The prompt-afterglow connection in Gamma-Ray Bursts: a comprehensive statistical analysis of Swift X-ray light-curves

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA02138
2 INAF Osservatorio Astronomico di Brera, via Bianchi 46, Merate 23807, Italy
3 University of Padova, Physics & Astronomy Dept. Galileo Galilei via Marzolo, 8 - I-35131 Padova
4 Università Milano Bicocca, Dip. Fisica G. Occhialini, P.zza della Scienza 3, Milano 20126, Italy
5 Dipartimento di Fisica, Università di Ferrara, via Saragat 1, I-44122 Ferrara, Italy
6 NASA-Goddard Space Flight Center, Greenbelt, MD, USA
7 Department of Astronomy & Astrophysics, University of Pennsylvania, Philadelphia, PA, USA
8 ASI Science Data Center, via G. Galilei, 00044 Frascati, Italy
9 X-ray and Observational Astronomy Group, Department of Physics & Astronomy, University of Leicester, LE1 7RH, UK
10 INAF-IASF Palermo, Via Ugo La Malfa 153, Palermo, Italy
11 Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA

ABSTRACT
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of “memory” of the prompt γ-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt γ-ray energy to the prompt spectral peak energy of both long and short GRBs:

\[E_{X,iso} \propto E_{\gamma,iso}^{1.00 \pm 0.06} / E_{pk}^{0.60 \pm 0.10} \]

Key words: gamma-ray: bursts – radiation mechanism: non-thermal –X-rays

1 INTRODUCTION
In 7 years of operation, Swift (Gehrels et al. 2004) has revolutionized our understanding of the X-ray emission that follows the prompt γ-ray phase of Gamma-Ray Bursts (GRBs); the X-ray afterglow. The standard afterglow theory (Meszaros & Rees 1997; Sari et al. 1998) predicts that X-ray emission arises from the interaction of a relativistic outflow with the ambient medium, leading to the formation of a blast wave. In this context, short and long GRBs would naturally show similar afterglows (since the emission would be sensitive to the energy budget of the rela-
tivistic outflow but otherwise keep no memory of the origin of the outflow) if the properties of the environment of the two classes are also similar. This is difficult to reconcile with the massive star (long GRBs, e.g. Woosley 1993) vs. compact binary (short GRBs see e.g. Paczynski 1986) progenitor systems, which would instead suggest a wind density profile (i.e. $\propto r^{-2}$) around long GRBs and an ISM (i.e. $\propto r^0$) ambient density for short bursts. Contrary to expectations, observations are often consistent with a constant density environment (ISM) also in the case of long GRBs (e.g. Racusin et al. 2009). Moreover, the standard afterglow theory fails to explain the presence of long (e.g. $\gtrsim 10^4$ s) phases characterized by very mild decays (the so-called plateaus or shallow decay phases) in the X-ray light-curve of many GRBs (e.g. GRB060729, Grupe et al. 2007); it cannot account for abrupt drops of emission observed in some GRBs (e.g. GRB070110, Troja et al. 2007, Lyons et al. 2010) and has serious difficulties explaining the X-ray flares (Chincarini et al. 2007, Falcone et al. 2007; Chincarini et al. 2010 and references therein).

As a result, a number of alternative models have been proposed. They basically divide into two classes: accretion onto a newly born black hole which directly powers the observed X-ray flares (Chincarini et al. 2007, Falcone et al. 2007; Chincarini et al. 2010 and references therein).

With this work we improve our understanding of the X-ray emission of long and short GRBs through a homogeneous analysis of a sample of more than 650 GRBs observed by Swift-XRT (Burrows et al. 2005). We ask: what is the typical amount of energy released during the different X-ray light-curve phases? Does the X-ray emission retain any kind of “memory” of the prompt γ-ray phase? GRBs are traditionally classified into long and short according to their prompt γ-ray properties: do short GRBs show a distinct behaviour in the X-rays as well? Is it possible to find a universal (i.e. common to long and short GRBs) scaling that involves prompt and X-ray properties? This set of still open questions constitutes the major reason to undertake the present investigation.

Previous attempts mainly concentrated on observer frame properties and tried to understand to what extent the observations could be reconciled with the standard forward shock model (e.g. O’Brien et al. 2006; Butler 2007; Butler & Kocevski 2007; Willingale et al. 2007; Liang et al. 2007, 2008; Evans et al. 2009; Racusin et al. 2009, 2011). This effort led to the identification of serious difficulties of the standard picture. We build on previous results and adopt here a different approach: instead of comparing observations with a particular physical model, we take advantage of the large sample size and look for correlations between the X-ray and γ-ray properties of GRBs any physical model will have to explain. We complement previous studies with:

i. Homogeneous analysis of GRBs in a common rest frame energy band (0.3-30 keV).

ii. Statistics and properties of the temporal variability superimposed on the smooth X-ray decay.

iii. Comparative study of long vs. short GRB X-ray afterglows.

iv. Study of the prompt γ-ray vs. X-ray connection: notably, we report on the existence of a universal scaling involving prompt and X-ray parameters.

Hereafter, we will refer to the X-ray signal recorded by Swift-XRT after a GRB trigger as “X-ray light-curve” (LC) and explicitly do not use the word “afterglow” to avoid confusion (“afterglow” refers to the standard interpretation). Uncertainties are given at 68% confidence level (c.l.) unless explicitly mentioned. Standard cosmological quantities have been adopted: $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.7$, $\Omega_{\Lambda} = 0.3$. The results from our analysis are publicly available.1

2 DATA ANALYSIS

We select GRBs observed by Swift-XRT from the beginning of science operations in December 2004 through the end of 2010. The starting sample includes 658 GRBs; 36 belong to the class of short GRBs. Following Margutti et al. (2011), the short or long nature of each event is established using the combined information from the duration, hardness and spectral lag of its prompt γ-ray emission: a prompt γ-ray duration $T_{90} \lesssim 2$ s coupled to a hard γ-ray emission with photon index $\Gamma \lesssim 1.5$ and a negligible spectral lag are considered indicative of a short GRB nature.

For each GRB, the data reduction comprises four steps:

- Extraction of count-rate light-curves (LC hereafter) in the 0.3-10 keV energy band.
- Time-resolved spectral analysis.
- Flux calibration in the observer frame 0.3-10 keV energy band and luminosity calibration in the rest-frame 0.3-30 keV energy range for the sub-sample of GRBs with known redshift.
- LC fitting.

The Swift-XRT data have been analyzed using the latest version of the HEASoft package available at the time of the analysis (v. 6.10). For each GRB we started from calibrated event lists and sky images as distributed by the HEASARC archive.2 The following analysis made extensive use of the XRTDAS software package. The additional automated processing was performed via custom IDL scripts. Details on the procedure followed can be found in Margutti (2009).3

(i) While agreeing on the major steps, the data extraction adopted here is slightly different from the methods presented in Evans et al. (2007) and Evans et al. (2009); however, after comparing every single LC obtained with the two techniques, we find that the methods lead to consistent results.

(ii) Our flux and luminosity LC calibration is based on a time-resolved spectral analysis which is able to capture the spectral evolution of the source with time. Uncertainties arising from the spectral analysis have also been propagated into the final flux and luminosity LCs (this is essential to compute the significance of positive temporal fluctuations superimposed on the smoothly decaying LC, see Sec. 2.1).

1 A demo version of the website is currently available at http://www.grbdata.org/xrt/demo/GRB060312Afterglow.html

2 http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/swift.pl

3 Retrieve from http://hdl.handle.net/10281/7465
(iii) The intrinsic neutral hydrogen absorbing column \(N_\text{HG}\) of each GRB was computed extracting a spectrum in the widest interval of time with no apparent spectral evolution. The best-fitting \(N_\text{HG}\) was used as frozen parameter in the time-resolved spectral analysis above. The Galactic contribution was frozen to the value in the direction of the burst as computed by Kalberla et al. (2005).

Since we corrected for the Galactic and intrinsic absorption, the final results are unabsorbed 0.3-10 keV (observer frame) flux LCs. For the sub-sample of GRBs with known redshift we furthermore extracted unabsorbed luminosity LCs in the 0.3-30 keV (rest-frame) energy band (extrapolating the best-fitting power-law spectrum). We conservatively use only \(z\) derived from optical spectroscopy and photometric redshifts for which potential sources of degeneracy (e.g., dust extinction) can be ruled out with high confidence. The complete list of redshifts used is reported in Table B1 (175 GRBs in our sample have redshift).

2.1 Light-curve fitting

The X-ray LCs of GRBs for \(t \geq 60\) s consist of smoothly decaying power-laws or broken power-laws with X-ray flares superimposed. Here we concentrate on the underlying smooth component.

