
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

V&V of lexical, syntactic and semantic properties for

interactive systems through model checking of formal

description of dialog

Guillaume Brat
1
, Célia Martinie

2
, Philippe Palanque

2

1 NASA Ames Research Center

MS-269-1 Moffett Field, California
guillaume.p.brat@nasa.gov

2 IRIT, Université Paul Sabatier

118, route de Narbonne

31062 Toulouse Cedex 9, France
martinie@irit.fr

palanque@irit.fr

Abstract. During early phases of the development of an interactive system, fu-

ture system properties are identified (through interaction with end users in the

brainstorming and prototyping phase of the application, or by other stakehold-

ers) imposing requirements on the final system. They can be specific to the ap-

plication under development or generic to all applications such as usability

principles. Instances of specific properties include visibility of the aircraft alti-

tude, speed… in the cockpit and the continuous possibility of disengaging the

autopilot in whatever state the aircraft is. Instances of generic properties include

availability of undo (for undoable functions) and availability of a progression

bar for functions lasting more than four seconds. While behavioral models of

interactive systems using formal description techniques provide complete and

unambiguous descriptions of states and state changes, it does not provide ex-

plicit representation of the absence or presence of properties. Assessing that the

system that has been built is the right system remains a challenge usually met

through extensive use and acceptance tests. By the explicit representation of

properties and the availability of tools to support checking these properties, it

becomes possible to provide developers with means for systematic exploration

of the behavioral models and assessment of the presence or absence of these

properties. This paper proposes the synergistic use two tools for checking both

generic and specific properties of interactive applications: Petshop and Java

PathFinder. Petshop is dedicated to the description of interactive system behav-

ior. Java PathFinder is dedicated to the runtime verification of Java applications

and as an extension dedicated to User Interfaces. This approach is exemplified

on a safety critical application in the area of interactive cockpits for large civil

aircrafts.

mailto:%7d@irit.fr
mailto:%7d@irit.fr

1 Introduction

Nowadays interactive applications are more and more required to handle the complex-

ity of command and control systems for safety critical applications. Formalisms, pro-

cesses and tools are then required to bring together several properties such as reliabil-

ity, dependability and operability. In addition to standard properties of computer sys-

tems (such as safety or liveness), interaction properties have been identified. Proper-

ties related to the usage of an interactive system are called external properties [2] [9]

and characterize the capacity of the system to provide support for its users to accom-

plish their tasks and goals, potentially in several ways, and prevent or help to recover

from errors. Although all types of properties are not always completely independent

one from each other, external properties are related to the user’s point of view and

usability factor, whereas internal properties are related to the design and development

process of the system itself (modifiability, run time efficiency). Interactive systems

have to support both types of properties and dedicated techniques and approaches

have been studied for this purpose, amongst them are formal methods. Formal lan-

guages have proven their value in several domains and are a necessary condition to

understand, design and develop systems and check their properties.

Formal methods are studied since several years in the field of HCI as a mean to an-

alyze in a complete and unambiguous way interactions between a user and a system.

Several types of approaches have been developed [8], which encompass contributions

about formal description of an interactive system and/or formal verification of its

properties. Amongst these approaches, ICO description technique and associated

Petshop CASE tool, provide augmented support for describing the conceptual model

of the system but also for analysis and validation at earlier stage in the process [10].

This kind of approaches provide support for describing exhaustively interactive sys-

tems and their behavior, as well as prototyping, testing and verifying synchronously

certain types of properties. However, as existing notations to produce executable

models are quite expressive, models cannot be verified until they have been translated

into more abstract models in order to perform properties verification. This paper pro-

poses to associate Petshop to JPF, a framework for runtime verification of Java pro-

grams. This association provides support for complete and non-ambiguous description

of an interactive application (with Petshop) as well as formal verification of the ICO

specification based interactive application (with JPF). Next section is dedicated to the

presentation of the tool suite. Third section illustrates the use of this tool suite for the

example of the Weather Radar aircraft cockpit application. Fourth section is dedicated

to related work.

2 A tool suite for the validation and verification of interactive

systems

This tool suite is composed of two software tools: Petshop and JavaPathFinder.

Petshop [3] is dedicated to the description of interactive system behavior. JavaPath-

Finder [4] is dedicated to the runtime verification of Java applications and as an ex-

tension dedicated to User Interfaces.

2.1 Petshop

The CASE tool Petshop
1
 is Java based and provides support for editing ICO models.

