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The results of an experimental/numerical campaign aimed to develop progressive damage analysis 
(PDA) tools for predicting the strength of a composite bonded joint under tensile loads are 
presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar 
damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive 
response is characterized using standard fracture specimens and digital image correlation (DIC). 
The displacement fields measured by DIC are used to calculate the J-integrals, from which the 
associated cohesive laws of the structural adhesive can be derived. A finite element model of a 
sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations 
indicate that the model is capable of predicting the interactions of damage modes that lead to the 
failure of the joint. 

Nomenclature 
L, b = half-length and width of DCB, ENF, 

and MMB specimens 
 δn, δt = normal and shear displacement 

jump  
a0 = initial crack length  Eadh,  Gadh = Young’s and shear modulus of the 

adhesive 
h = composite beam thickness  = rotation of the composite arm at 

the crack tip 
hadh = adhesive layer thickness  Kn, Kt  = penalty stiffness in the normal and 

shear direcions 
B = mixed mode ratio  σ, τ = tensile and shear stress  
GIc, GIIc = mode I and mode II critical energy 

release rate 
 σn

i, τi = critical stress in the normal and 
shear direction 

JDCB, JENF = DCB and ENF J-integral   U, V = displacement components 
P = applied load  η = Benzeggagh-Kenane coefficient 
Δ = displacement modulus  x, y, z = orthogonal coordinate system 

I. Introduction 
DHESIVE bonded joints possess a number of advantages compared to mechanically fastened joints, 
especially in the assembly of large composite structures. Bonded joints provide lower structural weight, lower 

manufacturing costs and improved damage tolerance [1]. However, a lack of reliable material models and failure 
criteria leads to an overdesign of composite structures and composite structural assemblies. The assessment of 
failure modes, the measurement of material fracture properties and the development of reliable numerical tools to 
simulate the behavior of the component before and during damage propagation is expected to result in more 
efficient use of composites and adhesives.  
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The emphasis of the present work is on adhesive characterization and the development of a progressive damage 
model for bonded joints in sandwich structures. The joint design considered in this study, conceptually similar to 
those of the Heavy Lift Launch Vehicles (HLLVs) assemblies, is a composite conventional splice joint (CSJ) 
designed at NASA-LaRC [2] to bond sandwich panels.  

The CSJ, Figure 1, consists of two sandwich panels joined with two 69.9 mm long, six-ply splices bonded to 
the exterior faces of the sandwich with a Cytec FM-300M adhesive layer. The sandwich panels are composed of 
six-ply TE-1 Grade 190 Type 35 carbon/epoxy facesheets bonded with a Cytec® FM-300M adhesive to a 25.4 mm 
thick aluminum honeycomb core. The core material is Hexcel CR III 1/8-5052-.0007. The facesheet plies each 
have a nominal thickness of 0.19 mm. The stacking sequence of the facesheets is [+60/0/−60]S. At their thickest, 
the splices have the same stacking sequence as the facesheets. Additionally the splices have internal ply 
terminations and ply drops, and the cascading ply terminations are separated by 6.4 mm. The CSJ specimens is 559 
mm long and 76.2 mm wide. 

 
Figure 1. Schematic of the conventional splice joint. 

Design specifications for the joint specimens allow for a 2.54 mm gap between the sandwich panels, although 
during the analysis it is assumed that the two sandwich panels are initially in contact. To decrease the severity of 
the stress concentration in the splice near the gap between panels, a 12.7 mm Teflon film is inserted in-line with the 
adhesive layer at the joint gap. 

