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1.  Introduction 
The objective of the present investigation is to correlate the vibration data measured by NASA 
using acoustic emission, at specific sensor locations on Node 1 of the International Space Station 
(ISS), to corresponding values predicted by Comet EnFlow, an analysis software for high 
frequency vibro-acoustic analysis based on Energy Finite Element Method (EFEM) that was 
developed previously as a result of an SBIR funding from NASA LaRC. Previously, analysis 
performed based on a source located at sensor location 13 was reported. In this report, responses 
due to sources located at additional locations are evaluated and compared to measurements. The 
source and sensor locations used in the present study are shown in Figure 1. The measured data 
sets due to sources at locations 10, 2, 11, 8 and 5 are provided by NASA.  Sources 10 and 2 are 
located at the barrel section of the model. Source 11 is located at port hatch. Sources 8 and 5 are 
located at forward cone and aft cone, respectively. 

 
Sensors that were used in the previously reported study are also used presently and the measured 
data are processed similarly. However, unlike source 13 which was generated by an actual leak, 
the sources investigated in this study were driven by a piezoelectric sensor to simulate the leak. 
Further, the sensors were not placed very close to the source location and as a result it is not 
feasibly to obtain input power accurately as before. The approximate total input power generated 
through the excitation at the source locations are computed based on the response of the closet 
sensor. Additionally, the sources are decomposed into direct and reverberant fields with 
associated regions (areas) as was done in the second part of the previously reported analysis. 
Also, the damping coefficients identified in previous work are utilized in the present study. 

 

 
Figure 1.1 Source and Sensor Locations on Node 1 Wall 
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2. Results 

The calibration results corresponding to sources 10, 2, 11, 8 and 5 are sequentially presented. 

2.1 Source 10 

The locations of source 10 and sensor 6 are shown in Figure 2.1.1. The direct field region is 
taken to be the pink area around source 10 (note that the sensor location is outside the direct field 
region. The reverberant filed generated at the boundary of the pink patch is transmitted to the 
other parts of the model. The approximate total input power generated through the excitation at 
source 10 location is computed based on the response of the sensor 6. The flexural velocities 
computed at all sensor locations using Comet EnFlow are compared to measured velocities in 
Figures 2.1.2 - 2.1.8. These figures are arranged according to the distance from the sensors to the 
location of excitation (from near to far). 

 
Figure 2.1.1 Source 10 location
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Figure 2.1.2 Flexural Velocity of Sensor 6 

 
 
 

 
Figure 2.1.3 Flexural Velocity of Sensor 1 
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Figure 2.1.4 Flexural Velocity of Sensor 2 

 
 

 
Figure 2.1.5 Flexural Velocity of Sensor 4 
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Figure 2.1.6 Flexural Velocity of Sensor 5 

 
 

 
Figure 2.1.7 Flexural Velocity of Sensor 7 
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Figure 2.1.8 Flexural Velocity of Sensor 3 

2.2 Source 2 

The locations of source 2 and sensor 2 are shown in Figure 2.2.1. The approximate total input 
power generated through the excitation at source 2 location is computed based on the response of 
the sensor 2.   The direct field is included in the pink area surrounding source 2. The reverberant 
filed is generated at the edge of the pink area. As in the previous case, the sensor is located 
outside the direct field region. The flexural velocities at all sensor locations are compared as 
before in Figures 2.2.2 - 2.2.8.  

 
Figure 2.2.1 Source 2 location 
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Figure 2.2.2 Flexural Velocity of Sensor 2 

 
 

 
Figure 2.2.3 Flexural Velocity of Sensor 1 
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Figure 2.2.4 Flexural Velocity of Sensor 4 

 
 

 
Figure 2.2.5 Flexural Velocity of Sensor 6 
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Figure 2.2.6 Flexural Velocity of Sensor 5 

 
 

 
Figure 2.2.7 Flexural Velocity of Sensor 7 
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Figure 2.2.8 Flexural Velocity of Sensor 3 

