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Abstract 41 

Understanding and quantifying satellite-based remotely sensed snow cover uncertainty 42 

are critical for its successful utilization. The Moderate Resolution Imaging 43 

Spectroradiometer (MODIS) snow cover errors have been previously recognized to be 44 

associated with factors such as cloud contamination, snowpack grain sizes, vegetation 45 

cover, and topography; however, the quantitative relationship between the retrieval errors 46 

and these factors remains elusive. Joint analysis of the MODIS fractional snow cover 47 

(FSC) from Collection-6 (C6) and in-situ air temperature and snow water equivalent 48 

(SWE) measurements provides a unique look at the error structure of the MODIS C6 FSC 49 

products. Analysis of the MODIS FSC data set over the period from 2000 to 2005 was 50 

undertaken over the Continental US (CONUS) with an extensive observational network. 51 

When compared to MODIS Collection-5 (C5) snow cover area (SCA), the MODIS C6 52 

FSC product demonstrates a substantial improvement in detecting the presence of snow 53 

cover in Nevada (30% increase in POD-probability of detection), especially in the early 54 

and late snow seasons, some improvement over California (10% POD increase), and a 55 

relatively small improvement over Colorado (2% POD increase). However, significant 56 

spatial and temporal variations in accuracy still exist, and a proxy is required to 57 

adequately predict the expected errors in MODIS C6 FSC retrievals. We demonstrate a 58 

relationship between the MODIS FSC retrieval errors and temperature over the CONUS 59 

domain, captured by a cumulative double exponential distribution function. This 60 

relationship is shown to hold for both in-situ and modeled daily mean air temperature. 61 

Both of them are useful indices in filtering out the misclassification of MODIS 62 
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snowcover pixels and in quantifying the errors in the MODIS C6 product for various 63 

hydrological applications.  64 

 65 

Keywords:  Moderate Resolution Imaging Spectroradiometer (MODIS), fractional snow 66 

cover, temperature, errors.  67 

 68 

1. Introduction 69 

In the middle to high latitude and alpine regions, the seasonal snowpack can 70 

dominate the surface energy and water budgets due to its high albedo, low thermal 71 

conductivity, high emissivity, considerable spatial and temporal variability, and ability to 72 

store and then later release a winter’s cumulative snowfall (Cohen, 1994; Hall, 1998). 73 

With this in mind, the snow drought across the U.S. has raised questions about impacts 74 

on water supply, ski resorts and agriculture. Knowledge of various snowpack properties is 75 

crucial for short-term weather forecasts, climate change prediction, and hydrologic 76 

forecasting for producing reliable daily to seasonal forecasts. One potential source of this 77 

information is the multi-institution North American Land Data Assimilation System 78 

(NLDAS) project (Mitchell et al., 2004). Real-time NLDAS products are used for 79 

drought monitoring to support the National Integrated Drought Information System (NIDIS) 80 

and as initial conditions for a future NCEP drought forecast system. Additionally, efforts 81 

are currently underway to assimilate remotely-sensed estimates of land-surface states 82 

such as snowpack information into NLDAS. It is believed that this assimilation will not 83 

only produce improved snowpack states that better represent snow evolving conditions, 84 

but will directly improve the monitoring of drought.  85 
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In the western United States, over half of the water supply is derived from mountain 86 

snowmelt (Stewart et al., 2005). In many mid-latitude, high elevation regions, the 87 

snowpack delays runoff and thus provides much-needed water in the spring and summer, 88 

which can mitigate agricultural droughts through irrigation when water is needed most. 89 

However, little is known about the spatial and temporal variations of critical processes 90 

like snowmelt and runoff in these mountainous areas. As both the model predictions and 91 

passive microwave snow water equivalent (SWE) observations contain large errors due to 92 

land surface complexities and temporally frequent snowmelt processes in the western 93 