The following sections of the paper describe the experimental and numerical work required to develop a 
strength prediction capability of the CSJ under tensile loads. Section II describes the procedure followed to 
characterize, from standard fracture tests, the mode I, mode II and mixed mode I-II cohesive laws of the FM-300M 
adhesive. The cohesive laws capture the linear elastic and softening behaviour of the structural adhesive prior to 
fracture. Cohesive zone models (CZM) are used to simulate the fracture tests and to validate the models with 
experimental results. Section III focuses on the PDA of the CSJ: the cohesive laws measured in Section II are 
applied to model damage of the joint’s adhesive; a continuum damage model and a cohesive zone model address 
intralaminar and interlaminar damage respectively, in the carbon/epoxy facesheets and splices; a one-dimensional 
damage model [2] simulates crushing of the honeycomb core. In Section IV results of the PDA are reported and 
compared with the results of an experimental test campaign conducted at NASA Langley [3] on the CSJ. Final 
remarks, in Section V, conclude the paper.  

II. FM-300M Adhesive Characterization 
In order to perform a complete PDA of bonded composite assemblies, it is necessary to characterize the 

response of the adhesive in the hardening as well as the softening ranges, up to the point of complete surface 
separation. A number of test procedures have been proposed to investigate the cohesive failure of adhesives and/or 
measure the material cohesive laws in different modes of failure. For instance Breitzman [4] obtained the tensile 
and shear properties of the FM-300M structural adhesive by testing a block of material under axial and shear 
loading.  

An alternative to the characterization of adhesives based on their stress-strain response is to perform fracture 
tests. These tests are designed to characterize the propagation of damage in terms of fracture toughness, i.e. the 
critical energy release rate (CERR) and, if designed in order to have a stable crack propagation in the specimen, 
they allow characterizing the behavior of the material up to complete surface separation. 

A. Fracture Specimens 
ASTM provides three standard test procedures to characterize interlaminar fracture toughness of unidirectional 

fiber reinforced polymer matrix composites: Double Cantilever Beam (DCB) for mode I delamination, End Notch 
Flexure (ENF) for mode II delamination and Mixed Mode Bending (MMB) for mixed mode I-II delamination. 

The standard specimens are modified by embedding an FM-300M adhesive layer between the unidirectional 
composite arms, as shown in Figure 2, in order to investigate the adhesive fracture mechanics. A Teflon insert is 
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placed at one end of each specimen between the composite arms in order to have an initial crack. The dimensions 
of the specimens are reported in Table 1. 

Nine DCB and eleven ENF specimens with an embedded FM-300M adhesive layer and initial crack length a0 
are tested to determine mode I and mode II cohesive laws for the adhesive. To determine the mixed mode I-II 
cohesive laws, ten MMB specimens are tested at different mixed-mode ratios (defined as the portion of energy 
dissipated in pure mode II cohesive failure [5]) B = 24%, 48%, 57% and 74%. The CERR is a function of the mode 
mixity: it increases monotonically from GIc to GIIc. Several empirical models have been proposed to describe this 
function. Herein, the mixed-mode fracture toughness is described using the Benzeggagh-Kenane (B-K) criterion 
[6]. Additional details on the configuration of the tests are provided in [7]. 

 
Table 1. Specimen dimensions. 

  DCB ENF MMB 25% MMB 50% MMB 60% MMB 75% 
L [mm] 130 100 70 70 100 100 

b (width) [mm] 25 25 25 25 25 25 
a0 [mm] 20 35 30 30 45 45 
h [mm] 1.5 2.5 1.5 1.5 2.5 2.5 
c [mm] // // 114 60 73 59 

hadh [mm] 0.254 0.254 0.254 0.254 0.254 0.254 
 

 
Figure 2. (a) DCB, (b) ENF and (c) MMB test configurations. 

B. Derivation of Cohesive Laws from J-Integrals 
The ASTM DCB, ENF and MMB standard test procedures provide data reduction techniques to extract the 

critical energy release rate (CERR) from experimental results. However, these techniques, which were developed 
for delamination in composites, are based on a linear elastic fracture mechanics (LEFM) approach which assumes 
that no material nonlinearities are present outside the point of the crack tip. Therefore, the data reduction 
techniques neglect the extension of the volume ahead of the crack tip in which the material response is non-linear 
(i.e. the damage process zone). This may lead to inaccurate values of the CERR for materials that develop to large 
process zones. 

