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Background ACM Model Development Results
Crewmembers require approximately 5 to 8 kg of water each per day ACM Flowsheet Comparison: Model Predictions vs. Experimental Data
during spaceflight. Therefore, significant mass and cost savings can be 2wt NaCl Solution — 300W — 1200 RPM
realized for long term missions by implementing systems to recycle _ i | — = Operating Temperatures | CDS Pressure
wastewater into potable water. The Cascade Distillation Subsystem | — Nsigen ™ Frasigen + Q= Mesiceout ™ Friaeou
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couples an equation solver to a chemical properties database, enabling  Wator Production Rate.
dynamic simulation of specialized chemical processes. Individualized 5 20

code is developed for each unit operation in the process. An initial model Pt + Feanan = Feonaou o = Foroa s dx,
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Key Model Variables Modifications to Original Model Model Predictions
* [nputs: rotational speed, THP power, feed e Exicts * Production rate is dependent on evaporator-condenser heat transfer
conditions, heat transfer coefficient scaling factor Parameter oS Modified Model » Dissolved gasses increase steady operating pressures and
» Parameters: heat transfer area, evaporator liquid temperatures, decreasing efficiency

Calculated from empirical

Rendering of the CDS CDS Prototype holdup, evaporator-condenser pressure drop THP Coefficient |Estimated

el rtr e oy TS » Heat loss to the environment has a negligible effect
* Qutputs: temperatures, pressures & compositions R R P * Pressure drop between stages significantly impairs performance
throughout the system, product flow rate Distiller Motor | Not Variable, function of distiller * Trade-off for |pgreased THP power: increases production rate, but
- - - Power Usage Included rotation speed decreases efflc:lency
Objectives Assumptions
 Trade-off for increased rotational speed: increases flow rates, but also
| th <tina ACM model of the CDS and utilize th Evaporators: Hot & Cold Loop | Estimated | Variable, function of distiller e P
.mprove 2[00 ke @A Ing Ingelel] Artine | i u lIPAz e —  Thermodynamic equilibrium between vapor and liquid Flow Rates constant rotation speed ¥ P
improved model to predict the effect of changing operating parameters on _  Dynamic liquid phase mass and energy balances ’ to afctod to £
: it justed to fit
CDS performance: —  Constant liquid holdup Heat Transfer | Adjustedto | o o siaalinJ;OeIIOV\(/)s |
Condensers: Coefiicient fit data known correlations g
» Reduce inputs to only measureable or controllable variables by  Total Cc‘)n densation Conclusions
developing analytical or empirical relationships for assumed/arbitrary ASEIEWEIEREF ) (ESese] DOl e s
—  Psuedo-steady state mass and energy balances Area constant | dimensions Significant improvements have been made to the ACM model of the
parameters CDS . . . . .
o . . . | ~enabling accurate predictions of dynamic operations with fewer
 |mprove fidelity of heat transfer analysis used in model Evaporator Estimated | Determined from CDS abing P 1 P
- Heat Transfer Analysis Single Stage Cross-Section Liquid Holdup  |constant | dimensions assumptions. The model has been utilized to predict how CDS
* Increase defall throughoutthe model O performance would be impacted by changing operating parameters
» Determine if key assumptions made about CDS operation are justified, " Assumplion: heat transfer through S1 and 53 - . . = . ’
. y P ) OP J dominates, but is limited by condensation Capabilities added: revealing performance trade-offs and possibilities for improvement. CDS
and which areas of the model require further refinement + Empirical correlation for condensation on a 1| . . Ability to model th | start " N . _—y .
. . .. rotating disk (Astafiev and Baklastov, 1970) ity 10 MOGE! (n€rmal startup efficiency is driven by the THP coefficient of performance, which in turn is
 Validate model by comparison to empirical data o @2+ 021 = - - -
hoaoe = 138 M aer) (D) § » Effect of inert dissolved gas in feed dependent on heat transfer within the system.
+ Scaling for rotational speed, | V3 » Modeling of pressure drop in vapor phase Based on th S R it for furth
diam., and ATInE:Jgt_JQtOACM: Sace” between evaporators and condensers dSea on tne remalnlng IMItations o1 the Simulation, priorities 1or turther
CDS Operating Theory U = Us pomagron ) cr L sal » Modeling of heat loss to surroundings model development include: |
» Relaxing the assumption of total condensation
Separation in the CDS is based on vapor-liquid equilibrium * Incorporating dynamic simulation capability for the buildup of
thermodynamics, but it must operate in a microgravity environment. dissolved inert gasses in condensers
Unlike traditional distillation columns, which use gravity to separate vapor » Examining CDS operation with more complex feeds
and liquid phases, the CDS uses a rotating drum to separate phases by e = = » Extending heat transfer analysis to all surfaces

centrifugal force.
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