United States (e.g., Tait and Armstrong, 1996; Rodell et al., 2004; Foster et al., 2005; 94 

Dong et al., 2005; Tong et al., 2010), the 500 m daily MODIS C5 SCA product has been 95 

widely used as an important constraint on snowpack processes in land surface and 96 

hydrological models. Assimilation experiments with MODIS SCA (Rodell and Houser, 97 

2004; Andreadis and Lettenmaier, 2006; Molotch and Margulis, 2008; Liu et al, 2013) or 98 

synthetic data (Liston et al., 1999; Clark et al., 2006) have demonstrated some 99 

improvements in the accuracy of both streamflow and SWE simulations spatially and 100 

temporally. Yatheendradas et al. (2012) used MODIS fractional snow cover to perform 101 

assimilation experiments over the Distributed Model Intercomparison Project – Phase 2 102 

(DMIP II) western basin domain and achieved large improvements judged against the 103 

control run, but degraded the simulated streamflow when compared against the calibrated 104 

run due to lack of below-canopy measurements. To attain the optimal estimate of 105 

snowpack state, it is essential that the assimilation scheme accounts for the relative 106 

uncertainty of both model predictions and observations. For example, direct replacement 107 

of the modeled snow states with observations by assuming that the observations are error-108 
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free can often yield degraded model predictions in certain situations (e.g., Liston et al., 109 

1999; Rodell and Houser, 2004). Users need to know when and where the data are most 110 

reliable, and account for uncertainty when ingesting satellite information into models 111 

(Dong et al., 2007; Dong and Peters-Lidard, 2010).  112 

A snowpack is an integrated response to climate, weather and land surface 113 

complexity. Understanding and quantifying MODIS fractional snow cover retrieval errors 114 

are critical for successful utilization of the FSC product. A time-series comparison 115 

performed by Klein and Barnett (2003) between MODIS C5 SCA retrievals and the in-116 

situ SWE measurements at 15 SNOTEL (for SNOwpack TELemetry) stations in the 117 

Upper Rio Grande basin over one entire snow season from 13 October 2000 to 30 March 118 

2001 showed an overall high accuracy (94%). However, an extended comparison of 119 

MODIS against SNOTEL sites from 1 October 2000 to 9 June 2002, showed a slightly 120 

lower overall classification accuracy of 88% (Klein and Barnett, 2003). As summarized 121 

in Parajka and Bloschl (2012), most of the MODIS accuracy assessments reported the 122 

overall accuracy to be between 85% and 99% during clear sky conditions. Potential 123 

sources of misclassification in MODIS-derived standard snow-cover products have been 124 

previously identified as a thin snowpack (Klein and Barnett, 2003; Shreve et al., 2009), 125 

clouds (Maurer et al., 2003), patchy snow (Parajka and Bloschl, 2006) and forest cover 126 

(Hall et al., 1998; Simic et al., 2004; Roy et al., 2010; Parajka et al., 2012). Hall and 127 

Riggs (2007) review these potential sources and conclude that lower accuracy is found in 128 

forested areas and complex terrain, and when snow is thin and ephemeral.  129 

A number of recent studies have focused on improving MODIS fractional snow 130 

cover detection. MODSCAG (MODIS Snow Covered Area and Grain size) is a 131 
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physically based and geographically consistent model that accounts for the spatial and 132 

temporal variation in surface reflectance of snow and other surfaces (Dozier et al., 2008; 133 

Painter et al., 2009). Rittger et al (2013) gives a quantitative analysis of the MOD10A1 134 

binary and fractional snow cover errors, along with those of the MODSCAG algorithm. 135 

MODSCAG has the ability to detect fraction of snow covered area down to values of 136 