Interactive Cooperative Object (ICO) [16] is an object-oriented formal notation dedi-

cated to interactive systems. It provides support for describing: the events to which

the application can react, the set of functions it can perform and the implicit set of

states in which the system can be. This formalism encompasses both the "input" as-

pects of the interaction (i.e. how user actions impact on the inner state of the applica-

tion, and which actions are enabled at any given time) and its "output" aspects (i.e.

when and how the application displays information relevant to the user). ICO notation

is based on Petri nets and Petshop tool then allows classical manipulations on the

Petri nets add/remove/modify (Petri net items, marking, code within transitions, etc.)

and offers classical editing services (copy/cut/paste, undo/redo, navigation amongst

the models, etc.). Petshop also enables to execute simultaneously the interactive ap-

plication as well as its underlying models. Furthermore, it is possible to modify the

models while the modeled interactive application is running. This list of features ena-

bles to formally specify, test and validate an interactive application in early stages of

the development process, using Petshop as a high-fidelity prototyping tool [19]. How-

ever, properties verification activities require transformation of the high-fidelity pro-

totype. Fig. 1 represents diagrammatically the current existing process for verifying

properties of interactive applications running in the Petshop environment.

Fig. 1. Existing process for verifying properties of Petshop running interactive applications

The analysis performed at runtime within Petshop environment is executed on trans-

lated version of ICO models. The translated models are low-level Petri nets and the

Petshop analysis module performs an invariant Analysis (P/T invariants) of the under-

1 http://www.irit.fr/recherches/ICS/softwares/petshop/

lying Petri net. Previous work has shown that it is also possible to perform formal

manual analysis of interactive system properties [17] as well as ergonomic rules [18],

both using ACTL notation for expressing properties. However, as previously de-

scribed, ICO notation is quite expressive and ICO models cannot be verified until

they have been translated into more abstract models in order to perform properties

verification.

2.2 JPF

Java PathFinder
2
 (JPF) [4, 23] is a framework for the runtime verification of Java

programs. It can be used as an explicit-state model checker that works directly on

Java bytecode. JPF specializes in finding deadlocks, verifying assertions, and check-

ing temporal logic specifications through the use of listeners, which monitors the ex-

ploration of all possible paths in a Java program and continuously check that the spec-

ifications are met. JPF explores all possible interleavings in multi-threaded programs

as well as all possible choice points (both in terms of control logic and data values)

corresponding to a specific environment.

JPF has many extensions, which can be used to process various languages (e.g.,

UML-style Statecharts, Scala), the use of specific Java libraries (e.g., network com-

munciations, java.awt or javax.swing), or, to switch from model checking to a less

exhaustive form of verification (e.g., symbolic execution, concolic execution or

runtime analysis). In our case, we are using mostly jpf-awt, which provides conven-

ient abstractions of user interface libraries (awt or swing) and means to model inter-

acting users through scripts [24].

Complex functional properties, corresponding to LTL [21] safety properties, can be

expressed and checked using JPF listeners. Listeners are Java programs that run in

parallel with the execution done by JPF, monitor the states of the application under

test at every step, and check them against the specified formal property. JPF listeners

are commonly referred to as observers in the model checking community. So, using

listeners does not require any modification of the original application code; it does

require knowledge of that code though. Listeners can easily encode LTL safety prop-

erties such as the Property P described above. However, they cannot express liveness

properties (in layman’s terms, asserting that something good eventually happens),

e.g., stating that a value is eventually displayed. Liveness properties can be checked

by JPF only using the jpf-ltl extension, which has not been tested extensively. This

capability can be useful to check properties such as checking that a progression bar

keeps moving or that a button eventually gets reset.

2.3 Process for formal description and verification of interactive applications

Fig. 2 summarizes the proposed process. Functional as well as non-functional

needs and requirements are identified at the beginning of the process (top left part in

Fig. 2). Interactive application is then formally described using Petshop tool. In paral-

2 http://babelfish.arc.nasa.gov/trac/jpf/

lel, properties that have to be verified by the application are represented using tem-

poral logic notations. JPF is then used to verify properties directly on the running

interactive application.

Fig. 2. Proposed verification process integrating Petshop and JPF

Following section provides an example of applying the tool suite for the implemen-

tation and verification of a civil aircraft cockpit interactive application.

3 Illustrative example: WXR application

Weather Radar application (also named WXR) has been modeled taking into account

ARINC 661 [1] standard, which aims at defining software interfaces to the Cockpit

Display System (CDS) used in all types of aircraft installations.

