Flexible polyimide aerogel cross-linked by poly(maleic anhydride-alt-alt-alkylene)

Haiquan Guo
Ohio Aerospace Institute

Mary Ann B. Meador
NASA Glenn Research Center

Brittany Wilkewitz
NASA Glenn Research Center LERCIP internship 2013

Mar-17-2014
Some people are worth melting for...

http://disney.wikia.com

http://royal-tarts.deviantart.com/art/Olaf-GIF-4-Melting-Request-426015061

http://delicious-to-c.blogspot.com/2013/12/frozen-2013.html
Aerogel protection for Olaf
Why aerogels?

- Made by removing solvent from wet gels without collapsing the structure
- High porous solids
- Low density
- High surface area
- Good thermal insulation material
 - reduces heat transfer (convection, conduction, and radiation)

http://en.wikipedia.org/wiki/Aerogel
Potential applications of aerogels

Daily Life
Potential applications of aerogels

- Inflatable aerodynamic decelerators
- Astronaut EVA suits
- Habitat structures
- Cyrotanks
What should be considered for real application?

- Light weight
- High porous
- High surface area
- Low thermal conductivity

- Flexible
- Strong
- Less dusty
- Hydrophobic
- Low cost

Better mechanical properties and environmental stability are needed...

Silica aerogel is fragile
Cross-linked polyimide aerogels

Cross-linkers

- Two cross-linkers with amine functional groups
- Various polyimide oligomer backbones using different dianhydrides and diamines
- Chemical imidization

M. A. B. Meador and H. Guo, LEW-18864-1, US patent application No. 61/594,657
Cross-linked polyimide aerogels

- Low density and shrinkage
- High porosity, surface area, and modulus
- Moisture resistant
- Low dielectric constant and thermal conductivity
- Can be metalized with gold
- Flexible thin film

Problems of previous cross-linked polyimide aerogels

- OAPS cross-linker is expensive
- TAB cross-linker is not commercially available, requires custom synthesis
- Contact angle for the moisture resistant polyimide aerogel is 85-90°
Objectives

- Explore commercially available and less expensive cross-linkers
- Look for less expensive monomers that might impart flexibility, hydrophobicity, etc.
Commercially available poly(maleic anhydride)s as cross-linkers

- poly (maleic anhydride-alt-1-octadecene) (PAMO)
 Mn 30,000-50,000

- poly (isobutylene-alt-maleic anhydride) (PIMA)
 Mw ~6000

- poly(ethylene-alt-maleic anhydride) (PEMA)
 Mw 100,000-500,000
Network formation using poly(maleic anhydride)s as cross-linkers

- n=20,10 w/w%
- Polyimide oligomers
- ODA+BPDA
- three cross-linkers

Chemical structures:
- ODA: \((n+1)H_2N-\text{amine}+n\text{BPDA}\)
- BPDA: \(\text{imidization}\)
- Polyimide oligomer: \(\text{amide bond formation}\)
- Cross-linkers: PMAO, PIMA, PEMA

Polyimide oligomer: \(R: H, \text{CH}_3, \text{CH}_2(\text{CH}_2)x\text{CH}_3 \quad \text{R': H, CH}_3\)

H. Guo and M. A. B. Meador LEW-19108-1
NMR and FTIR spectra prove imidization was completed

13C nuclear magnetic resonance (NMR)

Typical Fourier transform infrared (FTIR) spectrum of aerogels

- 1716 cm\(^{-1}\) symmetric v imide C=O
- 1377 cm\(^{-1}\) v imide C-N
- 1774 cm\(^{-1}\) asymmetric v imide C=O

Absent
- 1860 cm\(^{-1}\) unreacted anhydride
- ~1807 & 980 cm\(^{-1}\) isoimide
- ~1660 cm\(^{-1}\) v amic acid C=O
- ~1535 cm\(^{-1}\) v amide C-N
• PMAO cross-linked aerogel has the lowest shrinkage
• PEMA cross-linked aerogel has the highest density, the highest shrinkage, and the lowest porosity
N_2 adsorption/desorption shows the aerogels have mesoporous structure

- PMAO cross-linked aerogels have no pores larger than 40nm
PMAO and PEMA cross-linked aerogels have μm size cavities.
The polymer fibers in the cavities are much longer than the polymer fibers outside of the cavities.
PIMA cross-linked aerogels have more densely packed structure.
Small weight loss before decomposition of polyimide backbone is due to cross-linker
Compression tests were performed on the aerogels by compressing to 80%.