Nonlinear Fracture Mechanics (NLFM) becomes necessary when the material is subjected to irreversible 
nonlinearities, or the fracture process zone (FPZ) is not negligibly small compared to the structural dimensions and 
must be taken into account. The J-integral is an analysis technique used to calculate the fracture energy in problems 
for which the assumptions of LEFM do not hold. It consists of a contour integral whose value is equal to the energy 
release rate (ERR), or work per fracture area, in a body that contains a crack. Rice [8] showed that the J-integral 
has three main properties: 

1) It is path independent, i.e., integration along any closed contour surrounding the process zone is constant; 
2) Its value is equal to the energy released in the process of damaging a nonlinear elastic body; 
3) Its derivative with respect to the displacement jump at the crack tip represents the cohesive law. 
The first property of the J-integral allows the selection of the most convenient path along which to integrate the 

stresses and evaluate the integral. The second property allows for the determination of the ERR from the tests, and 
the third property is used to extract the shape of the cohesive law. The current work focuses on the experimental 
estimation of the J-integral for the DCB and ENF tests. 

A number of closed-form expressions for the J-integral have been developed based on analytical models of 
beams on inelastic foundations. Leffler [9] proposed the following expression for the J-integral estimated for the 
ENF specimen: 
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(1) 

where E is the Young’s modulus of the adherends in the fiber direction, assuming unidirectional layup of the 
specimens, h is the thickness of each arm, b is the width of the specimen, a0 is the initial crack length, δt is the 
displacement jump in the shear direction, and P is the applied load.  

A closed form solution for the J-integral for the DCB test is provided by Högberg [10]: 

 
 

(2) 

where  and represent the rotation of the top and bottom arm at the crack tip respectively. 
 The values of the J-integrals for mode II and mode I, given by Equations (1) and (2), can be determined 
experimentally by measuring the displacement jump δt and the rotation of the arms. A stereoscopic digital image 
correlation system was used to measure the displacement fields on the profile of the specimens near the crack tip 
during the tests. Figure 3(a) shows contour plots of the displacement component along the X axis, U, measured on 
the edge of an ENF specimen before loading (top figure) and at the instant prior to total separation (bottom figure). 
The displacement is interrogated along the red lines that are drawn at the crack tip perpendicular to the composite 
arms through the thickness. After removal of the rigid body rotations, the displacement U as a function of the 
through-thickness position has the distribution shown in Figure 3(b). The discontinuity of this distribution 
represents the displacement jump, δt. This process is performed for all of the images from the initial stage to the 
total separation point, and for each image the displacement jump is associated to the corresponding applied load, P. 
By substituting the displacement jumps into Equation (1), the J-integral results, shown in Figure 3(c), are obtained. 
Finally, the cohesive law for mode II is obtained by taking the derivative of the J-integral with respect to the 
displacement jump. The resulting cohesive laws obtained from three ENF specimens are shown in Figure 3(d). 

A similar procedure is followed for the DCB specimens. The displacements from which the rotations of the 
composite arms are calculated are outlined in Figure 4(a) for the top beam. The shapes of the DCB specimen before 
and after the application of the load are shown in Figure 4(b). The rotation of the top composite arms, , is 
highlighted by the relative displacements of two points, P1 and P2 that define the normal directions of the composite 
arm. The J-integral results obtained using Equation (2) for three DCB specimens are shown in Figure 4(c). The 
resulting mode I cohesive laws are shown in Figure 4(d). 

The area under a cohesive curve corresponds to the maximum value of its J-integral, and this value is the CERR 
for the material. From the cohesive laws measured for the DCB and ENF specimens the following values of the 
adhesive CERR and strengths are determined: JDCB max=GIc≈1.25 N/mm and J ENF max=GIIc≈7.9 N/mm. The 
maximum stress value of a cohesive curve corresponds to the material strength. The strengths for modes I and II 
obtained from the cohesive laws as well as the initial part of the cohesive laws are in good agreement with the 
experimental observations of Breitzman [4], which are shown with the violet curves in Figure 3(d) and Figure 4(d). 