 
2.3 Source 11 

As indicated in the previous report, responses (flexural velocities) can be predicted using (a) total 
field, or (b) decomposed fields (i.e. by separating the total field into direct and reverberant fields). 
Previous analysis, presented in the first report, has indicated that the decomposition of the total 
field into direct and reverberant fields improves the accuracy of the predicted responses. When 
decomposing the total field, typically, the direct field region is assumed to be a small patch of 
area around the source. In order to estimate the source and subsequently the responses accurately, 
the sensor location must be within the direct field region (preferably very close to the source 
location). However, in the present study, the source and sensor locations are not close to each 
other and as a result the sensors could not be located within the direct field region. In these 
situations, it is expected that the responses predicted using total and decomposed field will be 
similar (this is confirmed by the investigation reported in the Appendix of this report). As a 
consequence, analyses are performed using total fields without decomposition in the current and 
the ensuing cases. 

The locations of source 11 and sensor 1 are shown in Figure 2.3.1. The approximate total input 
power generated through the excitation at source 11 location is computed based on the response 
of the sensor 1.  As shown in Appendix A, the velocities predicted using total field without 
decomposition and decomposition of the total field into direct and reverberant fields does not 
make noticeable difference. Thus, the flexural velocities at all sensor locations are computed 
using total field and these are compared to measurements in Figures 2.3.2 - 2.3.8.  
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Figure 2.3.1 Source 11 location 

 

 
Figure 2.3.2 Flexural Velocity of Sensor 1 
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Figure 2.3.3 Flexural Velocity of Sensor 6 

 
Figure 2.3.4 Flexural Velocity of Sensor 2 
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Figure 2.3.5 Flexural Velocity of Sensor 4 

 
Figure 2.3.6 Flexural Velocity of Sensor 5 
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Figure 2.3.7 Flexural Velocity of Sensor 7 

 
Figure 2.3.8 Flexural Velocity of Sensor 3 
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2.4 Source 8 

The locations of source 8 and sensor 7 are shown in Figure 2.4.1. The approximate total input 
power generated through the excitation at source 8 location is computed based on the response of 
the sensor 7. The flexural velocities at all sensor locations are compared in Figures 2.4.2 - 2.4.8. 

 
Figure 2.4.1 Source 8 location 

 
 

 
Figure 2.4.2 Flexural Velocity of Sensor 7 
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Figure 2.4.3 Flexural Velocity of Sensor 1 

 
 

 
Figure 2.4.4 Flexural Velocity of Sensor 6 

 
 

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

40 70 100 130 160

Frequency (kHz)

Ve
lo

ci
ty

 (i
n/

se
c)

Measured

Measured(Averaged)

EnFlow

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

40 70 100 130 160

Frequency (kHz)

Ve
lo

ci
ty

 (i
n/

se
c)

Measured

Measured(Averaged)

EnFlow



 

 17 

 
Figure 2.4.5 Flexural Velocity of Sensor 5 

 
 

 
Figure 2.4.6 Flexural Velocity of Sensor 2 
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Figure 2.4.7 Flexural Velocity of Sensor 4 

 
 

 
Figure 2.4.8 Flexural Velocity of Sensor 3 
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2.5 Source 5 
 
The locations of source 5 and sensor 3 are shown in Figure 2.5.1. The approximate total input 
power generated through the excitation at source 5 location is computed based on the response of 
the sensor 3. The flexural velocities at all sensor locations are compared in Figures 2.5.2 - 2.5.8.  
 

 
Figure 2.5.1 Source 5 location 

 

 
Figure 2.5.2 Flexural Velocity of Sensor 3 
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Figure 2.5.3 Flexural Velocity of Sensor 2 

 
 

 
Figure 2.5.4 Flexural Velocity of Sensor 4 
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Figure 2.5.5 Flexural Velocity of Sensor 1 

 
 

 
Figure 2.5.6Flexural Velocity of Sensor 6 
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Figure 2.5.7 Flexural Velocity of Sensor 5 

 
 

 
Figure 2.5.8 Flexural Velocity of Sensor 7 
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3. Discussion 
 
