Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

Dr. Manish Mehta*, Mr. Robert Kirchner, Dr. Mark Seaford & Mr. Brian Kovarik
Aerosciences Branch, NASA Marshall Space Flight Center

Dr. Aaron Dufrene & Mr. Nathan Solly
Aerothermal/Aero-Optics Evaluation Center, CUBRC Inc.

* Presenter
Outline

♦ Test Program Background & Motivation

♦ ATA-002 Core-Stage Rocket Engine Module (CS-REM)
 • Design, Development & Performance Analysis

♦ ATA-002 Booster Stage Solid Rocket Motor (BSRM)
 • Design, Development & Performance Analysis

♦ CS-REM & BSRM Integrated Test

♦ Conclusions
ATA-002 Technical Team

♦ Aerosciences Branch, NASA Marshall Space Flight Center (MSFC)
 • Manish Mehta¹, Robert Kirchner, Mark Seaford, Brian Kovarik, Jeff Vizcaino and Carl Engel

♦ Aerothermal/Aero-Optics Evaluation Center, CUBRC Inc.
 • Aaron Dufrene², Nathan Solly, William Winter, Ron Parker, Zakery Carr, Dan Czora, Daniel Sargent and Christopher Halt

♦ Thermal Analysis Branch, NASA Marshall Space Flight Center
 • Darrell Gaddy, Adam Kimberlin and Wesley Lawler

♦ Propellants and Propulsion Branch, NASA Glenn Research Center
 • Bill Marshall

♦ Plasma Processes Inc.
 • Tim McKechnie and George Thom

¹ NASA Technical Lead
² CUBRC Technical Lead
Space Launch System (SLS) Architecture

RS-25 Engines: LOX/LH2
SRB: ACP/16% Al loading
Total Vac Thrust ~8 million lbf

- **Launch Abort System**
- **Orion**
- **Interim Cryogenic Propulsion Stage (ICPS)**
- **Interstage**
- **Core Stage**
- **Cargo Fairing**
- **Upper Stage With J-2X Engines**
- **2 Solid or Liquid Rocket Boosters**
- **2 Solid Rocket Boosters (SRBs)**
- **4 RS-25 Engines**

2017 EM-1
Motivation for Ground Tests

♦ Six hot rocket plumes expanding and interacting near the vehicle base
 • Potential to generate high thermal environments within base and nozzles

♦ Base flows demonstrate complex flow physics
 • No pure analytical methods have been developed for adequate prediction

♦ New base geometry and performance requirements for SLS
 • Cannot blindly use heritage data

♦ CFD and semi-empirical methodologies show poor comparisons
 • Significant deviations in magnitude and trends

♦ Accurate base flow environment prediction needed to efficiently size TPS
 • Decreases vehicle cost and improves crew safety
Limited numerical and analytical studies have been conducted to fully characterize multi-plume base heating.

For the following reasons:
1. Complex
2. Unsteady
3. Many interacting flow features
4. Leads to many different trends, distributions and deltas

Base Flow Regimes:

Aspirating – Freestream air is entrained by the non-interacting rocket plumes (cooling)

Transitional – slight interactions by adjacent plumes leads to updraft plume component and downward aspirating jet

Recirculating – large interactions by highly expansive plumes leads to predominantly an updraft plume (heating)
ATA-002 SLS Pathfinder Test Program

♦ ATA-002 Base Heating Test Program is broken down into two sub-test programs: (1) Pathfinder and (2) Main Base Heating Test

♦ Goal is to develop sub-scale SLS propulsion systems similar to full-scale flight system to be used for short-duration (~100 msec) base heating tests.

♦ The Pathfinder Program has many difficult challenges:
 • Highly complex test program (simulate solid & liquid propulsion systems)
 • Short-duration testing
 • Different configuration/performance than Shuttle Base Heating Models
 • Not attempted in 40 years
 • Limited heritage technical resources (engineers/technicians/components)
 • Limited funding & short schedule as compared to heritage test programs

♦ Pathfinder Test Program is the main focus of this paper
Main Goal: To measure base flow and heating characteristics for the SLS1000x vehicle and to scale these measurements for flight predictions

Test Requirements
- 2% SLS-1000x Model
- Test in short-duration test facility – CUBRC LENS II
- Simulated altitude: 45 kft to 200 kft, Mach 2.5 to 5.5
- Configuration: full-stack and core-only stage space flight conditions
- Test Duration: ~100 msec steady-state time window
- No gimbaling of engines/motors
- No Angle of Attack
- Test Engine-Out Case
- 200 measurements within base and external nozzles
CUBRC LENS Shock Tunnels

LENS I $M=7-24$

LENS II $M=2.5-10$
(including Ludwieg Mode)

48-inch Tunnel $M=8-20$
[Low Density]

LENS XX
Velocity
2,500-12,000 km/sec

LENS II test run times:
200 msec – 30 msec
Rocket Combustion Chamber Failure During Ignition Start

Rocket Combustion Chamber Failure During Ignition Start

ROCKET SCIENCE IS HARD

H2-F2 5000 lbf Engine Injector Failure
ATA-002 Core-Stage (CS) Rocket Engine Module (REM) Design