We considered only GRBs whose statistics were good enough to allow us to extract a spectrum to convert their count-rate LCs into flux LCs (total of 437 GRBs out of 658). We first fitted the entire sample of flux LCs in the 0.3-10 keV (observer frame) energy band. We then focussed on the sub-sample of GRBs with redshift and performed a second fit using the LCs in the common 0.3-30 keV (rest-frame).

Our semi-automatic fitting routine is based on the \(\chi^2\) statistic and closely follows the procedure outlined in Margutti et al. (2011a). We fit the following models. Defining:

\[
f(N_1, \alpha_1, t) \equiv N_1 t^{-\alpha_1}
\]

(where \(N_1\) and \(\alpha_1\) are the normalization and the slope of the power-law, respectively) and

\[
g(N_2, \alpha_2, \alpha_3, t_b, s, t) \equiv N_2 \left(\left(\frac{t}{t_b} \right)^{-\alpha_2} + \left(\frac{t}{t_b} \right)^{-\alpha_3} \right)^s
\]

(where \(N_2\) is the normalization, \(\alpha_2\) and \(\alpha_3\) are the slopes

Figure 1. Cartoon showing the different LC models used in this work. Both axes use logarithmic units.

Figure 2. 0.3-10 keV unabsorbed flux LC of GRB060312 with best-fitting model superimposed (blue solid line). The red crosses mark the data points identified as “excesses” during the semi-automatic fitting routine and subsequently removed from the fit to obtain the best-fitting power-law plus broken power-law model. Vertical dashed lines: best estimates of the break times obtained as described in the main text.

Table 1. Number of GRBs per LC type. For each type, the number of GRBs with complete LCs (C-GRBs, defined as promptly repointed GRBs \(t_{\text{rep}} < 300\) s whose fading was followed up down to a factor \(\sim 5-10\) from the background limit) and with detected positive fluctuations (F-GRBs) with respect to the best-fitting smooth decay is also reported. GRBs are classified as either C or U-like, and either F or N-like. U-like bursts have truncated LCs, while N-like GRBs show no evidence for flares. This classification refers to the 0.3-10 keV (observer frame) LCs.
of the broken power-law; t_b is the break time while s is the
smoothing parameter), the fitting models can be written as:

- Simple power-law (model 0):

$$F = f(N_1, \alpha_1, t)$$

- Smoothed broken power-law (model Ia and Ib for $s < 0$
and $s > 0$, respectively):

$$F = g(N_1, \alpha_1, \alpha_2, t_{b1}, s_1, t)$$

- Smoothed broken power-law plus initial (model IIa)
power-law decay:

$$F = f(N_1, \alpha_1, t) + g(N_2, \alpha_2, \alpha_3, t_{b2}, s_1, t)$$

or final (model IIb) power-law decay:

$$F = g(N_1, \alpha_1, \alpha_2, t_{b1}, s_1, t) + f(N_2, \alpha_3, t)$$

- Double smoothly joined broken power-laws (model III):

$$F = g(N_1, \alpha_1, \alpha_2, t_{b1}, s_1, t) + g(N_2, \alpha_3, \alpha_4, t_{b2}, s_2, t)$$

The model number follows from the number of break times.
For model Ia (IIb, III) the first (second) component
outshines the first (second) component. Figure 1 illustrates
the different models, while Fig. 2 shows the result for
GRB 060312 taken as an example: in this case the semi-
automatic procedure identified two episodes of emission
in excess of the smooth decay (model Ia). The number of
GRBs for each LC type are listed in Table 1. We refer to
the LCs as “type” 0, Ib, Ia, IIa, IIb and type III GRBs in
the following.

The best-fitting parameters together with their
uncertainties and associated covariance matrix were then used to
derive the 0.3-10 keV (observer-frame) fluence of the entire
LC, from the Swift-XRT re-pointing time to the end of
the observation. No temporal extrapolation was applied at this
stage. Note that the contribution from significant positive
fluctuations has not been included. The fluence of the dif-
terent LC phases as defined by the temporal breaks was also
calculated (Fig. 1). Results are listed in Table B1 and Table B3
(0.3-10 keV, observer frame) and Table B5 (0.3-30 keV, rest
frame). For simplicity, in the following we will use the word
“flare” to refer to statistically significant positive fluctuations
detected on top of the smoothly decaying component,
behaving aware that different kinds of variability possibly
contribute to the detected “flaring activity”.

3 Long vs. Short GRBs Properties

The analysis above reduces the X-ray LC of GRBs to a set
of measured parameters: temporal slopes; break times; to-
tal isotropic energy (fluence) and energy (fluence) associated
with the different LC phases; flare energy (fluence); spectral
photon index temporal evolution; intrinsic neutral hydrogen
absorption. This constitutes an unprecedented set of infor-
mation homogeneously obtained on the largest sample of
GRBs to date and represents the natural sample to look for
correlations among the parameters.

While we report the best-fitting parameters of the en-
tire sample (Tables B1-B5), in the following we restrict our
analysis to GRBs with “complete” LCs, defined as those
GRBs re-pointed by XRT at $t_{\text{rep}} < 300$ s and for which we
were able to follow the fading of the XRT flux down to a
factor $\sim 5 - 10$ from the background limit (or, equivalently,
$t_{\text{end}} \gtrsim 4 \times 10^5$ s). These GRBs are flagged as “C” in Tables
B1-B5. The number of “C”-like GRBs per LC morphologi-
cal type is reported in Table 1. “U”-like GRBs have instead
tuncated LCs. Short GRBs with complete LCs are listed in
Table 3. Short GRBs with extended emission are in boldface
(see Norris et al. 2011).

3.1 Median X-ray light-curve of long and short
GRBs

We select the sub-sample of C-like LCs of GRBs with
redshift observed in the common rest-frame time interval
$10^2 - 10^5$ s and $10^2 - 10^4$ s for long and short GRBs, respec-
tively. These criteria resulted in a sample of 79 long GRBs
and 9 short GRBs (Fig. 3). We consider here 0.3-30 keV
(rest-frame) luminosity LCs.

We combined the best-fitting profiles of Sec. 2.1 to pro-
duce a median luminosity LC of a long GRB. The result is
shown in Fig. 3: the median luminosity LC roughly decays
as $\sim t^{-1}$ (with a milder decay $\sim t^{-0.9}$ for $0.5 < t < 4$ ks
and a steeper $\sim t^{-1.2}$ decay after ~ 4 ks). With the possible

<table>
<thead>
<tr>
<th>Short GRBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>050724 051221A 051227 060513 061006 061201 070714B 070724A 070809 071227 080123 080503 080919 090510 090515 090607 100117A 100816A 101219A</td>
</tr>
</tbody>
</table>

Table 2. List of 19 short GRBs with complete LCs. GRBs with
detected temporally extended emission are in boldface (Norris et al. 2011).
exception of the shallower section, this is in rough agreement with the prediction of the standard afterglow theory\(^4\) (Meszaros & Rees 1997; Sari et al. 1998).

The decay of the median LC is steeper for short (\(\propto t^{-1.3}\)) than for long GRBs (\(\propto t^{-1}\)) in the rest-frame time interval \(10^2 - 10^4\) s; short GRB X-ray LCs are on average less luminous by a factor \(\sim 10 - 30\) than long GRBs X-ray LCs. This conclusion holds also concerning long GRBs in the same redshift bin. However, Fig. 3 clearly shows that the two samples slightly overlap (see also Gehrels et al. 2008). The steeper decay that characterizes short GRBs causes a progressive shift of their luminosity distribution towards the low end of the long GRB distribution.

3.2 Energetics of long and short GRBs

Table 3 reports the analysis of the parameter distributions derived from the LC fitting of Sect. 2. A complete list of symbols can be found in Appendix A. The observed \(E_{\text{X,iso}}\) distribution peaks at \(\sim 7 \times 10^{51}\) erg, typically representing \(\sim 7\%\) of the \(1 - 10^4\) keV (rest-frame) \(E_{\text{iso}}\). Figure 4 shows that we are not sensitive to the population of bursts with \(E_{\text{X,iso}} < 10^{51}\) erg for \(z > 2\) (so that the low energy tail of the \(E_{\text{X,iso}}\) distribution is currently under-sampled).

This is likely a non-detectability zone, consequence of the \(E_{\text{X,iso}} \propto E_{\text{iso}}^{0.8}\) of Sec. 4. For \(z > 1\) there is no evidence for an evolution of the upper bound of \(E_{\text{X,iso}}\) with redshift, which may suggest that \(\sim 10^{53}\) erg is a physical boundary to the \(E_{\text{X,iso}}\) distribution (the record holder is GRB 080721 with \(E_{\text{X,iso}} \sim 10^{53}\) erg). In this respect we note that maximum budget \(E_{\text{max}} \sim 10^{52}\) erg\(^5\) is predicted by magnetar models (Usov 1992). The same pattern is followed by the flare energy \(E_{\text{X}}^{\text{Fl}}\): for \(z > 2\) we are not sensitive to \(E_{\text{X}}^{\text{Fl}} < 10^{50}\) erg.