It can be observed that the mode I and mode II cohesive laws exhibit different material responses at different 
stages of their deformation histories:  

1) the first part of each law is a linear-elastic domain in which the curve can be approximated by a straight 
line having a slope of Kn 12.4 N⁄mm3 for mode I and Kt 4.3 N⁄mm3 for mode II. 

2) The mode II cohesive law includes a second part consisting of a non-linear plastic domain in which the 
local tangent of the curve is almost horizontal.  

3) The final part of each law is a softening domain in which the material is subjected to large separations and 
unable to withstand the applied tractions. 

Curve-fit approximations of the experimental mode I and mode II cohesive laws could be tabulated for use as 
inputs to cohesive models. However, there are no procedures for establishing mixed-mode cohesive laws from 
tabulated mode I and mode II data. On the other hand, methods for obtaining mixed-mode cohesive laws from 
bilinear laws are well established [11]. To take advantage of the available bilinear models, the experimental mode I 
and II cohesive laws are each approximated by superposing two bilinear curves, referred to as Law A and Law B in 
Figure 3(d) and Figure 4(d). Therefore, the mode I response is represented by the sum of the bilinear laws AI and 
BI, and the mode II response is represented by the sum of laws AII and BII. The bilinear laws are defined through 
the parameters listed in Table 2. Additional details on this methodology are provided by Girolamo [7]. 
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Figure 3. Procedure to determine the mode II cohesive law: (a) displacement field 
around the crack tip; (b) shearing deformation and displacement jump; (c) J-integral 
vs. displacement jump; and (d) experimental cohesive law and numerical 
approximation through bilinear laws. 

 
Figure 4. Procedure to estimate the mode I cohesive law: (a) displacement field; (b) 
rotation of the top composite arm; (c) J-integral vs. displacement jump; and (d) 
experimental cohesive law and numerical approximation through bilinear laws. 
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Table 2. Parameters for the bilinear cohesive laws. 

 Mode I   Mode II 
Law AI Law BI  Law AII Law BII 

Kn [N/mm3] 11,500 1,000  Kt [N/mm3] 4,000 180 
σn

i [MPa] 88 1.24  τi [MPa] 45 21 
GIc [N/mm] 1 0.25  GIIc [N/mm] 4 3.9 

C. Finite Element Models of the Adhesive Fracture Tests 
Two-dimensional parametric finite element models of the DCB, ENF and MMB fracture specimens were 

created for the commercial finite element program Abaqus/Std 6.10, which uses an implicit solution procedure. The 
models were composed of plain strain CPE4 elements for the composite plies and two superposed layers of finite-
thickness cohesive elements, Abaqus COH3D8 elements, for the adhesive laws A and B. Further details on the 
models are provided in [7].  

Implicit schemes tend to have convergence difficulties in problems with material softening, and these 
difficulties are often alleviated by using viscous damping and viscoelastic regularization. However, in the present 
analyses all artificial damping terms were set to zero to ensure that the models dissipate the correct amount of 
fracture energy. 

DCB, ENF and MMB finite element models are composed of three sections, as shown in Figure 5 for a DCB 
model. Section AB corresponds to the initial crack, section BC has a fine mesh for accurate prediction of crack 
propagation, and section CD has a coarse mesh that does not influence the results since the simulation is stopped 
before damage reaches it. In section BC, the element size in the x-direction is approximately 0.51 mm. Five 
elements through the thickness of each arm are sufficient to maintain an aspect ratio of less than 2.5 throughout the 
model.  

 
Figure 5. Von Mises stress, S, contour plot from the DCB numerical simulation. 