10% to 15%, and is able to detect snow cover at lower elevations near the snowline 137 

where snow is not the dominant surface cover. Parajka et al. (2012) used a 2-day temporal 138 

filter that led to a significant reduction in the number of days with prohibitive cloud 139 

coverage and to an increase in overall snow mapping accuracy.  In particular the 2-day 140 

temporal filter decreases the number of cloudy days from 61% to 26% and increases the 141 

snow mapping accuracy from 91.5% to 94%. Dong and Peters-Lidard (2010) compared 142 

the 500 m daily MODIS C5 SCA product to the in-situ SWE measurements from 143 

SNOTEL and the U. S. Historical Climatology Network in two distinct climatic regions 144 

(California and Nevada versus Colorado) in the western United States from 2000 to 2005. 145 

The region encompassing California and Nevada differs significantly from the Colorado 146 

area in its proximity to the ocean, topography, warmer climate and wetter snow. Dong 147 

and Peters-Lidard (2010) demonstrated for the first time that MODIS C5 SCA retrieval 148 

errors can be predicted by simultaneous MODIS-based land surface temperature (LST) or 149 

in-situ based daily mean air temperature measurements. This study will use the 150 

methodology from Dong and Peters-Lidard (2010) to assess the errors associated with the 151 

MODIS C6 FSC product over a CONUS-wide domain. Accordingly, the purpose of this 152 

paper is ultimately to make the MODIS C6 FSC product more useful to the hydrologic 153 

and drought communities.  154 
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 155 

2. Observational Data 156 

 157 

2.1. Satellite Observations 158 

MODIS is a multispectral instrument with 36 bands featuring nominal spatial 159 

resolutions of 250 m (two bands), 500 m (five bands), and 1km (29 bands). MODIS data 160 

have been available on Terra since 24 February 2000 and on Aqua since 24 June 2002. In 161 

this study, we focus on the Terra-MODIS Level 3 500 m Collection-5 SCA (snow 162 

covered area) and Collection-6 FSC data (Hall et al., 2002; Riggs and Hall, 2012). 163 

MODIS snow cover data are based on a snow mapping algorithm that employs a 164 

Normalized Difference Snow Index (NDSI) (Valovcin, 1976; Crane and Anderson, 1984; 165 

Dozier 1989; Hall et al., 1995; Salomonson and Appel, 2004, 2006) and other criteria 166 

tests. The binary value in the C5 (MOD10A1) product returns a positive result if the 167 

NDSI is 0.4 or above, which corresponds to about 50% snow coverage (Riggs et al., 168 

2006). The MODIS fractional snow cover (FSC) algorithm for C6 is the same as in C5; 169 

however, the screens applied to alleviate snow detection errors of commission and 170 

omission have been changed (Riggs and Hall, 2012). The surface temperature screen for 171 

snow commission errors has been deleted from the algorithm in C6 because it was 172 

discovered that the screen has a detrimental impact on mapping snow cover on mountains 173 

in the spring and summer, consistent with the results reported in Dong and Peters-Lidard 174 

(2010). One of the largest problems affecting MODIS SCA products is false detection of 175 

cloud cover; however, the false detection of snow and land under clear sky conditions is 176 
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also recognized as another potentially significant issue due to land surface complexity 177 

and frequent weather variations (e.g., Hall and Riggs, 2007).  178 

 179 

2.2. In-situ Observations 180 

The Natural Resources Conservation Service (NRCS) installs, operates, and 181 

maintains an extensive, automated system to collect snowpack and related climatic data 182 

in the Western United States called SNOTEL. The system evolved from NRCS's 183 

Congressional mandate in the mid-1930's to measure snowpack in the mountains of the 184 

West and forecast the water supply. The programs began with manual measurements of 185 

snow courses; since 1980, SNOTEL has reliably and efficiently collected the data needed 186 

to produce water supply forecasts and to support the resource management activities of 187 

the NRCS (Crook, 1977; Natural Resources Conservation Service, 1997). Basic 188 

SNOTEL sites feature a pressure sensing snow pillow, storage precipitation gage, and air 189 

temperature sensor. A pressure pillow of 3.66-meter size can provide an accurate 190 

measurement of snow water equivalent, its response time to new snow is on the scale of 191 

minutes and snowfall rates as low as 0.762 mm per hour can be observed (Beaumont, 192 