Observations suggest that the GRB X-ray LCs consist of two distinct phases (see e.g. Willingale et al. 2007): a first steep decay phase tightly connected to the prompt \(\gamma\)-ray emission (Tagliaferri et al. 2005; Goad et al. 2006); and a second phase characterized by a flattening of the LC (with limited evidence for spectral evolution, see e.g. Liang et al. 2007) followed by a “normal decay” phase. Type IIa GRBs (Fig. 1) clearly show the presence of both components, with energy \(E_{1,X} = E_1\) and \(E_{2,X} = E_2 + E_3\), respectively; for type Ia LCs, the lack of spectral evolution and the typically mild slope \(\alpha_1\) resembling \(\alpha_2\) of type IIa lead us to identify \(E_{2,X} = E_1 + E_2\); type Ib GRBs show strong spectral evolution during the first LC segment: this together with the transition to a milder decay at \(t_{b,1}\) lead us to define \(E_{1,X} = E_1\) and \(E_{2,X} = E_2\); in type Iib LCs the spectral and temporal properties of the first segment (with slope \(\alpha_1\)) strongly suggest that \textit{Swift}-XRT caught the end of the prompt emission in the X-rays: we therefore define \(E_{1,X} = E_1 + E_2\) and \(E_{2,X} = E_3\); the same is true for type III GRBs: in this case we define \(E_{1,X} = E_1 + E_2\) and \(E_{2,X} = E_3 + E_4\). The two phases release comparable energy (see Table 3), with \(E_{1,X}\) and \(E_{2,X}\) peaking at \(\sim 1.1 \times 10^{51}\) erg and \(\sim 4 \times 10^{51}\) erg, respectively.

In each distribution, short GRBs populate the low energy tail: \(E_{\text{X,iso}}^{\text{short}} \sim 10^{50}\) erg, which is approximately 2 orders of magnitude less than a typical long GRB. Figure 4 also shows that short GRBs are less energetic than long GRBs in the same redshift bin. A systematic difference between the -still poorly constrained- jet opening angles of long and short GRBs, with short GRBs being less collimated than long GRBs, could in principle mitigate this energy gap. If we compare the energy released during the two phases separately (i.e. early steep decline vs. plateau plus subsequent decay), we find an indication that short GRBs are more energetically deficient during the second phase then in the first phase, i.e. \(E_{\text{X,2}}^{\text{short}} / E_{\text{X,2}}^{\text{long}} \sim 0.014\) and \(E_{\text{X,3}}^{\text{short}} / E_{\text{X,3}}^{\text{long}} \sim 0.054\).
Table 3

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>m</th>
<th>M</th>
<th>SD</th>
<th>SK</th>
<th>μ</th>
<th>σ</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(S)</td>
<td>386</td>
<td>0.17</td>
<td>0.18</td>
<td>0.61</td>
<td>-0.07</td>
<td>0.17</td>
<td>0.05</td>
<td>105.1</td>
</tr>
<tr>
<td>Log(T)</td>
<td>334</td>
<td>1.58</td>
<td>1.73</td>
<td>0.65</td>
<td>-1.18</td>
<td>1.67</td>
<td>0.07</td>
<td>93.9</td>
</tr>
<tr>
<td>Log(E)</td>
<td>151</td>
<td>2.06</td>
<td>2.37</td>
<td>0.93</td>
<td>-1.12</td>
<td>2.26</td>
<td>0.14</td>
<td>91.6</td>
</tr>
<tr>
<td>Log(α)</td>
<td>78</td>
<td>2.88</td>
<td>3.01</td>
<td>0.91</td>
<td>-0.89</td>
<td>3.01</td>
<td>0.14</td>
<td>38.9</td>
</tr>
<tr>
<td>Log(E)</td>
<td>78</td>
<td>2.64</td>
<td>2.71</td>
<td>0.52</td>
<td>-0.76</td>
<td>2.56</td>
<td>0.1</td>
<td>47.0</td>
</tr>
<tr>
<td>Log(L)</td>
<td>85</td>
<td>2.43</td>
<td>2.51</td>
<td>1.00</td>
<td>-1.90</td>
<td>2.51</td>
<td>0.19</td>
<td>61.0</td>
</tr>
<tr>
<td>Log(T)</td>
<td>138</td>
<td>1.18</td>
<td>1.33</td>
<td>0.59</td>
<td>-0.65</td>
<td>1.26</td>
<td>0.11</td>
<td>53.8</td>
</tr>
<tr>
<td>Log(N)</td>
<td>161</td>
<td>21.6</td>
<td>21.8</td>
<td>1.21</td>
<td>-3.54</td>
<td>21.9</td>
<td>0.1</td>
<td>42.5</td>
</tr>
<tr>
<td>Log(S)</td>
<td>316</td>
<td>-0.38</td>
<td>-0.42</td>
<td>0.62</td>
<td>0.23</td>
<td>-0.46</td>
<td>0.05</td>
<td>68.6</td>
</tr>
<tr>
<td>Log(S)</td>
<td>115</td>
<td>-0.81</td>
<td>-0.37</td>
<td>0.76</td>
<td>-0.38</td>
<td>-0.76</td>
<td>0.12</td>
<td>51.3</td>
</tr>
<tr>
<td>Log(S)</td>
<td>211</td>
<td>-0.90</td>
<td>-0.92</td>
<td>0.80</td>
<td>0.12</td>
<td>-0.89</td>
<td>0.10</td>
<td>97.2</td>
</tr>
<tr>
<td>Log(S)</td>
<td>55</td>
<td>-0.58</td>
<td>-0.61</td>
<td>0.63</td>
<td>0.14</td>
<td>-0.57</td>
<td>0.07</td>
<td>102.2</td>
</tr>
<tr>
<td>Log(S)</td>
<td>62</td>
<td>-0.75</td>
<td>-0.69</td>
<td>0.73</td>
<td>-0.38</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(S)</td>
<td>71</td>
<td>-1.08</td>
<td>-0.98</td>
<td>0.90</td>
<td>0.03</td>
<td>-1.08</td>
<td>0.17</td>
<td>36.7</td>
</tr>
<tr>
<td>Log(E)</td>
<td>126</td>
<td>1.67</td>
<td>1.84</td>
<td>0.81</td>
<td>-0.67</td>
<td>1.82</td>
<td>0.08</td>
<td>88.1</td>
</tr>
<tr>
<td>Log(E)</td>
<td>59</td>
<td>1.25</td>
<td>1.40</td>
<td>0.97</td>
<td>-0.64</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(E)</td>
<td>86</td>
<td>1.00</td>
<td>1.04</td>
<td>0.92</td>
<td>-0.28</td>
<td>1.10</td>
<td>0.11</td>
<td>40.7</td>
</tr>
<tr>
<td>Log(E)</td>
<td>126</td>
<td>1.45</td>
<td>1.63</td>
<td>0.92</td>
<td>-0.94</td>
<td>1.63</td>
<td>0.11</td>
<td>63.2</td>
</tr>
<tr>
<td>Log(E)</td>
<td>35</td>
<td>1.13</td>
<td>1.38</td>
<td>1.00</td>
<td>-0.78</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(E)</td>
<td>38</td>
<td>1.04</td>
<td>1.14</td>
<td>0.98</td>
<td>0.01</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(t)</td>
<td>155</td>
<td>2.66</td>
<td>2.56</td>
<td>0.48</td>
<td>1.06</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(t)</td>
<td>155</td>
<td>3.94</td>
<td>3.93</td>
<td>0.73</td>
<td>0.19</td>
<td>3.93</td>
<td>0.14</td>
<td>59.2</td>
</tr>
<tr>
<td>Log(F)</td>
<td>155</td>
<td>-4.23</td>
<td>-4.26</td>
<td>0.83</td>
<td>-0.14</td>
<td>-4.18</td>
<td>0.11</td>
<td>61.1</td>
</tr>
<tr>
<td>Log(F)</td>
<td>155</td>
<td>-5.01</td>
<td>-4.94</td>
<td>0.80</td>
<td>-0.12</td>
<td>-4.99</td>
<td>0.11</td>
<td>63.4</td>
</tr>
<tr>
<td>Log(F)</td>
<td>62</td>
<td>2.13</td>
<td>2.03</td>
<td>0.62</td>
<td>1.27</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(F)</td>
<td>62</td>
<td>3.58</td>
<td>3.48</td>
<td>0.74</td>
<td>0.29</td>
<td>3.53</td>
<td>0.11</td>
<td>23.0</td>
</tr>
<tr>
<td>Log(L)</td>
<td>62</td>
<td>0.54</td>
<td>0.73</td>
<td>1.25</td>
<td>-1.07</td>
<td>0.79</td>
<td>0.19</td>
<td>46.6</td>
</tr>
<tr>
<td>Log(L)</td>
<td>62</td>
<td>-0.47</td>
<td>-0.19</td>
<td>1.19</td>
<td>-1.19</td>
<td>0.04</td>
<td>0.33</td>
<td>38.2</td>
</tr>
</tbody>
</table>