Overall, good correlations are observed at sensors on the barrel section for all sources. The 
correlations are better when location of sensor is close to the source location.  In the present 
study, the source locations are not in the neighborhood of the sensor location. Additionally, in 
some case, junctions also exist between the sources and the sensor and therefore input power is 
further approximated due to the incorporation of the effect of energy transfer at the junction.  
Nevertheless, good correlations in most cases indicate that the input power is estimated properly. 
However, the correlations between measured and predicted results at sensors 7 and 3 are not as 
good. These two sensors are located at the two end cones, which have relatively complex 
configurations. In some cases, it is observed that the measured responses at these two sensors are 
higher than the responses at locations, which are closer to the source. The higher response 
indicates the injection of additional power at the termination of the end cone. The modeling of 
this effect may require the modification of the (end) boundary conditions in the EnFlow model to 
include the additional power. Furthermore, the support frame is connected with the Node 1 
model through four pins at two end cones (see Figure 3.1). Although the frame is very stiff, it is 
possible some energy is transferred between the end cones through the frame. Some additional 
feature development in EnFlow is necessary to incorporate this energy transfer mechanism by 
special joints without modeling the frame explicitly. 

 

 
 

Figure 3.1 Support structure of Node 1 
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Appendix 
 

A.1 The direct field effect 
 

When the sensors used to estimate the input power are outside the direct field regions as in the 
present investigation, the decomposition of the total field into direct and reverberant fields does 
not have much effect on the responses. This is illustrated by studying the responses due to source 
10 studied in Section 2.1. The approximate input power at the location of excitation with and 
without direct field is compared in Figure A.1. Both computations are based on the measured 
response at sensor 6, which is outside the direct field region. 

 
Figure A.1 Input power comparison at source 10 

 
It can be seen that the input power from incorporating direct field is higher than the power 
neglecting the direct field.  This is expected since some portion of total input power is dissipated 
as direct waves within the direct field region. The response at sensor 6 is generated only by the 
reverberant portion of the total input power. When the direct field is neglected, the total input 
power contributes to the response of sensor 6. The responses, computed at all sensors using input 
powers with and without direct field, are compared in Figures A.2 - A.8. As expected, these 
responses are almost identical (note that similar results are obtained for all other cases). Thus, it 
can be concluded that when a sensor, located outside the direct field region, is used to derive the 
approximate input power, the effect of direct field is not important. In order to evaluate accurate 
input power more accurately by incorporating the direct field, the sensor should be placed close 
to the source location (i.e. the source and sensor should be located within the direct field region) 
as demonstrated in the next section. 
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Figure A.2 Comparison at sensor 6 

 
 

 
Figure A.3 Comparison at sensor 1 
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Figure A.4 Comparison at sensor 2 

 
 

 
Figure A.5 Comparison at sensor 4 
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Figure A.6 Comparison at sensor 5 

 
 

 
Figure A.7 Comparison at sensor 7 
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Figure A.8 Comparison at sensor 3 

 
 
A.2 Effect of Input Power Computation 
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case that was studied in the previous report). Again, source 10 case is considered. The correlated 
input power is obtained by trial and error since no measured response close to source 10 is 
available. A comparison of this estimated power to the measured power is shown in Figure A.9. 
Using this estimated input power, responses at all sensors are computed and these are compared 
to measured velocities in Figures A.10 - 16. As expected, better correlations are obtained at all 
sensors compared to the previously presented results in this report. Although the input power is 
generated by trial and error, it indicates that if more accurate input power is used (by placing the 
sensor close to source location), improved correlation between EnFlow predictions and 
measurements. 
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Figure A.9 Input power comparison at source 10 

 
 

 
Figure A.10 Comparison at sensor 6 

 
 

 

0.00001

0.0001

0.001

0.01

40 60 80 100 120 140 160

Frequency (kHz)

In
pu

t P
ow

er

Original
Correlated

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

40 70 100 130 160

Frequency (kHz)

Ve
lo

ci
ty

 (i
n/

se
c)

Measured

Measured(Averaged)

EnFlow



 

 30 

 
Figure A.11 Comparison at sensor 1 

 

 
Figure A.12 Comparison at sensor 2 
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Figure A.13 Comparison at sensor 4 

 

 
Figure A.14 Comparison at sensor 5 
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Figure A.15 Comparison at sensor 7 

 

 
Figure A.16 Comparison at sensor 3 
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