3.1 Weather Radar presentation

Weather radar is an application currently deployed in many cockpits of commercial

aircrafts. It provides support to pilot’s activities by increasing their awareness of me-

teorological phenomena during the flight journey, allowing them to determine if they

may have to request for a trajectory change, in order to avoid storms or precipitations

for example. Fig. 3A shows screenshots of weather radar displays. Fig. 3B presents a

screenshot of the weather radar control panel. This panel provides two functionalities

to the crew members. The first one is dedicated to the mode selection of weather radar

and provides information about status of the radar, in order to ensure that the weather

radar can be set up correctly. The second functionality, available in the lower part of

the window, is dedicated to the adjustment of the weather radar orientation (Tilt an-

gle). This can be done in an automatic way or manually. Additionally, a stabilization

function aims at keeping the radar beam stable even in case of turbulences. It shall not

be possible to manually edit the Tilt angle if the application is in automatic mode or if

the stabilization functionality is on.

Fig. 3. A - Screenshot of weather radar displays, B - Screenshot of the weather radar control

panel

3.2 Formal specification of WXR application with Petshop

Fig. 4 presents a diagrammatic overview of the WXR application running in the

Petshop environment. The following parts of the application are represented distinc-

tively: the presentation part of the application (User Interface), the behavioral part of

the application (Cooperative Objects models) and the functions that bind the presenta-

tion part to the behavioral part: activation and rendering functions.

Fig. 4. Overview of the WXR application running in the Petshop environment

The weather radar control panel application is composed of the presentation part

(shown in Fig. 3B), the Cooperative Object (CO) model (shown in Fig. 5), and the

activation and rendering functions. Activation and rendering functions are not pre-

sented in this article and the interested reader can find example in [16]. The Coopera-

tive Object shown in Fig. 5 is the formal description of the WXR application’s behav-

ior. This formal description is used as part of the specification for developing the final

application running on the targeted system. JPF tool is then used to verify properties

against the final application as described in the following paragraphs.

Fig. 5. Cooperative Object (CO) model of the weather radar control panel

3.3 Formal verification of WXR application with JPF

Our goal is to demonstrate that we can automate the exhaustive verification of

formal properties on interactive systems using the WRX application. For that we use

the JPF model checker, and more precisely jpf-awt, a JPF extension for model check-

ing applications making use of the java.awt and java.swing libraries [24]. This exten-

sion provides means of modeling user inputs (e.g., pressing buttons, entering text,

selecting items) and understanding awt (or swing) method calls through abstractions.

The first step in using JPF to model-checked interactive applications consists of

identifying user input scenarios of interest and capturing them using scripts that are

passed to jpf-awt. This allows us to “close the system” (in model checking jargon),

which in this case means that the verification can be done without human interaction.

The scripts use a simple scripting language to describe input sequences of interest; in

some ways, they describe ranges of possible interactions with the application. In the

case of WRX, we can define a range of scenarios starting with some mode selection

and then allowing a user to play freely with tilt selection, then stabilization and finally

setting a range of tilt angle. This corresponds to the following script, in which the

ANY keyword indicates a random choice between different options:

ANY {$MODE_SELECTION.select()}

ANY {NONE | $MANUAL.doClick() | $AUTO.doClick()}

ANY {NONE | $ON.doClick() | OFF.doClick()}

$TILT_ANLGE:input.setText(“whatever”)

The second step consists of capturing a formal property representing functional or

non-functional requirements. Non-functional, systemic, requirements such as requir-

ing the absence of deadlocks or other “Java language issues” are checked automatical-

ly by JPF. Functional requirements can be expressed, and thus checked, by various

means. Assertions are simple instructions, which can be inserted at any point in the

user interface code. They simply monitor the value of complex conditions over the

values or states of any user interface object. For example, the property, say P, stating

that “it shall not be possible to manually edit the Tilt angle if the application is in

automatic mode or if the stabilization functionality is on” can be checked by placing

the assertion based on the following condition

(lbl_Selection.getText()!=“AUTO”) && (lbl_Stabilization.getText()!=“ON)

in the method that displays a new tilt angle. If P can be violated by some of sequence

allowed by the input script, then JPF reports the violation and demonstrates it by dis-

playing a trace expressed in terms of the elements described in the script. Assertions

are also very useful to check that an entered numerical value is within a specific

range, e.g., checking that a title angle value is indeed between 0
o
 and 360

o
. Assertions

are also convenient for expressing some simple safety (in layman’s term, asserting

that nothing bad happens) properties. However using assertions requires instrument-

ing the code of the application, which is not always desirable.