α_{st} | 213 | 3.96 | 3.56 | 2.34 | - | 3.95 | 0.51 | 238.0 | 35.0 |

α_{sh} | 155 | -0.16 | 0.18 | 1.23 | -4.06 | 0.27 | 0.14 | 61.0 | 13.0 |

α_{n} | 204 | 1.59 | 1.38 | 1.04 | - | 8.30 | 1.34 | 0.13 | 93.0 | 19.0 |

This argues against a beaming related explanation, since the jet opening angles of long and short GRBs are expected to be more similar at late than at early times. Short GRB light-curves decay faster than long GRBs in the X-rays, typically resulting in shorter observations ($t_{\text{end}} \sim 10^4$ s vs. $t_{\text{end}} \sim 10^5$ rest-frame): however, using the average $L \propto t^{-1.3}$ scaling above, we find $E_{X,2}^{\text{short}}(t < 10^4$ s) $\sim E_{X,2}^{\text{short}}(t < 10^5$ s). Thus the relatively lower measured energy of the later LC phase in short GRBs compared to long GRBs is not due to the shorter observations.

3.3 Intrinsic neutral hydrogen absorption in long and short GRBs

The distribution of the intrinsic neutral hydrogen columns NH_{HG} is portrayed in Fig. 5, panel (c). The distribution of measured NH_{HG} is found to have an average value\(^6\) $m = 10^{21.6}$ cm\(^{-2}\). When modeled with a lognormal distribution, the best fitting mean and standard deviation are: $\mu = 21.9 \pm 0.1$, $\sigma = 0.6 \pm 0.1$, in agreement with the estimates by Campana et al. (2010, 2012) obtained on smaller samples. However, differently from Campana et al. (2010): (i) our sample contains a larger number of GRBs for which no evidence for intrinsic absorption was found (upper limits in Fig. 5); (ii) we find evidence for a larger population of highly absorbed ($NH_{HG} > 10^{22}$ cm\(^{-2}\)) GRBs at low redshift ($z < 2$).

A trend for increasing NH_{HG} with redshift is apparent in Fig. 5, panel (a): however, our sensitivity to small amounts of intrinsic absorption decreases with increasing redshift due to the fixed XRT band-pass, which explains the higher percentage of upper limits in the 4 to 6 redshift interval, and is at least partially responsible for the observed trend. The sample is furthermore redshift selected, which implies a bias against highly extinguished GRBs. The severity of this bias is possibly redshift dependent, with a dependence which is difficult to quantify.

Short GRBs map the low end of the NH_{HG} distribution,
with an average absorption $\text{NH}_{\text{HG}}^{\text{short}} = 10^{21.4} \text{ cm}^{-2}$ (mean of the logarithm of $\text{NH}_{\text{HG}}^{\text{short}}$). Their properties are however consistent with the intrinsic absorption of long GRBs in the same redshift bin. A KS-test comparing the NH$_{HG}$ distribution of long and short GRBs with $0 < z < 1$ reveals that there is no evidence for long GRBs to show higher NH$_{HG}$ when compared to short GRBs in the same redshift bin (KS probability of 34%). A possibility is that we missed the population of long GRBs with even higher NH$_{HG}$ at low z (see above). This would imply that GRBs with low optical extinction but high NH$_{HG}$ are typical of the high-redshift universe, only (Watson & Jakobsson 2012). We conclude that using the available data, caution must be therefore used to interpret the long GRB NH$_{HG}$ distribution as a proof of their association to star formation (Campana et al. 2010) unless this association is meant to be extended to short GRBs as well.

4 PARAMETER CORRELATIONS

Here we proceed to look for 2-parameter correlations involving both X-ray and γ-ray properties. From a blind analysis we found 199 statistically significant correlations (out of 946). We focus on the physically interesting, correlations. The significance of each correlation is estimated using the R-index r, the Spearman rank ρ and Kendall coefficient K (Table 4). Only correlations for which the chance probability associated with at least one of the test statistics is $< 10^{-3}$ have been listed. As a general note:

- No significant correlation is found to involve the rest frame T_{90}, the intrinsic NH$_{HG}$ or the LC temporal slopes;
- We re-scaled the LC temporal breaks t_0 by the T_{90}, adding new parameters to our list: $y \equiv t_0/T_{90}$. However, the use of re-scaled properties did not improve any of our correlations and are therefore not included in the following discussion.

The correlation coefficients and the best-fitting power-law parameters of each correlation are listed in Table 4. Our best-fitting procedure accounts for the sample variance (D’Agostini 2005).

4.0.1 The link between the X-ray and prompt γ-ray energy

Fig. 6, (left panel) shows that $E_{X,\text{iso}}$ is directly linked to the isotropic energy released in γ-rays during the prompt emission $E_{\gamma,\text{iso}}$. A similar result was found by Willingale et al. (2007) on a smaller sample of GRBs. Here we show for the first time how short GRBs compare to long GRBs: notably, all short GRBs but GRB050724 are outliers of the long GRB relation, with $E_{X,\text{iso}}$ for short GRBs a factor ~ 50 below that for long GRBs and having large dispersion (the $E_{X,\text{iso}}$ distributions are almost distinct for long and short GRBs, as shown in Fig. 4). A clear exception is GRB050724 (Barthelmy et al. 2005; Grupe et al. 2006) which had a bright and long-lived X-ray afterglow with a powerful late time re-brightening (Bernardini et al. 2011; Campana et al. 2006; Malesani et al. 2007). This difference may be understood in terms of a different radiative efficiency η_γ, where $\eta_\gamma \equiv E_\gamma/(E_\gamma + E_K)$, being E_K the outflow kinetic energy during the prompt emission between short GRBs and XRFs (X-ray Flashes, i.e. GRBs with $E_{\gamma,\text{iso}} \lesssim 10^{52} \text{ erg}$ in Fig. 6): in this picture, $\eta_\gamma^{\text{short}} > \eta_\gamma^{\text{XRF}}$. The two populations are clearly distinct in terms of spectral peak energy during the prompt phase, with $E_{pk,\text{short}} > E_{pk,\text{XRF}}$ (Fig. 6). This may suggest that η_γ anti-correlates with E_{pk}; this is further investigated in Sec. 4.1.2.

Short and long GRBs occupy different areas of the $E_{X,\text{iso}}$ vs. E_{pk} plane (Fig. 6, upper right panel) as well, demonstrating how the information from the X-ray LCs can be used to infer the GRB nature. Again, short GRBs fall below the long GRBs.

4.0.2 The X-ray plateau and the prompt γ-ray phase in long and short GRBs

In the literature, the shallow decay (or “plateau”) is associated with an LC phase generally characterized by a mild slope (and absence of spectral evolution in the X-rays; Liang et al. 2007): this can be identified in type IIA and type III light-curves. In type IIA (III) GRBs, this phase starts at $t_i \equiv t_{b1}$ ($t_i \equiv t_{b2}$) and ends at $t_i \equiv t_{b2}$ ($t_i \equiv t_{b3}$), with temporal slope α_2 (α_3) and energy E_2 (E_3). Short GRBs are under-represented in the class of GRBs showing clear evidence of plateaus in the X-rays. Only 2 short GRBs (out of 19 with C-like LCs, 10%) possibly have plateaus: GRB051221A ($T_{90} = 1.4 \text{ s}$) and GRB070714B ($T_{90} = 3 \text{ s}$). 36 was the number of short GRBs in our starting sample; only 19 of these have C-like LCs.

Figure 5. Left panel: (a): Intrinsic neutral hydrogen absorption vs. redshift for long and short GRBs (grey and red dots, respectively). 90% upper limits are marked with arrows. Median NH$_{HG}$ values in different redshift bins are indicated with filled triangles: for each bin, the error bars span the 1σ NH$_{HG}$ dispersion. (b): redshift distribution of the sample of long (yellow) and short (red) GRBs. (c): Intrinsic neutral hydrogen distribution for long (black line) and short (red line) GRBs. The dashed histogram includes upper limits. In panels (b) and (c) a dashed line indicates the median value for the entire distributions ($\langle z \rangle = 1.82$, $\langle \text{NH}_{HG} \rangle = 10^{21.8} \text{ cm}^{-2}$).
The luminosity at the end of the plateau phase L_t is directly related to the total energy released in the second LC phase $E_{2,X}$ (Table 4): $E_{2,X} \propto L_t^{0.52}$. It is interesting to note that of the two short GRBs, 070714B is a clear outlier, while 051221A is only barely consistent with the correlation. The peculiar GRB 060218 also shows a lower than expected $E_{2,X}$.