1965). However, it should be noted that a small rise or decrease in SWE values may not 193 

be due to snowfall or snowmelt.  Rather, these fluctuations may reflect effects such as 194 

drifting, wind scour, sublimation, blowing snow, and foreign material being deposited on 195 

the snow pillow, especially in areas of low snow cover (Serreze et al., 1999). The 670 196 

available SNOTEL stations in our study area are predominantly located in high 197 

mountainous regions with a mean elevation about 2272 m (dots in Figures 1).  198 
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Molotch and Bales (2006) showed that SNOTEL sites poorly represent a region with 199 

respect to spatial distribution of snow persistence, introducing a bias.  Additionally, 200 

SNOTEL sites do not adequately represent high elevation regions and therefore, their use 201 

introduces yet another bias by not addressing patchy, high elevation snow cover. 202 

Although they are limited in their spatial representativeness, ground-based SWE 203 

observations from the SNOTEL network have been widely used to evaluate, initialize and 204 

update grid-element SWE estimates within spatially distributed snowmelt models (e.g., 205 

Carroll et al., 2001), develop the remotely sensed SWE detection algorithms (Chang et al., 206 

1991), and evaluate the spatial distribution of remotely sensed SWE using statistical 207 

models (Klein and Barnett, 2003). Although SNOTEL locations may not represent the 208 

full range of physiographic and snowpack conditions found within the watersheds in 209 

which they are located, they are placed in areas intended to be representative of water-210 

producing regions of a watershed (US Soil Conservation Service, 1972).  211 

Previous work has suggested that SNOTEL SWE values are inherently biased 212 

toward overestimating mean basin-wide SWE (e.g., Daly et al., 2000). In this study, we 213 

also use the U. S. Historical Climatology Network (USHCN) Daily Temperature, 214 

Precipitation, and Snow Data Set containing daily observations of maximum and 215 

minimum temperature, precipitation and snowfall amount, and snow depth (Williams et 216 

al., 2006). Most station records are essentially complete for at least 50 years, and the 217 

most recent station start date is 1948. Data from 1005 of a total of 1062 observing 218 

stations extend through 2000, while 920 station records extend through 2005. The 219 

USHCN stations are located in relatively flat regions scattered across the CONUS and 220 

feature a mean elevation about 520 m (pluses in Figure 1).  221 
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 222 

2.3. NLDAS forcing 223 

The NLDAS project has produced over 30-years of retrospective and real-time 224 

forcing from 1979 to the present to support its land surface modeling activities (Cosgrove 225 

et al., 2003; Xia et al., 2012). NLDAS forcing features a 1/8th degree spatial resolution 226 

and an hourly temporal resolution, and is based on spatially and temporally interpolated 227 

3-hourly North American Regional Reanalysis (NARR) model output (Mesinger et al., 228 

2006) along with precipitation and shortwave observations. An elevation adjustment has 229 

been applied in the generation of NLDAS air temperature, pressure, longwave radiation, 230 

and humidity fields from the 32 km NARR output grid which adjusts for the significant 231 

differences in the NARR and NLDAS topography fields. Additionally, NARR shortwave 232 

radiation has been bias corrected via use of Geostationary Operational Environmental 233 

Satellite (GOES) shortwave data. Luo et al. (2003) used observed forcing data at 234 

Oklahoma Mesonet stations and Atmospheric Radiation Measurement/Cloud and 235 

Radiation Testbed stations (ARM/CART) over the Southern Great Plains to evaluate 236 

