAA/IEEE.

Buede, D. M. (2009). The Engineering Design of Systems: Models and Methods. John Wiley & Sons.

Butler, R. W., & Johnson, S. C. (1995). Techniques for Modeling the Reliability of Fault-Tolerant Systems With the
Markov State-Space Approach. NASA Reference Publication 1348, Nation al Aeronautics and Space
Administration.

Collopy, P. (2003). Balancing Risk and Value in System Development. AIAA Space 2003 Conference & Exposition.
AIAA Paper 2003-6376: American Institute of Aeronautics and Astronautics.

Collopy, P. D . (2009). A erospace System Value Models: A Survey and Observations. AIAA SPACE 2009
Conference & Exposition. AIAA Paper 2009-6560: American Institute of Aeronautics and Astronautics.

Dörenberg, F. M. (1997, F ebruary). Integrated and Modular Systems for Commercial Aviation. Retrieved from
http://www.nonstopsystems.com/radio/article-IMA97.pdf

FAA. (1988). AC 25.1309-1A - System Design and Analysis. Federal Aviation Administration.

16

Geist, R., & Trivedi, K. (1990, July). Reliability Estimation of Fault-Tolerant Systems: Tools and Techniques.
Computer, 23(7), 52 - 61.

Hammett, R. (2002, April). Design by Extrapolation: An Evaluation of Fault-Tolerant Avionics. IEEE Aerospace
and Electronic Systems Magazine, pp. 17 - 25.

Hasson, J., & Crotty, D. (1997). Boeing's safety assessment processes for commercial airplane designs. AIAA/IEEE
Digital Avionics Systems Conference (16th DASC), 1, pp. 4.4 - 1-7.

HighRely, Inc. (2009). DO-178B Costs Versus Benefits. Online whitepaper. Retrieved from
http://highrely.com/whitepapers.php

Hodson, R. F., Chen, Y., Morgan, D. R., Butler, A. M., Schuh, J. M., Petelle, J. K., . . . Nguyen, H. D. (2011). Heavy
Lift Vehicle (HLV) Avionics Flight Computing Architecture Study. NASA/TM-2011-217168, National
Aeronautics and Space Administration.

Johnson, B. W. (1989). The Design and Analysis of Fault Tolerant Digital Systems. USA: Addison-Wesley.

Lala, J. H., Harper, R . E., & Alger, L. S. (1991, May). A Design Approach for Ultrareliable Real-Time Systems.
Computer, 24(5), 12 - 22.

Laprie, J.-C., Arlat, J., Beounes, C., & Kanoun, K. (1990, July). Definition and analysis of hardware- and software-
fault-tolerant architectures. Computer, 23(7), 39 - 51.

Marler, R., & Arora, J. (2004, April). Survey of multi-objective optimization methods for engineering. Structural
and Multidisciplinary Optimization, 26(6), 369 - 395.

Meya, R. D., & Swoy, L. F. (1992). A Method of Evaluating Candidate Spacecraft Data System Architectures.
IEEE/AIAA 11th Digital Avionics Systems Conference (pp. 45 7 - 463). Institute of Electrical and Electronics
Engineers.

Meyer, J. F., & Sundstrom, R. J. (1975, May). On-Line Diagnosis of Unrestricted Faults. IEEE Transactions on
Computers, C-24(5), 468 - 475.

Miner, P. S., Malekpour, M., & Torres, W. (2002). A Conceptual Design for a Reliable Optical Bus (ROBUS). The
21st Digital Avionics Systems Conference. 2, pp. 13D3-1 - 13D3-11. Institute of Electrical and Electron ics
Engineers.

NASA. (2002). Fault Tree Handbook with Aerospace Applications, Version 1.1. National Aeronautics and Space
Administration.

NASA. (2011). NASA System Safety Handbook: Volume 1, System Safety Framework and Concepts for
Implementation. NASA/SP-2010-580, National Aeronautics and Space Administration.

Nelson, V. P. (1990, July). Fault-Tolerant Computing: Fundamental Concepts. Computer, 23(7), 19 - 25.

Paulitsch, M., Mo rris, J., Hall, B., Dris coll, K., Latronico, E., & Koopman, P. (2005). Coverage and the Use of
Cyclic Redundancy Codes in Ultra-Dependable Systems. International Conference on Dependable Systems and
Networks (DSN 2005) (pp. 346 - 355). Institute of Electrical and Electronics Engineers.

Powell, D. (1992). Failure Mode Assumptions and Assumption Coverage. Twenty-Second International Symposium
on Fault-Tolerant Computing (FTCS-22) (pp. 386 - 395). Boston: Institute of Electrical and Electron ics
Engineers.

17

PTC. (2013). Widnchill Quality Solutions. Retrieved from http://www.ptc.com/products/windchill/quality/

Reibman, A. L., & Veeraraghavan, M. (1991, April). Reliability Modeling: An Overview for System Designers.
Computer, 24(4), 49 - 57.

SAE. (2010). Aerospace Recommended Practice (ARP4754) - Guidelines for Development of Civil Aircraft and
Systems, Revision A. Society of Automotive Engineers.

Spitzer, C. R. (Ed.). (2007). Digital Avionics Handbook (Vols. Avionics: Elements, Software and Functions). CRC
Press.

Torres-Pomales, W. (2000). Software Fault Tolerance: A Tutorial. NASA/TM-2000-210616, National Aeronautics
and Space Administration.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Selecting an Architecture for a Safety-Critical Distributed Computer
System with Power, Weight and Cost Considerations

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Torres-Pomales, Wilfredo

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20379

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This report presents an example of the application of multi-criteria decision analysis to the selection of an architecture for a
safety-critical distributed computer system. The design problem includes constraints on minimum system availability and
integrity, and the decision is based on the optimal balance of power, weight and cost. The analysis process includes the
generation of alternative architectures, evaluation of individual decision criteria, and the selection of an alternative based on
overall value. In this example presented here, iterative application of the quantitative evaluation process made it possible to
deliberately generate an alternative architecture that is superior to all others regardless of the relative importance of cost.

15. SUBJECT TERMS

Architecture; Decision analysis; Reliability; Safety

18. NUMBER
 OF
 PAGES

24

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 534723.02.02.07.30

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2014-218242

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 201401-