- Initial design based on in-house engineering codes and assessment:
 - QICE – engine component sizing/design & performance
 - IBFF – state parameter time history prediction code of the model performance
 - Valve-venturi design & performance code
 - Heritage design comparisons

- Final design based on in-house CFD internal flow modeling of propulsion system:
 - Combustion Instability Assessment
 - CUBRC developed CAD geometry
 - Loci-CHEM – CFD Code with finite-rate chemistry
 - Led to re-design of GO2 manifold system and combustor
 - Provided performance curves

- Final design based on thermal modeling
 - Patran/Sinda G – Led to nozzle material and coating selection

- Developed nozzle specific enthalpy flow code
 - Determines the nozzle exit specific enthalpy profile, the required test duration and material selection

- Loads FEA

- Extensive design & analysis efforts were done to minimize cost and schedule risks.

Internal engine instrumentation installed by CUBRC to determine performance and validation of design methodology
♦ All performance parameters:
 • Have met design requirements
 • Show good agreement with EV33 prediction and design tools
 • Show similarity to full-scale RS-25D engine system

♦ All engine pressure measurements obtained by PCB-111 quartz gauge
CS-REM Plume

- MSFC camera provided high-resolution (1280 px x 800 px) and high frame-rate (16000 Hz) visible (VIS) video of CS-REM hot-fire tests
- MSFC infra-red (IR) camera provided long-wave IR video of CS-REM hot-fire tests
- Able to adequately determine the shock structure and flow physics

SSME VIS video taken during static sea-level testing at NASA Stennis Space Center
CS-REM Plume Analysis

♦ CS-REM plumes:
 - Are over-expanded at sea-level conditions
 - Free-jet boundary converge toward the centerline
 - Develops a characteristic Mach disc
 - No plume-plume interactions observed

♦ CS-REM shock structure and flow physics show good similarity with full-scale RS-25D (SSME) systems.
 - Important to obtain high-fidelity base heating data

♦ Zone of silence normalized distance increases linearly with chamber pressure.
ATA-002 Booster Solid Rocket Motor (BSRM) Design

- Initial design based on in-house engineering codes:
 - Conservation of mass sizing/design & performance code
 - Heritage design comparisons

- Final design based on thermal modeling
 - Patran/Sinda G – Led to nozzle material and coating selection

- Developed nozzle specific enthalpy flow code
 - Determines the nozzle exit specific enthalpy profile, the required test duration and material selection

- Initial design did not meet performance requirements due to significant ignition delay
 - Required trial-and-error igniter options to obtain desired ignition response time

- CUBRC with NASA MSFC collaboration developed an innovative igniter to meet design requirements

Internal engine instrumentation installed by CUBRC to determine performance and validation of design methodology
ATA-002 BSRM Performance Analysis

Model Results

CERAMIC COATED NOZZLE

Model Solution

Test Data

SRM Run 006

PROPELLANT X

<table>
<thead>
<tr>
<th></th>
<th>Pc Avg</th>
<th>T-shutdown</th>
<th>tau</th>
<th>Burn mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>550</td>
<td>300</td>
<td>25</td>
<td>0.42</td>
</tr>
<tr>
<td>Test</td>
<td>600</td>
<td>250</td>
<td>34</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Integrated Core/Booster Stage Propulsion
Integrated Core/Booster Stage Hot-Fire Test
Integrated Core/Booster Stage Rocket Plumes

- CUBRC VIS camera 4700 fps at 800 px x 600 px resolution
- VIS and LW-IR videos show CS-REM and BSRM plumes all-firing together as designed.
- All CS-REM plume Mach discs are within the same location and have the same diameter
- Plumes are fully-developed and steady in less than 35 msec
- Plume diameters are similar between the left and right BSRMs
- No flow asymmetry observed
- Showed propulsion designs are successful.
Conclusions

♦ ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program.

♦ Major Outcomes of the Pathfinder Test Program:
 • Reach 90% of full-scale chamber pressure
 • Achieved all engine/motor design parameter requirements
 • Reach steady plume flow behavior in less than 35 msec
 • Steady chamber pressure for 60 to 100 msec during engine/motor operation
 • Similar model engine/motor performance to full-scale SLS system
 • Mitigated nozzle throat and combustor thermal erosion
 • Test data shows good agreement with numerical prediction codes

♦ Next phase of the ATA-002 Test Program
 • Design & development of the SLS OML for the Main Base Heating Test
 • Tweak BSRM design to optimize performance
 • Tweak CS-REM design to increase robustness

♦ MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.
Special thanks to Mr. Mark D’Agostino (Aerosciences Branch Chief), Dr. Chris Morris (Aerothermal Team Lead), Mr. Jeff Vizcaino and EV33 for technical and programmatic support.

Detail information on propulsion design, fabrication, test and performance analysis will be published as a NASA Technical Memorandum.
Thank You

Manish Mehta, Ph.D.
Aerothermal Engineer
Aerosciences Branch
NASA Marshall Space Flight Center
MS 3418/EV33
MSFC, AL 35812
manish.mehta@nasa.gov
256-544-0076