Dainotti et al. (2008) first reported a correlation between L_t and t_{RF}^p for long GRBs. Here we confirm the correlation (with best-fitting $L_t \propto (t_{RF}^p)^{-1.2}$ Fig. 7) and show that the two short GRBs with clear evidence of plateau are not consistent with the same scaling.

4.0.3 The link between the X-ray luminosity and the prompt γ-ray energy release

The X-ray luminosity of the LC, $L_X(t_{RF}^p)$, correlates with the γ-ray energy released during the prompt emission for any t_{RF}^p between 100 s and 10^3 s. Here we arbitrarily select two rest-frame times (Fig. 8) as an example. We find that the scatter of the correlation evolves with time, with the $L_X(t_{RF}^p)$ vs. $E_{\gamma,iso}$ being tighter at early times (see Fig. 8). For this plot we require the GRBs to have been observed at those rest-frame times but relax the LC completeness requirement. No extrapolation of the observed LC is performed.

At early times the LC luminosity tracks $E_{\gamma,iso}$ with limited dispersion around the best-fitting model $L_X^{10\text{min}} \propto E_{\gamma,iso}^{0.9}$. Short GRBs tend to lie below the best-fitting law of...
Figure 6. Correlations involving $E_{\gamma,\text{iso}}$ (1–104 keV, rest-frame), $E_{X,\text{iso}}$ (0.3–30 keV, rest-frame) and the rest-frame prompt peak energy E_{pk}. Black dots (red triangles): long (short) GRBs. Dashed line: best-fitting power-law model for the entire short plus long GRBs sample. Dotted line: best-fitting model for the long GRB class, only. The coloured and hatched areas mark the 68% confidence region around the best fit. Short GRBs and outliers are named.

Figure 8. 0.3–30 keV (rest-frame) X-ray LC luminosity measured at 10 minutes (left panel) and 11hr (right panel) rest-frame vs. $E_{\gamma,\text{iso}}$. Colour coding as in Fig. 6. The scatter of the correlation increases with time.

Figure 7. Luminosity at the end of the plateau phase, 0.3–30 keV (rest-frame) vs. end-time of the plateau. Colour coding as in Fig. 6. Blue points are for type Ia LCs.

are more directly linked to the prompt γ-ray phase at early than at late times; (ii) while the relation is highly scattered, we note that all short GRBs of our sample lie below the long GRB relation: this is consistent with the steeper decay of the average short GRBs LC when compared to the long GRBs LC found in Sec 3.1. Our analysis therefore does not confirm the previous results from Nysewander et al. (2009), who found that short and long GRBs are consistent with the same L_X vs. $E_{\gamma,\text{iso}}$ scaling (note however that their $E_{\gamma,\text{iso}}$ is computed in a much narrower energy band).

4.0.4 Observational biases: temporal extrapolation

The Swift re-pointing time t_{rep} and end time of the observations t_{end} vary from GRB to GRB. Since $E_{X,\text{iso}}$ is obtained by integrating the luminosity of each LC between t_{rep} and t_{end}, one may wonder what is the effect of using different integration times for different GRBs. This is quantified as follows. To estimate the amount of energy lost at the end of the observations, we extrapolated the best-fitting profile of each GRB up to 107 s (rest frame) and integrated the LC luminosity up until that time. Since GRBs may experience a jet break at late times (Racusin et al. 2009), this compu-
tation may lead to an overestimate of the real energy lost. The amount of energy possibly lost at the beginning of the observations is estimated by conservatively extrapolating backwards in time the best-fitting profile to the minimum rest-frame time for the integration to avoid extrapolating the luminosity to unrealistic values. This approach leads to an overestimate of the amount of energy lost before $t_{\text{re-point}}$ for the large majority of GRBs, as can be seen comparing the extrapolated temporal profile we are adopting here to the Swift–BAT emission at the same rest-frame time (see e.g., the Swift Burst Alert System BAT plus XRT LCs of GRB 050724, Evans et al. 2010). The corrected $E_{\text{X,iso}}$ is shown in Fig. 9 (light blue points). Larger corrections (up to a factor~~ 9 for GRB 090510) are found to be applied to short GRBs. In spite of the very conservative approach we find that short GRBs are still either barely compatible or not consistent with the long GRB relation (as before), while the long GRBs relation is almost unaffected by this correction.

We therefore conclude that in a logarithmic space the different rest-frame integration time used does not create or destroy correlations. The $E_{\text{X,iso}}$ vs. $E_{\gamma,\text{iso}}$ correlation has been used here as an example: this result applies to all the relations presented in this paper.

4.1 Multiparameter correlations

We look here for correlations involving more than 2 parameters (either from the X-rays or from the γ-rays). We first discuss the results from a Principal Component Analysis (PCA, Sect. 4.1.1) and then show the existence of a tight 3-parameter correlation directly linking $E_{\text{X,iso}}$, $E_{\gamma,\text{iso}}$ and E_{pk} both in long and short GRBs (Sect. 4.1.2).

Table 5. The three most significant PCs (85% of the total variance) projected upon $E_{\gamma,\text{iso}}$, E_{pk}, L_{pk}, T_{90}^{RF} and $E_{\text{X,iso}}$.

<table>
<thead>
<tr>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>66%</td>
<td>85%</td>
</tr>
</tbody>
</table>

$$
\begin{align*}
E_{\gamma,\text{iso}} &= -0.561 \pm 0.141 \\
E_{\text{pk}} &= -0.448 \pm 0.300 \\
L_{\text{pk}} &= -0.502 \pm 0.389 \\
T_{90}^{\text{RF}} &= -0.121 \pm 0.794 \\
E_{\text{X,iso}} &= -0.466 \pm 0.331
\end{align*}
$$

4.1.1 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical technique designed to find patterns in data: it uses orthogonal transformations to convert a set of possibly correlated variables into linearly uncorrelated (orthogonal) variables. Given a set of N events (GRBs in our case) described by M parameters, the PCA consists of the diagonalization of the covariance matrix: the eigenvectors found are called principal components (PCs), while the eigenvalues consist of the variance associated with each PC (see Jolliffe 2002, for details). We performed a standardized PCA as recommended when the parameters have widely different variances: each parameter P is replaced by $P = (\log|P| - \log|\bar{P}|)/\sigma_{\log|P|}$. In this case the matrix to be diagonalized is not a covariance, but a correlation matrix. Calculations were performed using the statistical package R.

In Sect. 4 we showed that $E_{\text{X,iso}}$ is the X-ray parameter that still keeps information from the prompt γ-ray energy release. We now investigate its relation to other prompt parameters, specifically E_{pk}, L_{pk}, T_{90}^{RF} (and $E_{\gamma,\text{iso}}$), using the PCA. This set of parameters is measured simultaneously in 44 GRBs. Table 5 reports the three most significant PCs (86% of the total variance) projected upon the original 5 variables. Each variable roughly contributes with comparable weight to the first PC; the second PC is instead dominated by T_{90}^{RF}. The third PC relates $E_{\text{X,iso}}$ with E_{pk}. This result suggests that, while E_{pk}, L_{pk}, $E_{\text{X,iso}}$ and $E_{\gamma,\text{iso}}$ are in some way physically related to one another (see Sect. 4.1.2), the duration of the γ-ray energy release represents an additional degree of freedom to the system.

4.1.2 A GRB universal scaling: $E_{\text{X,iso}}$, $E_{\gamma,\text{iso}}$ and E_{pk}

We look for a 3-parameter correlation involving $E_{\text{X,iso}}$, $E_{\gamma,\text{iso}}$, and E_{pk}. The three variables are found to be correlated (see Fig. 10) with the following best fitting law (obtained following the method by D’Agostini 2005):

$$
E_{\text{X,iso}} = 10^{0.58\pm0.25} \left[\frac{E_{\gamma,\text{iso}}^{1.0\pm0.06}}{10^{48.6\pm1.07} E_{\text{pk}}} \right] ^{0.98\pm0.25}
$$

where $E_{\text{X,iso}}$, $E_{\gamma,\text{iso}}$, and E_{pk} are in units of ergs and keV, respectively. The intrinsic scatter is $\sigma_{E_{\text{X,iso}}} = 0.30 \pm 0.03$ (1σ). We note that:

- This relation expands on the well known $E_{\text{pk}} - E_{\gamma,\text{iso}}$ relationship.

8 Note that the sample of C-like GRBs we use to look for correlations was pre-selected requiring an observed time of re-pointing $t_{\text{obs}} < 300$ s to minimize this effect.

