iPAS: AES Flight System Technology Maturation for Human Spaceflight

Bill Othon
NASA/Johnson Space Center

13th International Conference on Space Operations, 5-9 May 2014, Pasadena, CA
Technology Maturation for Human Spaceflight

- NASA Goal: Human Exploration Beyond Earth Orbit
- NASA Strategy: Mature Technologies for future missions
- Key Elements to this strategy
 - Capabilities-Driven: find and mature the right tech
 - Mission-Context: ensure right tech meets NASA goals
 - Mission-Agnostic: adjust to NASA strategies
Advanced Exploration Systems (AES) Program

- Rapidly developing prototype systems
- Demonstrating key capabilities
- Validating operational concepts
Elements of Technology Maturation

• **System Integration: Project, Engineering, Operations**
 - Evaluate Technologies in the context of product creation and delivery

• **Technology risk buy-down through Testing**
 - Apply new technologies to meaningful tests within a mission context

• **Parallel Development with ad-hoc Integration**
 - Projects can develop independently within controlled area
 - Develop an environment to allow easy multi-project integration

• **Applying new SE&I approaches**
 - Consider new methodologies and tools
 - Apply within a test context that creates product
Integrated Power, Avionics, and Software (iPAS)

• Environment to mature and demonstrate technologies

• Three elements of iPAS
 ▪ The Iron Bird: Mission Systems (Vehicle, Operations)
 – Support the development of a common avionics, hardware, software, and operations architecture that can be applied over various missions
 ▪ The Iron Nest: Testbed Systems
 – Provide a common testbed framework that supports integrated hardware/software testing for a variety of applications
 ▪ The Process: Improving SE&I techniques and assessments
Integrated Power, Avionics, and Software (iPAS)

- Environment to mature and demonstrate technologies
- Three elements of iPAS
 - Support the development of a common avionics, hardware, software, and operations architecture that can be applied over various missions
 - The Iron Nest: Testbed Systems
 - Provide a common testbed framework that supports integrated hardware/software testing for a variety of applications
 - The Process: Improving SE&I techniques and assessments
iPAS Testbay: The Nest

• **Location that accommodates hardware/software integration**
 - Early in the project lifecycle
 - Leveraging off existing capabilities

• **Provide shared services (reduced development and V&V)**
 - Test Orchestration
 - Modeling and Simulation
 - Configuration Control of data
 - Security and integrity issues

• **Access to hardware analogs**
 - Power, propulsion, crew displays

• **Data Integration Networks**
 - Within the lab
 - To other JSC labs
 - To other Centers
iPAS Vehicle – Iron Bird

- Hardware and software products
 - Engineering Units, and eventually flight units as well
 - System Analogs (battery emulators, cold gas jets)

- Current Components
 - Hardware: AAE
 - Processors, Networks, Comm
 - Power, Propulsion, Crew Life Support
 - Software: CFS
 - Framework-independent algorithms
 - GN&C, Vehicle Health, Comm, Crew Displays
 - Core Flight Software (CFS) product line

- Integration with Operations
 - Ground Systems: Launch Control
 - Mission Operations
 - Communication Infrastructure
iPAS Floorplan: Multiple, Parallel Development Teams

- Test Day #1: ARM
- Test Day #2: Orion
- Test Day #3: WayPT

- iPAS
 - Mini-Dome
 - AMPS
 - EAM

- Power Distribution
- Manufacturing (EFMF)
- Building 29 Rotunda

- Flight Deck (2nd Floor)
- Water Lab

- UPCs
 - iPAS TOC (ITOC)
 - iPAS Server Room
Design, Development, Test, and Evaluation (DDTE)
Design, Development, Test, and Evaluation (DDTE)

Federated Labs

iPAS

Federated Labs
Co-located Technology Maturation

Avionics
- Processors
- Networks
- Wireless
- Comm

Core Flight SW
- Framework
- Apps Store
- GNC Apps
- Hardware Apps

Adv Modular Pwr
- Power Systems
- Integration with avionics in DSH

Delay Tolerant Net
- Mission eval
- DTN on Radio
- DTN on Computer

Habitat
- Avionics
- Crew Displays
- Vehicle Health
Inter-Center Test Network: Engage Remote Facilities

B16 – GNC/Dome
• Star Tracker
• Star Field
• Cockpits
• Dome

B30 – Mission Ops
• MCC emulator
• SNRF interface
• Telemetry and commanding

B44 – Comm
• Channel simulator
• TDRSS
• Comm architecture

B7- ECLSS
• Chambers
• PLS lab

B361 - Power
• Interface to power systems
Multi-Center Integration

- **Ames**
 - Autonomous Mission Ops
 - Information Architecture

- **Glenn**
 - AMPS

- **Langley**
 - Avionics
 - Engineering observation during test

- **JPL - PTL**
 - Deep Space Network
 - Delay Tolerant Network

- **Goddard**
 - Core Flight Software
 - Interface Standards

- **JSC - MCC**
 - Telemetry and Comm with Mission Ops

- **KSC - LCC**
 - Launch Control emulator
 - On-pad Vehicle Communication
Federation of Labs: Integrated, Distributed Testing

iPAS

Kedalion

ESTA

OTF/MC C

ESTL

ECLSS

Flight System

Vehicle Development

Mature Technologies, Wherever They Are
Flight Deck of the Future (F.F)