NLDAS downward solar radiation, downward long wave radiation, 10-m wind speed, 237 

specific humidity, 2 m air temperature, surface pressure, and precipitation. The results 238 

indicated good agreement between NLDAS forcing data and observations for all 239 

meteorological variables except for hourly precipitation. The hourly NLDAS air 240 

temperature data will be used in the study.  241 

 242 

3. Collection-6 update to previous results 243 

 244 



 10 

The overall estimate of MODIS snow retrieval accuracy limits its usefulness in 245 

many hydrologic applications including drought monitoring, as it displays significant 246 

spatial and temporal variability. Thus, the investigation of spatial and temporal sampling 247 

representativeness is important before its successful use. The quality of MODIS-retrieved 248 

SCA and FSC relative to the in-situ observations described above is evaluated using a 249 

confusion matrix, which appears to provide an excellent summary of two types of 250 

thematic error that can occur, namely, omission and commission (Foody, 2002). Similar 251 

to Dong and Peters-Lidard (2010), we chose to use the probability of detection (POD) 252 

and false alarm ratio (FAR) in the following contexts. The probability of detection, 253 

POD=SS/(SS+NS), measures the fraction of observed snow cover cases that were 254 

correctly detected by MODIS, and the false alarm ratio, FAR=SN/(SN+NN), measures 255 

the fraction of observed snow-free land cases that were incorrectly detected as snow 256 

covered cases by MODIS. The SS denotes that snow cover is detected in MODIS and it 257 

does occur, the NS denotes that snow cover is not detected in MODIS but it does occur, 258 

the SN denotes that snow cover is detected in MODIS but it does not occur, and the NN 259 

denotes that snow cover is not detected in MODIS and it does not occur. Table 1 260 

illustrates the confusion matrix for assessing MODIS SCA retrieval accuracy including 261 

the aforementioned four categories in this study. A perfect sample occurs when SN and 262 

NS are zero.  263 

Dong and Peters-Lidard (2010) used the binary part of the MOD10A1 product 264 

(1=snow covered or 0=snow-free) in their study. To match this use, the MODIS C6 FSC 265 

(varying from 0.0=snow-free to 1.0=full snow coverage) and in-situ measured SWE are 266 

transformed into a binary snow cover product (FSC=0 and SWE=0 for snow-free land or 267 
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FSC>0 and SWE>0 for snow cover). While this is not a proper evaluation of the 268 

fractional snow cover and snow water equivalent, it serves as means of achieving the 269 

important match with the MODIS C5 binary estimates. We consider only clear-sky days 270 

at the study sites, and MODIS snow-cover results are compared to data from SNOTEL 271 

and the USHCN. Comparison of MODIS C5 binary and C6 FSC monthly climatologies is 272 

made for three states: California, Nevada and Colorado, for each month over 2000-2005 273 

(Figure 2).   274 

The POD of snow cover using MODIS improves in C6 relative to C5 for all cases 275 

with the exception of the month of June in the California study area.  The improvement in 276 

snow-cover detection is especially substantial in Nevada in the months of March, April, 277 

May and June. Improvement using C6 is less dramatic in the Colorado study area. The 278 

overall POD increase is about 2% (from 82% to 84%) for Colorado, 10% (from 76% to 279 

86%) for California, and 30% (from 54% to 84%) for Nevada. The difference in snow 280 

cover between Nevada and Colorado is likely due to the deletion of the temperature 281 

screen in the C6 product and due to possible warmer temperatures over the mountains in 282 

Nevada than in Colorado. The surface temperature screen for snow commission errors 283 

was removed from the algorithm in C6 because it was discovered that the screen has a 284 

detrimental impact on mapping snow cover on mountains in the spring and summer when 285 

temperatures are close to freezing point.  The mean air temperature over snow cover 286 

surfaces in Colorado (-4oC) is much lower than the freezing point, but is close to the 287 

freezing point in California (-0.24oC) and Nevada (-1.24oC) during the snow season. 288 

Therefore, removing the surface temperature screen did not have a large impact in 289 