The numerical results are reported in terms of applied loads vs. displacements in Figure 6 (red dashed lines) 
together with the experimental results (black lines) and analytical solutions (blue-dashed lines). The analytical 
solutions are based on LEFM assumptions [12]. It can be observed that there is a good agreement between 
experimental and numerical results both in terms of maximum applied load and load-displacement history. As 
expected, the analytical solutions, based on LEFM, give an overestimation of the maximum applied load and a 
sharper drop of the load-displacement curves after the maximum is reached. It is worth to underline that some of 
the MMB and DCB tests show a load drop that is unlike the gradual load reduction exhibited by the numerical 
simulations. This sudden load drop was caused by the formation of a delamination in the composite. This situation, 
which is referred to herein as “double delamination”, has been addressed in [7]. 

 
Figure 6. Experimental, analytical and numerical results for the (a) DCB, (b) ENF and (c) MMB tests. 
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III. Progressive Damage Analysis of the Conventional Splice Joint 
As with any composite structure, the sandwich panel joints considered herein have the potential to exhibit 

several simultaneous failure mechanisms. For example, fiber fracture and intraply matrix cracking can occur within 
the carbon/epoxy plies, mixed-mode delaminations are possible between the plies, the adhesive can debond, and 
the honeycomb sandwich core can crush. Each of these possible failure mechanisms has the potential to interact 
with any other mechanism. In order to account for each of these potential failure mechanisms and their many 
possible interactions, three progressive damage modeling methodologies are required, as described in the following 
subsection. Intraply damage is taken into account via a continuum damage mechanics (CDM) approach. Interply 
and adhesive damage modes are represented using layers of cohesive elements. Honeycomb core crushing is 
modeled using a specialized one-dimensional damage model. The next sub-sections briefly describe the progressive 
damage modeling techniques that are used in the present analysis.  

A. PDA Methods 
 Continuum Damage Mechanics. Continuum damage mechanics is a PDA method that allows for the 
prediction of both damage initiation and damage evolution without having to make modifications to the original 
finite element mesh of the structure being analyzed. Rather than modeling cracks by the insertion of discrete 
discontinuities into the original finite element mesh, CDM approaches represent the effects of cracks by softening 
certain components of the constitutive stiffness tensor. Multiple damage modes are accounted for with a set of 
scalar damage state variables. After the initiation of a particular damage mode, the affected stiffness terms are 
softened according to relevant fracture toughness properties and the local characteristic element size. As a result, in 
order to accurately predict the initial linear elastic response, the initiation of damage, and the evolution of damage, 
it is necessary to have a set of material property data including the elastic moduli, strengths and fracture toughness 
values for each potential failure mechanism. The material properties are reported in [7]. 

A combination of the LaRC03 [13] and LaRC04 [14] failure criteria is used for the CDM model predictions. 
The LaRC set of criteria consists of stress-based analytical equations that predict the onset of failure mechanisms 
such as matrix cracking, fiber fracture, and fiber kinking. The prediction of damage evolution is implemented 
through an updated version of the CDM approach originally proposed by Maimí et al. [15]. The improvements to 
the CDM approach that are relevant to this work include: (1) an extension of the set of failure criteria to account for 
three-dimensional stress states, as well as extensions to the corresponding damage evolution laws and stiffness 
tensor degradation algorithms; (2) the development of a mixed-mode matrix damage evolution law [16]; and (3) the 
development of a new definition for the CDM effective stresses that allow for the simultaneous evolution of 
multiple damage modes. The details of this model are not presented herein. 

Cohesive Zone Modeling. Cohesive elements are specialized nonlinear finite elements that are particularly 
useful to predict the initiation and evolution of cracks when the potential propagation paths are known a priori, e.g., 
Turon et al. [17]. The constitutive response of cohesive elements is determined through a cohesive law, defined in 
terms of local traction versus crack opening displacement. Prior to the prediction of damage initiation, a high 
cohesive stiffness keeps the crack surfaces closed. Upon satisfying a failure criterion, the stiffness properties of the 
element soften with further deformation until the element completely fails. The crack opening displacements 
corresponding to damage initiation and complete failure are dependent on the mode I and mode II strengths and 
fracture toughness values, as well as the local mode mixity. No in-plane loads are carried by cohesive elements. 