9 http://www.r-project.org/
(Amati et al. 2008 and references therein) relation with the introduction of a third parameter ($E_{\gamma,iso}$).

- It combines information from the prompt and from the X-ray energy release which follows the prompt. While short GRBs are clear outliers of the $E_{\gamma,iso}$ - $E_{\gamma,iso}$ relation, they perfectly fit into the $E_{\gamma,iso}$ - $E_{\gamma,iso}$ - E_{pk} relation: the importance of the 3-parameter relation is that it combines short and long GRBs on a common scaling. As a result, considering the entire short plus long GRB sample, the scatter is reduced by the introduction of the third variable (the intrinsic scatter of the Amati relation of our sample of long and short GRBs is $\sigma_{E_{pk}} = 0.37$ to be compared to the intrinsic scatter of the 3-parameter relation on E_{pk} which is $\sigma_{E_{pk}} = 0.29$).

Restricting our analysis to long GRBs, we find $\sigma_{E_{pk}} = 0.17$ both for the E_{pk} - $E_{\gamma,iso}$ and for the 3-parameter correlation.

- Short GRBs (like GRB051221A) and sub-energetic GRBs (like GRB060218) occupy the same region of the E_{pk} - $E_{\gamma,iso}$ - $E_{\gamma,iso}$ space. The same is true for the peculiar long GRB 060614, later re-classified as a possible short GRB (Gehrels et al. 2006). In general, GRBs seem to divide into two groups with “normal” long GRBs occupying the upper-right area; short and peculiar GRBs together with XRFs (e.g. 050416A, 060218, 081007, 060614 also have a spectral peak energy below 60 keV) share the same lower-left region of the plot.

- The best-fitting slope of the $E_{X,iso}$ vs. $E_{\gamma,iso}$ relation of Fig. 6 reads: $m = 0.79 \pm 0.01$ (see Table 4). The significant departure of m from 1 implies the more energetic long GRBs to have a lower $\epsilon \equiv E_{X,iso}/E_{\gamma,iso} \propto 1/E_{\gamma,iso}$, with short GRBs being outliers of this relation. Interestingly, equation 8 implies: $\epsilon \propto \frac{1}{E_{pk}}$, suggesting that the key parameter determining the γ-ray to X-ray ratio is not $E_{\gamma,iso}$ but the spectral peak energy E_{pk} irrespective of the nature of the GRB (either long or short). This is clear from the inset of Fig. 10: the higher the prompt peak energy the lower the ϵ (the GRB with $E_{pk} \sim 10^4$ keV is GRB090510). We refer to Zhang et al. (2007) for a discussion of GRB radiative efficiencies derived from X-ray data.

- The $\epsilon(E_{pk})$ scaling above can be interpreted as a physical dependence of the radiative efficiency η_{γ} on E_{pk}: $\eta_{\gamma} \equiv E_{\gamma}/(E_{\gamma} + K) \approx E_{\gamma}/E_K \propto \epsilon_{pk}$ as long as $E_{\gamma} < E_K$. This would imply $\eta_{\gamma} \propto E_{pk}^{0.6}$. See Fan et al. (2012) for a discussion of this finding in the context of GRB photospheric models. Alternatively, a similar scaling could result for the long population if long GRBs with lower isotropic $E_{\gamma,iso}$ are less beamed than high energy GRBs during the prompt emission, but show otherwise similar beaming during the subsequent X-ray phase. In the first case, the $\epsilon(E_{pk})$ scaling would give direct information about the dissipative processes behind GRBs; in the second case, it would be an observational effect, that nevertheless would provide valuable information about GRB jets and their opening angles. A complete and detailed discussion is beyond the scope of the present work and is provided by a companion paper (B12).

- In Sec. 4.0.4 we showed that the different time intervals over which $E_{X,iso}$ has been estimated do not severely affect the $E_{\gamma,iso}$ - $E_{\gamma,iso}$ - E_{pk}.

5 SUMMARY AND CONCLUSIONS

We performed a comprehensive statistical analysis of Swift X-ray light-curves of 658 GRBs detected by XRT in the time period end of December 2004- end of December 2010. For the first time we present and analyse: (i) the properties of GRBs in a common rest-frame 0.3-30 keV energy band; (ii) we furthermore perform a comparative study of long and short GRBs; (iv) we cross-correlate the prompt γ-ray...
properties and the X-ray LCs properties. We report below a summary of the major findings.

From the spectral analysis of GRBs with redshift (Sec. 3.3):

1. We find evidence for high intrinsic neutral hydrogen absorption NH_{HG} \geq 10^{22} \text{ cm}^{-2} even at \ z \ \lesssim 2. The average value for long GRBs is NH_{HG} \sim 10^{21.9} \text{ cm}^{-2} (mean value of the logarithm of the NH_{HG}).

2. Short GRBs map the low end of the distribution with mean NH_{HG} \sim 10^{21.4} \text{ cm}^{-2}. However, there is no evidence for short GRBs to show a lower NH_{HG} when compared to long GRBs in the same redshift bin.

The analysis of 297 long GRBs with complete X-ray light-curves10 reveals that:

3. The average energy released in X-rays (0.3-30 keV, rest-frame) is E_{X, iso} \sim 7 \times 10^{51} \text{ erg} typically representing \sim 7\% of E_{\gamma, iso} (Sec. 3.2). The two quantities are statistically correlated: E_{X, iso} \propto E_{\gamma, iso}^{0.8}. Also: E_{X, iso} \propto E_{pk} (Sec. 4.0.1).

4. The E_{X, iso} distribution does not extend beyond 10^{53} \text{ erg} (Sec. 3.2) possibly suggesting the existence of a maximum available energy budget (the record holder is GRB080721 with E_{X, iso} \sim 10^{53} \text{ erg}). Also, for \ z > 2 we are not sensitive to the population of GRBs with E_{X, iso} < 10^{53} \text{ erg}, so that the low-energy tail of the E_{X, iso} distribution is currently under-sampled.

5. The X-ray luminosity of the LCs at any rest frame time between 100 s and 10^5 s is found to correlate with E_{\gamma, iso} (Sec 4.0.3): the scatter of this correlation increases with time which might suggest that early time X-rays are more tightly related to the prompt phase.

In the case of short GRBs (19 have C-like LCs):

6. The median luminosity light-curve of short GRBs (Sec. 3.1) is a factor \sim 10-30 dimmer than long GRBs in the rest-frame time interval 10^{-2} - 10^8 s, has a steeper average decay (\propto t^{-1.3} vs. \propto t^{-1}) and shows no evidence for clustering at late times (contrary to long GRBs).

7. Short GRBs populate the low-energy tail of the E_{X, iso} distribution, with E_{X, iso} \sim 10^{50} \text{ erg} (Sec. 3.2). Short GRBs are more energy deficient during the second LC phase when compared to long GRBs.

8. Short bursts are clear outliers of the E_{X, iso} - E_{\gamma, iso} and E_{X, iso} - E_{pk} relations established by the long population, with E_{X, iso} \sim 10^{50} \text{ erg} (Sec. 3.2). Short GRBs are also found to lie below the L_{\text{1 hr}} vs. E_{\gamma, iso} relation established by the long class.

9. Short GRBs are under-represented in the class of GRBs showing clear evidence of plateaus in the X-rays. Only 2 GRBs out of 19 possibly have plateaus (10\%). The corresponding percentage for long GRBs is instead \sim 37\%. While the limited sample size does not allow us to draw firm conclusions, we note that X-ray plateaus are more commonly detected in long GRBs (Sec. 4.0.2).

10. The two short GRBs with X-ray LC plateaus in our sample are outliers of the L_{\text{1 hr}} vs. t_{\text{rise}} relation (Sec. 4.0.2).

Irrespective of the long or short GRB nature, we find no statistically significant correlation involving the rest frame prompt duration T_{90}^{RF}, the intrinsic column density NH_{HG} or the temporal slopes of the X-ray LCs (Sec. 4). The T_{90}^{RF} basically accounts for the second strongest Principal Component (Sec. 4.1.1), suggesting that while E_{pk}, L_{pk}, E_{X, iso} and E_{\gamma, iso} are related to one another, the \gamma-ray duration represents an additional degree of freedom to the system.

We showed in Sec. 4.1.2 the existence of a 3-parameter correlation that links E_{X, iso}, E_{\gamma, iso}, E_{\gamma, iso} \propto (E_{\gamma, iso}/E_{pk})^{0.6}:

(i) Short and long GRBs share the same scaling.

(ii) This correlation implies \propto E_{pk} which can be interpreted as \eta_{\gamma} \propto E_{pk}^{0.6} (where \eta_{\gamma} is the radiative efficiency).