Colorado, but did lead to a substantial impact in Nevada and, to some extent, in 290 
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California. The FAR of the C6 fractional snow cover product is equal to or lower than 291 

that of the C5 product in all months (with the exception of May and June in the Nevada 292 

study area), but again, mixed results are shown in the Colorado study area.  293 

Building on this analysis, the study was expanded to include all SNOTEL and 294 

USHCN stations in the CONUS.  The POD and FAR results over the CONUS are shown 295 

in Figure 3.  The lower POD in autumn and spring could stem from the challenges of 296 

comparing 500 m satellite pixel data to point measurements at geographically-fixed 297 

stations due to the occurrence of patchy snow packs.  Uncertainty in the geolocation of 298 

MODIS pixels within the data processing system may be a factor to consider in 299 

comparisons to ground station data. For the CONUS, the C6 MODIS FSC product 300 

demonstrates a strong ability to detect the presence of snow cover (over 90% from 301 

December to March), and the FAR is less than 1.5% over all four seasons. While not 302 

shown here, large spatial variability exists in the POD of C6 MODIS FSC retrievals 303 

compared with coincident ground truth station data.  304 

The length of the evaluation period for SCA retrievals must be long enough to 305 

provide an unbiased estimate of the true product accuracy. This is supported by Klein and 306 

Barnett (2003) which confirmed that analysis periods of different lengths produce 307 

significant differences in accuracy estimates. In our study, we address this concern by 308 

investigating the MODIS SCA retrieval errors in each month during the multi-year period 309 

from 2000 to 2005. There are significant temporal variations in accuracy from less than 310 

60% in October to 94% in January and February. Generally, MODIS shows a strong 311 

ability to detect snow presence during the snow season with POD above 80% from 312 

November to April and snow-free land with FAR below 1.5% all year round (Figure 3). 313 
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However, in months from May to October, MODIS correctly detects the presence of 314 

snow cover less than 60% of the time under cloud-free conditions, which may result from 315 

a combination of patchy snow and land surface complexity.  316 

Such significant spatial and temporal variations in MODIS SCA retrieval accuracy 317 

suggest that adequately predicting the MODIS SCA retrieval errors can be important for 318 

hydrological applications including drought monitoring.  In the following section, we re-319 

visit and extend the temperature-based proxy approach of Dong and Peters-Lidard (2010) 320 

to the C6 data for CONUS. 321 

 322 

4. Factors affecting MODIS snow cover detection 323 

 324 

Uncertainty in MODIS C6-retrieved FSC relative to in-situ observations is 325 

investigated using the above-defined POD statistics and their relationships to snowpack 326 

mass and air temperature. POD statistics are calculated for MODIS 500 m by 500 m 327 

cloud-free pixels having coincident in-situ observations over the snow season (October to 328 

June) during the period from 2000 to 2005. As shown in Figure 4, the POD for MODIS 329 

to detect snow cover shows a steady increase with increasing snow amount, with a FAR 330 

of about 3%. The POD increases from about 50% in shallow snowpacks with SWE 331 

values less than 1 cm, to about 85% in deep snowpacks with SWE values above 5 cm 332 

(black bars in Figure 4). As the SWE approaches zero, it would be expected that there 333 

would be a more patchy distribution within a 500 m by 500 m MODIS pixel, as discussed 334 

by Klein and Barnett (2003). When the fractional snow product is characterized by the 335 

most issues, i.e., more patchy distribution during the snowmelt season, the assimilation of 336 
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snow cover information is at its most important (Clark et al, 2006). However, the 337 

MODIS FSC product provides only a minor benefit via assimilation during the snowmelt 338 

season due to the lower POD statistics and a relatively low 50% accuracy value. In 339 

addition, the POD statistics are insensitive to increasing snow water amounts over 5 cm. 340 