• Develop Technology for Human/System Interfaces

• Goals
 ▪ Develop and mature next-generation human interfaces
 ▪ Infuse HSI methodology earlier in the design process
 ▪ Support technical communication across disciplines (integration)
 ▪ Create partnerships with Industry and Academia

• Critical element of iPAS
 ▪ Tie human systems with flight-like avionics
 ▪ Evaluate within a mission context
 ▪ Look at failure modes and responses
AES Technology Maturation for Human Spaceflight

- 2011: Asteroid Visitation Mission
- 2012: L2 Waypoint Mission
- 2013: Asteroid Redirect Mission
Asteroid Visitation Mission

- **Mission:** Demonstrate a Crewed Mission to Asteroid
 - *Meaningful, organizing vision for integration*
 - But consider the products and integration independent of mission
 - Be prepared to apply capabilities to different missions

- **May 2011: Authority to Proceed**

- **Organized the Pathfinder team**
 - Engineering, Operations, Centers

- **Developed 4 Month Sprint**
 - Identify elements in hand (McGyver)
 - Incrementally add hardware and software
 - Show integrated test
Whiteboard Project Formulation
Model Based System Engineering (MBSE)
Model Based System Engineering (MBSE)
Mission Context: Develop Concept of Operations
First Integrated Test: September 2011

- Successfully delivered system by end of September
- Presented results to JSC Engineering Directorate
 - Included products of several AES Projects, integrated together
- Received a NASA Group Achievement Award
Second Test: L2 Waypoint Mission

• **Apply iPAS capabilities to a new mission (Reuse)**
 - CFS, C&DH, simulation, operations interfaces

• **Add new capabilities to support test (Expand)**
 - Orion FSW, solar array emulator, software radio, ECLSS
 - New technologies: In Space Manufacturing, Plume impingement
Orion AR&D with Vehicle at Earth/Moon L2

Rendezvous in L2 Halo Orbit

Proximity Operations

Dock
AR&D Trajectory

NOTE: IPAS scenario duration is 45 min.

- The initial approach rate is 2.5 m/s which is 1.8 minutes total time before T1 (173.2 m) which has a 30 deg elevation edge angle. This rate is comparable to the 1.4 cm conic trajectory rate in 1/6G (5.4 m/s).
- The transfer time to docking port is 13.2 min. Distance traveled is about 1750 m. Approach speed 2.2 m/s.
- Following the node at 30 m from the docking port, Orbin then approaches to dock at a rate of 0.05 m/s and docks in the Waypoint at 0.3 minutes after.
MPCV AR&D with vehicle at L2
Test Architecture
Third Test: Asteroid Return Mission

- Apply tools and software to Asteroid Return Mission
- Added: Orion EM1 Absolute Navigation
- Leveraged off existing CFS and other infrastructure
- Capability applied to support early trades
 - Stack attitude control
 - Docking dynamics
New Methods for System Engineering and Integration

- Model Based Engineering
 - Analysis tools that support design and development

- Model Based System Engineering
 - Environment that supports analysis of multi-discipline integration

- Model Application
 - Requirements and sizing: Mission Planning
 - Design and Development: Describe systems
 - Analysis: Generate inputs files for analysis tools
 - Test: Generate test procedures for iPAS
 - Operations: Deliver product to crew/operators

Get Management Buy-In to New Ways of Doing Business
iPAS Power System in MultiSim

Solar Array

Battery

Avionics Interface

HPDU

LPDU 1

LPDU 2

Thrusters

Flight PCS

To_LPDU1

120 V 0.1 Ω Solar Array Sim

120 V 0.1 Ω Battery Sim

0.233 VV Converter1_120_to_28_VDC

Avionics Interface
Same Model in SysML

Solar Array

Battery

Avionics Interface

HPDU

LPDU 1

LPDU 2

Thrusters

Flight PCS

MultiSim Input File
Test Demonstration in iPAS

Expected Results

<table>
<thead>
<tr>
<th>Channel</th>
<th>State</th>
<th>Voltage</th>
<th>Value</th>
<th>Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>Off</td>
<td>VK1</td>
<td>120</td>
<td>IK1</td>
<td>0</td>
</tr>
<tr>
<td>K2</td>
<td>On</td>
<td>VK2</td>
<td>120</td>
<td>IK2</td>
<td>0</td>
</tr>
<tr>
<td>K3</td>
<td>Off</td>
<td>VK3</td>
<td>0</td>
<td>IK3</td>
<td>0</td>
</tr>
<tr>
<td>K4</td>
<td>On</td>
<td>VK4</td>
<td>120</td>
<td>IK4</td>
<td>0</td>
</tr>
<tr>
<td>K5</td>
<td>Off</td>
<td>VK5</td>
<td>0</td>
<td>IK5</td>
<td>0</td>
</tr>
<tr>
<td>K6</td>
<td>Off</td>
<td>VK6</td>
<td>0</td>
<td>IK6</td>
<td>0</td>
</tr>
<tr>
<td>Vbus</td>
<td></td>
<td>VBUS</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modeled Results

Actual Results
Establish iterative loop between Models and Products