The third step consists of running JPF and waiting for its report. If the property is

verified, JPF returns some statistics about the analysis time and the number of states

and threads explored by the analysis. If the property can be violated by the applica-

tion, JPF returns a counter-example showing a possible violation sequence. This

counter-example is produced as a trace of events corresponding to the events used in

the script, thus facilitating the understanding of the counter-example by the developer;

displaying a trace as a full Java execution trace would be overwhelming to the devel-

oper and would be hard to relate to the application.

4 Related work

Paterno and Santoro [20] proposed an approach based on formal model-checking

(with CADP3 toolset) of LOTOS specifications of dialogue between the user and the

system. Another set of approaches are based on the formal verification of state charts.

Campos and Harrison [5] proposed an approach based on SMV [15] model-checking

of Interactor specifications. Kamel and Ait Ameur [13] also propose an approach to

verify properties for multimodal interactions with SMV model checker. Combéfis et

al. [7] propose to translate state chart models into Java programs which can then be

verified using Java PathFinder model checker. All of these approaches based on state

chart models of interactive application behavior do not provide support for complete

and non-ambiguous description of concurrent events driven applications (such as

multimodal interactive systems). Furthermore, they do not provide support for simul-

taneous execution of the application prototype from the models, as actually provided

3 http://cadp.inria.fr/

by Petshop. Approaches based on the executability of models provide augmented

support for describing the conceptual model of the system and for analysis and verifi-

cation at earlier stage in the process [10]. This kind of approaches provides support

for describing exhaustively interactive systems and their behavior, as well as proto-

typing, testing and verifying synchronously certain types of properties. APEX-CPN

Tools [22] is a framework based on colored Petri nets [22], which provides support

for rapid prototyping of ubiquitous environments and a predefined set of algorithms

for properties verification. However the underlying notation of this framework is less

expressive than the ICO one.

5 Conclusion and future work

We presented an approach for supporting validation and verification of interactive

applications throughout the whole development process. This approach relies on the

synergistic use of Petshop tool for producing formal specification of the application

and of JPF tool for formal verification of the developed application. This framework

provides support for validation and verification of internal and external properties of

an interactive application. Petshop tool is used to produce formal specifications of

complex interactive critical applications. JPF tool is then used to verify that the final

application built from the specification meets the properties requirements.

The presented work will be followed by an investigation on how to verify proper-

ties on ICO models. As they are the formal specification of the interactive application

and they are also used as the source code of the application prototype, they could be

used as the deployed interactive application itself. Future work is to investigate to

which extent JPF tool can be used to directly perform model-checking on ICO run-

ning models.

6 References

1. ARINC 661 specification: Cockpit Display System Interfaces To User Systems, Prepared

by AEEC, Published by AERONAUTICAL RADIO, INC, April 22, 2002.

2. Bass, L., John, B., Juristo Juzgado, N., Sánchez Segura, M.I. Usability-Supporting Archi-

tectural Patterns, ICSE 2004: 716-717.

3. Bastide, R., Navarre, D., Palanque, P. A Tool-Supported Design Framework for Safety

Critical Interactive Systems in Interacting with computers, Elsevier, Vol. 15/3, pp. 309-

328, 2003.

4. Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry, M.,

Pasareanu, C., Venet, A., Washington, R. and Visser, W. Experimental Evaluation of Veri-

fication and Validation Tools on Martian Rover Software. Journal on Formal Methods in

Systems Design. Volume 25, Number 2-3, September 2004.

5. Campos J.C., Harrison M.D. Model Checking Interactor Specifications. In Journal of Au-

tomated Software Engineering, vol.8, issue 3-4, August 2001, pp. 275-310.

6. Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). "Automatic verification of finite-

state concurrent systems using temporal logic specifications". ACM Transactions on Pro-

gramming Languages and Systems 8 (2): 244–263.

7. Combéfis, S., Giannakopoulou, D., Pecheur, C., Feary, M. A Formal Framework for De-

sign and Analysis of Human-Machine Interaction. Proceedings of IEEE System, Man and

Cybernetics (SMC), Anchorage, USA, 2011, pp. 1801-1808.