(iii) Standard long GRBs and short GRBs (together with peculiar GRBs and XRFs) occupy a different region of the E_{X, iso} - E_{\gamma, iso} - E_{pk} plane.

The results from our analysis are publicly available.11

REFERENCES

Campana S. et al., 2006, A&A, 454, 113

Gehrels N. et al., 2006, Nature, 444, 1044

10 The total number of C-like GRBs is 316 (Table 1). 19 are short GRBs.

11 A demo version of the website is currently available at http://www.grbtac.org/xrt_demo/GRB060312Afterglow.html
The prompt afterglow connection in Gamma-Ray Burst

Tagliaferri G. et al., 2005, Nature, 436, 985
Usov V. V., 1992, Nature, 357, 472

ACKNOWLEDGMENTS
RM thanks Lorenzo Amati and Lara Nava for sharing their data before publication. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. MGB thanks ASI grant SWIFT I/004/11/0. PAE, KLP and JPO acknowledge financial support from the UK Space Agency. PR acknowledges financial contribution from the agreement ASI-INAF I/009/10/0.

APPENDIX A: GLOSSARY
This section provides the list of symbols used. As a general note: X-ray energies (fluences) were computed from the time of the Swift-XRT repointing up until the end of the observation; no temporal extrapolation was performed. The values reported assume isotropic emission. X-ray fluences and fluxes are reported in the 0.3-10 keV (observer-frame) energy band; energies, luminosities and intrinsic time scales are computed in the 0.3-30 keV (rest-frame) band.

- α_{n}: temporal slope of the normal decay phase. Type Ia: $\alpha_{n} = \alpha_{2}$; type IIa: $\alpha_{n} = \alpha_{3}$; type III: $\alpha_{n} = \alpha_{4}$.
- α_{st}: temporal slope of the steep decay phase. Type Ib and IIa: $\alpha_{st} = \alpha_{1}$; type IIb and III: $\alpha_{st} = \alpha_{2}$ (see Fig. 1).
- The zero-time of the power-law decay is assumed to be the BAT trigger time (i.e. $t_0 = 0$).
- α_{sp}: temporal slope of the steep decay phase assuming $t_0 = T_{90}$.
- α_{sh}: temporal slope of the shallow decay (or plateau) phase. This corresponds to α_{2} and α_{3} for type IIa and type III light-curves, respectively.
- Γ_{s}: XRT 0.3-10 keV (observer frame) spectral photon index from this paper.
- $E_{\nu, iso}$: isotropic equivalent energy released during the prompt emission in the rest-frame $1-10^{4}$ keV energy band from Amati et al. (2008).
- E_{pk}: rest-frame peak energy of the νF_{ν} spectrum during the prompt γ-ray emission from Amati et al. (2008).
- $F_{X} (L_{1})$: flux (luminosity) at the end of the plateau (i.e. at $t = t_f$).
- $F_{X} (L_{i})$: flux (luminosity) at the beginning of the plateau (i.e. at $t = t_i$).
- $L_{pk, iso}$: $1 - 10^{4}$ keV (rest frame) isotropic peak luminosity during the prompt emission from Nava et al. (2008).
- L_{11}^{iso}: luminosity at 11 hours rest-frame.
- L_{10}^{min}: luminosity at 10 min rest-frame.
- NHI$_{tot}$: total neutral hydrogen column density.
- NHI$_{IG}$: intrinsic neutral hydrogen column density at the redshift of the GRB.
- $S_{1, X} (E_{1, X})$: fluence (energy) released during the first phase of the X-ray light-curve. Type Ib and IIa: $E_{1, X} = E_{1}$; type Ib and III: $E_{1, X} = E_{1} + E_{2}$. Fluences follow the same definition scheme. E_{1}, E_{2}, E_{3} and E_{4} has been defined following Fig. 1.
- $S_{2, X} (E_{2, X})$: fluence (energy) released during the second phase of the X-ray light-curve. Type Ia: $E_{2, X} = E_{1} + E_{2}$; type Ib: $E_{2, X} = E_{2}$; type IIa: $E_{2, X} = E_{2} + E_{3}$; type Ib: $E_{2, X} = E_{3}$; type III: $E_{2, X} = E_{2} + E_{4}$ (see Fig. 1). Same definition scheme for fluences.
- $S_{5} (E_{5}^{RF, 15-150})$: 15-150 keV (observer frame) fluence (energy) released during the prompt emission as calculated by Sakamoto et al. (2011).
- $S_{X} (E_{X, iso})$: X-ray fluence (energy).
- $S_{X}^{FL} (E_{X}^{FL})$: X-ray fluence (energy) associated to flares. For each GRB, the total fluence (energy) released in X-rays reads $S_{X}^{FL} + S_{X} (E_{X, iso}^{FL} + E_{X, iso})$.
- $S_{X}^{FL} (E_{X}^{FL})$: X-ray fluence (energy) of flares superimposed on the first and second light-curve phase.
- t_{i}, t_{f}^{RF}, t_{i}^{T90}: end time of the plateau phase: observer frame, rest frame and in T_{90} units. This parameter corresponds to t_{62} and t_{63} for type Ia and type III light-curve, respectively.
- t_{b}: plateau duration defined as $t_{i} - t_{f}$.
- T_{90}, T_{90}^{RF}: duration of the 15-150 keV prompt emission from Sakamoto et al. (2011), in the observer and in the rest-frame, respectively.
this is not the case, the GRB is flagged as U-like (i.e. GRB with truncated LC). The flag F (N) indicates that flares have (have not) been

<table>
<thead>
<tr>
<th>GRB</th>
<th>Type</th>
<th>z</th>
<th>α_1</th>
<th>σ_{α_1}</th>
<th>α_2</th>
<th>σ_{α_2}</th>
<th>α_3</th>
<th>σ_{α_3}</th>
<th>α_4</th>
<th>σ_{α_4}</th>
<th>Log(t$_{90}$)</th>
<th>Log(t$_{90}$)</th>
<th>Log(t$_{90}$)</th>
<th>Log(t$_{90}$)</th>
<th>χ^2</th>
<th>d.o.f.</th>
<th>p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>041223</td>
<td>0UN</td>
<td>0</td>
<td>1.91</td>
<td>0.44</td>
<td>-9</td>
<td>8.39</td>
<td>25</td>
<td>0.999</td>
</tr>
<tr>
<td>050124</td>
<td>0UN</td>
<td>0</td>
<td>1.44</td>
<td>0.17</td>
<td>-9</td>
<td>3.54</td>
<td>10</td>
<td>0.966</td>
</tr>
<tr>
<td>050126</td>
<td>ICN</td>
<td>1.29</td>
<td>2.5</td>
<td>0.51</td>
<td>0.862</td>
<td>0.25</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>2.72</td>
<td>0.4</td>
<td>-9</td>
<td>-9</td>
<td>3.69</td>
<td>3.1</td>
<td>-9</td>
</tr>
<tr>
<td>050128</td>
<td>IUN</td>
<td>0</td>
<td>0.758</td>
<td>0.12</td>
<td>1.38</td>
<td>0.14</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>0.38</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>050219A</td>
<td>ICN</td>
<td>0</td>
<td>3.68</td>
<td>0.36</td>
<td>0.779</td>
<td>0.11</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>2.4</td>
<td>0.054</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>050219B</td>
<td>0UN</td>
<td>0</td>
<td>1.42</td>
<td>0.044</td>
<td>-9</td>
</tr>
<tr>
<td>050315</td>
<td>HCN</td>
<td>1.95</td>
<td>-0.295</td>
<td>0.18</td>
<td>0.819</td>
<td>0.037</td>
<td>3.83</td>
<td>0.18</td>
<td>-9</td>
<td>-9</td>
<td>2.71</td>
<td>0</td>
<td>3.82</td>
<td>0.14</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
</tbody>
</table>

Table B3. 0.3-10 keV (observer-frame) fluence table. From left to right: GRB name, LC type (as defined in Sec. 2.1), redshift, initial (T_{min}) and final (T_{max}) time of the observations, total fluence ($S_{\text{X,iso}}$) with error, fluence of the different LC phases (S_1, S_2, S_3, S_4) and errors, fluence of the flares in different parts of the LC (S_{FL}, S_{F2L}, S_{F3L}, S_{F4L}) and errors. Fluences are given in erg cm$^{-2}$. A redshift equal to 0 indicates that no reliable estimate of this parameter is available from the literature. A “−9” indicates that the LC does not show such phase and the value of that parameter is therefore absent. Finally, for the columns containing information from flares superimposed on the decay, 0 indicates that no statistically significant positive fluctuation has been detected. This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance.