- Higher or similar modulus compared to TAB or OAPS cross-linked polyimide aerogels made with BPDA and ODA.
PMAO was down selected as the cross-linker for the following study

- Lower density
- Higher porosity
- Lowest shrinkage
- Highest modulus
Replacing ODA by PPG-230 or PPG-400 in polyimide oligomers

- Same or even higher flexibility
- Further reduce cost
- Increase hydrophobicity

poly(propylene glycol) bis(2-aminopropyl ether) Mn 230 or 400

(PPG-230 or PPG-400)
Polyimide oligomers made with combination of PPG/ODA and BPDA

(n+1) \(\text{H}_2\text{N}-\text{X}-\text{NH}_2 \) + n

Polyimide oligomer

Polyimide oligomer

\(\text{H}_2\text{N} \)

Polyimide oligomer

Polyimide oligomer

R: H, CH\(_2\)(CH\(_2\))\(_x\)CH\(_3\)

R': H, CH\(_3\)

n=20, 10 w/w%

Polyimide oligomers

ODA+BPDA

10 w/w%

three cross-linkers

PMAO as cross-linker

Polyimide oligomers

ODA+BPDA

3 cross-linkers

Polyimide oligomers

PPG/
Density, Shrinkage, and Porosity

- Type and percentage of PPG affect the density, shrinkage and porosity
- At 60% PPG-400, the aerogels shrink the most, resulting in high density and low porosity
Increment of % and molecular weight of PPG decrease the surface area

- The higher the PPG-230 %, the larger the pore sizes
- The higher the PPG-400 %, the lower the pore volume
Increasing % or molecular weight of PPG causes densely packed fiber structures
TGA curves show Td and char yield decrease with increasing aliphatic groups.
Compression tests show aerogels with \(n=20 \) have a higher modulus.

- The higher the density, the higher the modulus.
- The aerogels with PPG-230 have lower modulus than the aerogels without PPG-230.
Contact angle testing shows more hydrophobic aerogels were produced.

- 30% PPG-400, 121°
- 30% PPG-230, 99°
- 60% PPG-230, 124°

Graph showing the contact angle (°) against PPG %.
Summary

• New aerogels made with amine capped polyimide oligomers and cross-linked by poly(maleic anhydride)s were synthesized

• The poly(maleic anhydride) cross-linked ODA capped aerogels have higher or similar modulus values compared to TAB or OAPS cross-linked ODA aerogels

• PMAO cross-linked aerogels have lower density and higher porosity, the lowest shrinkage and the highest modulus

• Addition of PPG alters the properties of the aerogels, such as density, shrinkage, porosity, and modulus

• Aerogels with more than 30% PPG are hydrophobic with contact angles 90-124°

• Aerogels shrink the most with 60% PPG-400, resulting in the highest density, lowest porosity, and lowest surface area
Acknowledgement

Aerogel team members
Dr. Mary Ann B. Meador
Dr. Baochau Nguyen
Stephanie L. Vivod
Dr. Jarrod C. Williams
Rocco P. Viggiano

Drying & characterization
Daniel Haas
Linda S. McCorkle
Daniel A. Scheiman
Nathan G. Wilmoth

Summer Intern
Brittany Wilkewitz

Funding
Fundamental Aeronautics Program
Hypersonic Inflatable Aerodynamic Decelerator Program (HIAD)
Thank you!