8. Dix, A. Upside down As and algorithms – computational formalisms and theory. J. Carroll

(Ed.), HCI Models Theories and Frameworks: Toward a Multidisciplinary Science, Mor-

gan Kaufmann, San Francisco (2003), pp. 381–429 (Chapter 14).

9. Gram, C., Cockton, G. Design principles for Interactive Software. London. 1996. Chap-

man & Hall.

10. Fuchs, N.E. Specifications are (preferably) executable. Journal on Software Engineering,

vol. 7, issue 5, September 1992, pp. 323-334.

11. Hewelt M., Wagner T., Cabac L. Integrating verification into the PAOSE approach. Pro-

ceedings of the Petri Nets and Software Engineering. International Workshop PNSE'11,

Newcastle upon Tyne, UK, June 2011, pp. 124-135.

12. Jensen, K., Kristensen, L.M., and Wells, L. Coloured Petri Nets and CPN Tools for model-

ling and validation of concurrent systems. International Journal on Software Tools for

Technology Transfer 9, 3-4 (2007), 213-254.

13. Kamel, N., Ait Ameur, Y. A Formal Model for CARE Usability Properties Verification in

Multimodal HCI. In proceeding of IEEE International Conference on Pervasive Services,

July 15-20, 2007, Istanbul, Turkey, pp. 341-348.

14. Mascheroni M., Wagner T., Wüstenberg L. Verifying reference nets by means of hyper-

nets: A plugin for Renew. Proceedings of the International Workshop on Petri Nets and

Software Engineering, PNSE'10, Braga, Portugal, pages 39-54.

15. McMillan, K. L. Symbolic Model Checking, 1993, Kluwer Academic Publishers.

16. Navarre, D., Palanque, P., Ladry, J-F, Barboni, E. ICOs: a Model-Based User Interface

Description Technique dedicated to Interactive Systems Addressing Usability, Reliability

and Scalability. In: Transactions on Computer-Human Interaction, ACM SIGCHI, Vol. 16

N. 4, p. 1-56, 2009.

17. Palanque P., Bastide R. Verification of an Interactive Software by analysis of its formal

specification. Proceedings of the IFIP TC13 Interact'95 Conference, Lillehammer, Nor-

way, 27-29 June 1995, pp. 191-197.

18. Palanque P., Farenc C., Bastide. R. Embedding Ergonomic Rules as Generic Requirements

in a Formal Development Process of Interactive Software. In proceedings of IFIP TC 13

Interact 99 conference, Edinburg, Scotland, 1-4 September 1999.

19. Palanque P., Ladry J-F, Navarre D., Barboni E. High-Fidelity Prototyping of Interactive

Systems Can Be Formal Too. Proceedings of the International Conference on Human

Computer Interaction, HCI 2009, pp. 667-676.

20. Paternó, F., Santoro, C. Integrating model checking and HCI tools to help designers verify

user interface properties. Palanque and Paternó (eds), DSV-IS 2000 Interactive Systems:

Design, Specification and Verification. LNCS 1946, Springer 2001, pp. 135–150.

21. Pnueli, The temporal logic of programs, Proceedings of the 18th IEEE Symposium on

Foundation of Computer Science, 1977, 46-57.

22. Silva, J.L., Campos, J.C., and Harrison, M.D. Formal Analysis of Ubiquitous Computing

Environments through the APEX Framework. EICS ’12: Proceedings of the 4th ACM

SIGCHI symposium on Engineering Interactive Computing Systems, pp. 131-140.

23. Visser, W., Havelund, K., Brat, G., and Park, S. 2000. Model Checking Programs. In Pro-

ceedings of the 15th IEEE international conference on Automated Software Engineering

(ASE '00). IEEE Computer Society, Washington, DC, USA.

24. Peter C. Mehlitz, Oksana Tkachuk, Mateusz Ujma: JPF-AWT: Model checking GUI ap-

plications. ASE 2011: 584-587.

http://www.informatik.uni-trier.de/~ley/pers/hd/l/Ladry:Jean=Fran=ccedil=ois.html
http://www.informatik.uni-trier.de/~ley/pers/hd/n/Navarre:David.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Barboni:Eric.html
http://www.informatik.uni-trier.de/~ley/db/conf/hci/hci2009-1.html#PalanqueLNB09
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tkachuk:Oksana.html
http://www.informatik.uni-trier.de/~ley/pers/hd/u/Ujma:Mateusz.html
http://www.informatik.uni-trier.de/~ley/db/conf/kbse/ase2011.html#MehlitzTU11