<table>
<thead>
<tr>
<th>GRB</th>
<th>Type</th>
<th>z</th>
<th>Log(T_{min})</th>
<th>Log(T_{max})</th>
<th>$S_{\text{X,iso}}$</th>
<th>S_{FL}</th>
<th>S_{F2L}</th>
<th>S_{F3L}</th>
<th>S_{F4L}</th>
<th>$S_{\text{X,iso}}$</th>
<th>S_{FL}</th>
<th>S_{F2L}</th>
<th>S_{F3L}</th>
<th>S_{F4L}</th>
<th>$S_{\text{X,iso}}$</th>
<th>S_{FL}</th>
<th>S_{F2L}</th>
<th>S_{F3L}</th>
<th>S_{F4L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>041223</td>
<td>0UN</td>
<td>0</td>
<td>4.22</td>
<td>4.45</td>
<td>8.8e-8</td>
<td>6.7e-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>6.7e-9</td>
<td>4.45</td>
<td>8.8</td>
<td>6.7</td>
<td>9.0</td>
<td>6.7e-9</td>
<td>4.45</td>
<td>8.8</td>
<td>6.7</td>
<td>9.0</td>
</tr>
<tr>
<td>050124</td>
<td>0UN</td>
<td>0</td>
<td>4.05</td>
<td>6.4</td>
<td>1.6e-7</td>
<td>3.4e-8</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>1.6e-7</td>
<td>3.4e-8</td>
<td>1.6</td>
<td>3.4</td>
<td>7.0</td>
<td>1.6</td>
<td>3.4e-8</td>
<td>1.6e-7</td>
<td>3.4</td>
<td>1.6</td>
</tr>
<tr>
<td>050126</td>
<td>ICN</td>
<td>1.29</td>
<td>2.12</td>
<td>4.83</td>
<td>3.7e-8</td>
<td>6.8e-9</td>
<td>1.5e-8</td>
<td>2.2e-8</td>
<td>6.3e-9</td>
<td>3.7e-8</td>
<td>6.8e-9</td>
<td>1.5</td>
<td>2.2</td>
<td>6.3</td>
<td>7.0</td>
<td>3.7e-8</td>
<td>6.8e-9</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>050128</td>
<td>IUN</td>
<td>0</td>
<td>2.23</td>
<td>4.84</td>
<td>7.9e-7</td>
<td>2.4e-8</td>
<td>4.6e-7</td>
<td>1.8e-8</td>
<td>3.3e-7</td>
<td>7.9e-7</td>
<td>2.4e-8</td>
<td>4.6</td>
<td>1.8</td>
<td>3.3</td>
<td>7.0</td>
<td>7.9e-7</td>
<td>2.4e-8</td>
<td>4.6</td>
<td>1.8</td>
</tr>
<tr>
<td>050219A</td>
<td>ICN</td>
<td>0</td>
<td>2.95</td>
<td>6.2</td>
<td>3.5e-7</td>
<td>1.4e-7</td>
<td>4.1e-8</td>
<td>2.2e-9</td>
<td>3.1e-7</td>
<td>3.5e-7</td>
<td>1.4e-7</td>
<td>4.1</td>
<td>2.2</td>
<td>3.1</td>
<td>7.0</td>
<td>3.5e-7</td>
<td>1.4e-7</td>
<td>4.1</td>
<td>2.2</td>
</tr>
<tr>
<td>050219B</td>
<td>0UN</td>
<td>0</td>
<td>3.5</td>
<td>6.22</td>
<td>9.4e-7</td>
<td>6.1e-8</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>9.4e-7</td>
<td>6.1e-8</td>
<td>9.4</td>
<td>6.1</td>
<td>9.0</td>
<td>9.4</td>
<td>9.4e-7</td>
<td>6.1e-8</td>
<td>9.4</td>
<td>6.1</td>
</tr>
<tr>
<td>050315</td>
<td>HCN</td>
<td>1.95</td>
<td>1.92</td>
<td>5.93</td>
<td>1.1e-6</td>
<td>3.3e-8</td>
<td>2.4e-7</td>
<td>1.4e-8</td>
<td>7.6e-8</td>
<td>1.1e-6</td>
<td>3.3e-8</td>
<td>2.4</td>
<td>1.4</td>
<td>7.6</td>
<td>1.0</td>
<td>3.3e-8</td>
<td>2.4e-7</td>
<td>1.4</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Table B4. Continued from Table B3.

<table>
<thead>
<tr>
<th>S_{F1L}</th>
<th>σ_{F1L}</th>
<th>S_{F2L}</th>
<th>σ_{F2L}</th>
<th>S_{F3L}</th>
<th>σ_{F3L}</th>
<th>S_{F4L}</th>
<th>σ_{F4L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
</tbody>
</table>
The prompt afterglow connection in Gamma-Ray Burst

Table B5. 0.3-30 keV (rest-frame) energy table. From left to right: GRB name, LC type (as defined in Sec. 2.1), redshift, initial \((T_{\text{min}})\) and final \((T_{\text{max}})\) time of the observations, total energy \((E_{\text{iso}})\) with error, energy of the different LC phases \((E_1, E_2, E_3, E_4)\) and errors, energy of the flares in different parts of the LC \((E^{FL}_1, E^{FL}_2, E^{FL}_3, E^{FL}_4)\) and errors. Energies are given in erg. A redshift equal to 0 indicates that no reliable estimate of this parameter is available from the literature. A “−9” indicates that the LC does not show such phase and the value of that parameter is therefore absent. Finally, for the columns containing information from flares superimposed on the power-law decay, 0 indicates that no statistically significant positive fluctuation has been detected. This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.

<table>
<thead>
<tr>
<th>GRB</th>
<th>Type</th>
<th>z</th>
<th>(\log[T_{\text{min}}])</th>
<th>(\log[T_{\text{max}}])</th>
<th>(E_{\text{iso}})</th>
<th>(\sigma_{E_{\text{iso}}})</th>
<th>(E_1)</th>
<th>(\sigma_{E_1})</th>
<th>(E_2)</th>
<th>(\sigma_{E_2})</th>
<th>(E_3)</th>
<th>(\sigma_{E_3})</th>
<th>(E_4)</th>
<th>(\sigma_{E_4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>050126</td>
<td>ICN</td>
<td>1.29</td>
<td>2.12</td>
<td>4.83</td>
<td>3.7e−8</td>
<td>6.8e−9</td>
<td>2e−9</td>
<td>2.2e−8</td>
<td>6.3e−9</td>
<td>9.9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
</tr>
<tr>
<td>050135</td>
<td>IICN</td>
<td>1.95</td>
<td>1.92</td>
<td>5.93</td>
<td>1.1e−6</td>
<td>3.3e−8</td>
<td>2.4e−7</td>
<td>7.3e−8</td>
<td>8.8e−9</td>
<td>8.6</td>
<td>9.9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
</tr>
<tr>
<td>050318</td>
<td>OUN</td>
<td>1.44</td>
<td>3.52</td>
<td>5.65</td>
<td>2.5e−7</td>
<td>1.1e−8</td>
<td>−9</td>
<td>9.6</td>
<td>9.9</td>
<td>9.9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
</tr>
<tr>
<td>050319</td>
<td>IICN</td>
<td>3.24</td>
<td>1.98</td>
<td>6.15</td>
<td>5.6e−7</td>
<td>5.6e−8</td>
<td>2.5e−8</td>
<td>3.6e−9</td>
<td>1.7e−7</td>
<td>6.2e−9</td>
<td>3.e−7</td>
<td>4.9e−8</td>
<td>−9</td>
<td>−9</td>
</tr>
<tr>
<td>050401</td>
<td>ICF</td>
<td>2.9</td>
<td>2.14</td>
<td>5.9</td>
<td>1.2e−6</td>
<td>6.2e−8</td>
<td>5.6e−7</td>
<td>7.3e−7</td>
<td>6.1e−8</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
</tr>
<tr>
<td>050408</td>
<td>OUN</td>
<td>1.24</td>
<td>3.41</td>
<td>6.47</td>
<td>5.4e−7</td>
<td>3.9e−8</td>
<td>−9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
</tr>
</tbody>
</table>

Table B6. Continued from Table B5.

<table>
<thead>
<tr>
<th>(E^{FL}_1)</th>
<th>(\sigma_{E_1\text{FL}})</th>
<th>(E^{FL}_2)</th>
<th>(\sigma_{E_2\text{FL}})</th>
<th>(E^{FL}_3)</th>
<th>(\sigma_{E_3\text{FL}})</th>
<th>(E^{FL}_4)</th>
<th>(\sigma_{E_4\text{FL}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−9</td>
<td>0</td>
<td>0</td>
<td>−9</td>
<td>0</td>
<td>−9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>−9</td>
<td>0</td>
<td>−9</td>
<td>0</td>
<td>−9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
<td>−9</td>
</tr>
</tbody>
</table>

APPENDIX B: TABLES