As SWE is only partially effective in demonstrating the uncertainty in the MODIS FSC 341 

product, we need to seek an alternative index to better predict the uncertainty and to make 342 

the MODIS FSC product more useful to the hydrologic and drought communities.  343 

We further investigate the relationship between POD and SWE for three different 344 

daily mean air temperature groups calculated using in-situ data: (i) temperatures less than 345 

-5oC, (ii) temperatures between -5oC and 0oC, and (iii) temperatures above 0oC. Each of 346 

these groups is illustrated as different color bars in Figure 4. As this figure shows, the 347 

strong positive relationship between POD and SWE is also a function of daily mean air 348 

temperature. For daily mean air temperatures below -5 oC, the MODIS SCA retrievals are 349 

reliable at all values of SWE (i.e., POD greater than 80% for all SWE values and greater 350 

than 95% for SWE amounts over 3 cm, indicated as green bars), and therefore the FSC 351 

retrieval accuracy is insensitive to the snowpack depth in the colder climate with less 352 

snowmelt. However, for warmer temperatures, the POD changes significantly from about 353 

30% for SWE values less than 1 cm, to above 85% for SWE values greater than 50 cm, 354 

thus confirming the strong relationship between snowpack thickness and the MODIS 355 

FSC retrieval error.  356 

At any given SWE, the POD consistently decreases with increasing temperature, and 357 

there is a large difference in the POD between the depth-groups with average 358 

temperatures above 0oC (red bars) and below 0oC (blue and green bars).When the 359 
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snowpack is thin, the POD difference is large among the three temperature groups, with a 360 

POD of just 30% for temperatures above 0oC and over 80% for temperatures below -5oC. 361 

When the snowpack is deeper, the POD appears to be less a function of temperature, 362 

supporting the intuitive concept that colder, deeper packs are less patchy and easier to 363 

detect. In particular, when the SWE value is larger than 100 mm, the POD shows little 364 

difference between the > 0oC and < -5oC temperature groups (red versus green bars). 365 

Across all three temperature groups, the FAR increases from 0.6% for temperatures 366 

above 0oC to about 14% for temperature below -5oC due to more mixed snow and land 367 

contamination. This statistic measures the fraction of observed snow-free land cases that 368 

were incorrectly detected as snow covered cases. There are more opportunities for the 369 

observed snow-free land pixels to be covered with patches of snow in cold temperatures 370 

below -5oC than in warm temperatures above 0oC. 371 

Based on these findings, temperature can be used as a proxy to predict MODIS FSC 372 

retrieval errors across regions and at times that feature large spatial and temporal 373 

variability. This approach is conceptually grounded in the fact that land surface factors 374 

contribute to MODIS FSC retrieval errors.  These factors include patchy snow in regions 375 

of high topographic roughness, tree crown exposure in forested regions, dirty snow in 376 

regions with significant dust, and complex terrain, and each of these factors has a strong 377 

relationship to temperature.  This temperature-based approach is further aided by the fact 378 

that temperature data are easy to obtain and of relatively high accuracy, making them 379 

convenient to use as a dynamic index to quantify the uncertainty in MODIS SCA 380 

retrievals.  381 

 382 
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5. Error quantification and mitigation 383 

 384 

In this study we select temperature data from two independent sources. One is the 385 

in-situ daily mean air temperature, and the other is daily mean air temperature from 386 

NLDAS. Both data sets can capture the cumulative diurnal temperature variation. The 387 

error in MODIS FSC retrieval is simply defined as: err = 100-POD. We further 388 

investigate the retrieval error relative to temperature by matching the defined errors to 389 

their mean temperatures in each temperature group for snow cover and snow-free land 390 

retrievals. 391 

We calculate the MODIS FSC retrieval error over the CONUS for cloud-free pixels 392 

at times when all data including MODIS FSC, in-situ SWE and daily mean air 393 

temperature are available. The results of this temperature versus MODIS FSC retrieval 394 

error investigation for the 2000-2005 period are shown in Figure 5.  For the MODIS FSC 395 