Cohesive elements used to model composite delamination are usually set to have zero thickness, which requires 
very high, non-physical element stiffnesses. A different approach was used to model the adhesive layer: finite 
thickness cohesive elements were used to model both the elastic and the fracture processes in the material. Further 
details are provided in [7]. 

Core Crush Model. To represent the loss of stiffness of a honeycomb core as a result of crushing under 
compressive normal loads, a user-written one-dimensional damage model is used [2]. This damage model 
represents only the response of the normal direction of the core, and does not represent the transverse shear 
response of the honeycomb core. This damage model separates the compressive normal response of a honeycomb 
material into three parts: (1) the initial linear-elastic response, characterized by the Young’s modulus; (2) the 
crushing of the core, during which the material has a negative tangent stiffness; and (3) the post-crush response, 
characterized by a significantly reduced modulus. In addition, the core crush damage model is capable of 
representing the unloading/reloading response of either a partially or fully crushed material. 
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B. Finite Element Model 
A three dimensional finite element model of the joint specimen was developed in Abaqus 6.10-1. User-written 

subroutines are used to define the constitutive responses of the carbon/epoxy plies (via continuum damage 
mechanics) and the honeycomb core material, while Abaqus cohesive elements are used to model delamination 
between plies and the damage within the adhesive layer. Due to the convergence difficulties associated with 
progressive damage and the softening of damaged material, the models are solved with Abaqus/Explicit in double 
precision. Elements are not deleted after failing for both the CDM and cohesive damage methods. 

The model of the tensile CSJ represents a panel that is 101.6 mm long and 6.35 mm wide. No plain strain 
conditions are assumed. However, the model is wide enough such that the edges do not affect the development and 
progression of the damage. 

A cross-section of the three-dimensional model is shown in Figure 7. Each ply of the facesheet and the splice is 
represented with a single layer of solid three-dimensional reduced integration elements, C3D8R. Between each ply, 
a layer of zero-thickness COH3D8 cohesive elements is included. The element size in the facesheets and splices 
along the x-direction is equal to the ply thickness (i.e., 0.19 mm). For computational efficiency, the width of the 
model is limited to eight elements. 

The layer of adhesive between the facesheets and the splices is modeled using two coincident layers of finite-
thickness, bilinear COH3D8 cohesive elements with cohesive laws described in Section II. The Teflon insert near 
the joint gap is represented by setting the strength and fracture toughness properties of the adhesive elements to 
extremely low values, causing them to fail early in the analyses. Therefore, the elements representing the Teflon 
insert are able to carry compressive normal loads, but they do not resist shear or tensile normal loads. The 
honeycomb core is represented by a layer of two-node T3D2 truss elements, initially oriented in the z-direction. As 
a result, the transverse shear stiffness of the honeycomb core is neglected. However, because there is no significant 
bending applied to the CSJ model, it is determined that neglecting the honeycomb core transverse shear stiffness 
does not have a significant effect on the analysis results. 

 
Figure 7. Cross-sectional view of the FE mesh for the conventional splice joint models and BCs. 

To account for the residual thermal strains caused by cool-down after curing, the models are solved in two 
steps: the first step takes into account the thermal contraction without any external forces, and the second step adds 
mechanical tensile load. Symmetry is assumed through the center of the honeycomb core and, during the thermal 
step, all the edges of the facesheet and the splice are left free. During the second step, the faces of the model having 
normal direction along x are constrained in the x-direction, the faces of the model having normal direction along y 
are left free. In order to avoid premature failure near the boundaries, damage is not allowed to occur in the sections 
within 3.18mm of the loaded edges. Loads are applied uniformly by displacing the cross-section of the skin 
opposite to the splice in the x-direction. 

For computational efficiency, the loading rate was selected to be as high as possible while avoiding significant 
dynamic forces. The thermal load was applied in 0.005 seconds. It was found that applying the mechanical load 
over a time period of 0.05 second represents the best compromise between computational efficiency and an 
approximation of a quasi-static solution. The load was applied with a sinusoidal ramp within each load step to 
reduce any applied accelerations and their corresponding vibrations. 
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Variable mass scaling is used to decrease the solution time by increasing the minimum stable time increment to 
2.e−07 second throughout the models (i.e., using less than 275,000 increments total, which is much less than the 
2.e+06 increment limit recommended for double precision cases). The selection of this stable time increment, along 
with the material stiffnesses and element sizes used in the models, leads to initial model-wide changes in mass to 
be on the order of 50 to 150 times. Mass scaling factors are updated every 500 solution increments to account for 
any local changes in elemental stiffness, gradually increasing the mass of some elements as the solver proceeds. 

IV. Results 
Tension tests were performed on two CSJs. The applied load and relative displacement were recorded during 

the tests [3]. The experimental and predicted load-displacement curves for the CSJ tension specimens are shown in 
Figure 8. The predicted peak load of the CSJ specimen is approximately 125 kN, compared to the experimentally 
observed strengths of 109 and 113 kN. 

 
Figure 8. Predicted and experimental load-displacement responses of the CSJ. 

Prior to the predicted failure of the joint specimen, several instances of localized damage development occur in 
the model. At an applied load of approximately 15 kN, the adhesive layer begins to soften immediately ahead of the 
Teflon insert. The softening of the adhesive is a very gradual process, as expected due to the relatively large 
fracture toughness values determined during the material characterization. As a result, no significant loss of 
stiffness occurs due to the initial softening of the adhesive, as can be observed in Figure 8. 

Localized matrix cracking is predicted to occur at two “hot spots” in the CSJ model at an applied load between 
40 and 45 kN: in the top 60° ply of the facesheet near the termination of the last 0° splice ply, and in the bottom 
60° ply of the splice near the end of the Teflon insert. These cracks initially have no effect on the global load-
displacement response. 

The eccentricity in the load path due to the splices causes bending of the facesheet near the end of the Teflon 
insert, inducing compressive loads in the honeycomb core in excess of its strength. At an applied load of 78 kN, the 
core fails by buckling of the walls of the two rows of cells closest to the joint center (i.e., four in total, assuming 
symmetric damage), as shown in Figure 9(a). This core crush mechanism was observed during the experimental 
tests [3]. Widespread matrix cracking is predicted in the facesheet at 79 kN, causing a noticeable drop in the load-
displacement response. At 123 kN, delaminations develop between the 60° and 0° plies at the locations of the first 
two 60° matrix cracks, as shown in Figure 9(b). The delaminations at both locations are approximately 1.3 mm 
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long at this load level. The delamination originating near the Teflon insert continues to grow to a length of 3.8 mm, 
when the peak load of 125 kN is reached, Figure 9(c). Unstable delamination propagation ensues, eventually 
linking up with the delamination near the Teflon insert, cracking the matrix and adhesive where they meet. 
Composite delamination at the +60/0 interface and core crush were observed also experimentally, Figure 9(d). 

 
Figure 9. Failure process for conventional splice joint subjected to tensile loading, numerical and 

experimental. 

V. Concluding Remarks 
A complete numerical/experimental procedure was developed to establish the mechanical response (elastic, 

plastic and softening) of the structural adhesive layer used in a conventional splice joint (CSJ). The emphasis of the 
effort was on the evaluation of the cohesive laws for mode I and mode II delamination. These cohesive laws were 
obtained by numerical derivation of the J-integral functions for the DCB and ENF tests, and they were verified by 
correlation between the fracture experiments and the numerical models. The outcome of the adhesive 
characterization was used within a progressive damage analysis (PDA) of the CSJ. The PDA was performed in 
Abaqus 6.10 using CDM methods to account for intralaminar failure mechanisms and CZM for interlaminar and 
adhesive failure mechanisms. The PDA successfully predicted the failure load, identified the failure modes, and 
provided information on the sequence of failure events of a CSJ subjected to tensile loads. 
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