retrievals, error levels trend larger as the daily mean temperature increases, with the 396 

largest rate of increase occurring at temperatures above 0oC (Figure 5). It is perhaps not 397 

surprising that the potential error sources in the MODIS FSC product are related to 398 

differential snow melting processes in the early and late snow seasons. The error is 399 

estimated at nearly 80% for daily mean temperatures above 12oC and less than 20% for 400 

temperatures below 2oC. The retrieval errors are relatively insensitive to temperatures 401 

below -2oC, and are generally below 10% in magnitude.  402 

There is a clear nonlinear relationship between the MODIS retrieval error and daily 403 

mean temperature (Figure 5). We use the cumulative double exponential distribution 404 

function given in Equation (1) to represent this nonlinear relationship between retrieval 405 
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error (err) and daily mean air temperature (T, oC) for MODIS snow cover retrievals over 406 

the CONUS. Using a slightly different methodology from Dong and Peters-Lidard (2010) 407 

with a fixed Coeff at a value of 90, three parameters (Coeff, Tf and b) are allowed to 408 

change.   409 

 410 

bTT fe
CoeffPODerr /)(1

718.2100 ���
����   ,                                             (1) 411 

 412 

Where e is the base of the natural logarithm, Tf (oC) is the reference temperature as a 413 

location parameter, b is a scale parameter, and Coeff is a derived constant. We obtained 414 

the parameters for the CONUS study area based on a least squares fitting approach, using 415 

values of Coeff from 0 to 200 at a 1 increment, for reference temperature Tf from 0 to 20 416 

at a 0.1 increment, and scale parameter b from 0 to 10 at a 0.1 increment. These optimal 417 

parameters (Coeff, Tf and b) are listed in Table 2. The parameters derived from using the 418 

C5 MODIS SCA product over Colorado (CO) and California/Nevada (CA/NV) from 419 

Dong and Peters-Lidard (2010) are also included in the table for the purpose of 420 

comparison. There are negligible statistical errors in the fitting by using the double 421 

exponential distribution function. The fitting bias is 0.6% when using in-situ temperature 422 

and -0.05% when using NLDAS temperature, and their RMS errors are 3% and 0.5% 423 

respectively.  424 

Inserting these numbers into Equation 1 reveals that both the MODIS C5 SCA and 425 

C6 FSC products have very similar error ranges (minimum error of 2.7% to maximum 426 

error of 92.7% for C5 and 91.7% for C6) when the in-situ 2m air temperature data is used. 427 

When the air temperature equals the reference temperature (T=Tf), the errors reach their 428 
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mid-point values (err=2.718+Coeff/2). We have processed the hourly NLDAS 2m air 429 

temperature data into daily mean temperature values for consistency with the in-situ daily 430 

mean air temperature measurements. When daily mean air temperature is used from both 431 

in-situ and NLDAS data sources, the derived reference temperature (Tf) is the same 432 

(7.8oC) for both temperature data sources and the scale factors (b) vary little (3.7 for in-433 

situ temperature and 4.2 for NLDAS temperature). However, the Coeff shows a large 434 

increase from 89 when using in-situ temperature to 98 when using NLDAS temperature. 435 

This results from the regrouping of MODIS pixels by the NLDAS temperature data. In 436 

this case, some previous pixels with missed detection of snow have been reassigned from 437 

the low in-situ temperature group to the high NLDAS temperature group. In practical 438 

applications, either the in-situ daily mean temperature or the modeled 2-meter daily mean 439 

air temperature could be used. Using calibrated parameters from different temperature 440 

data sources and a user-defined error tolerance level, this approach can be applied to any 441 

given time and cloud free pixel to guide the decision of whether or not to use the MODIS 442 

snow cover product for a given application.  443 

As discussed above, MODIS C5 SCA and C6 FSC estimates derived when the 444 

temperature is relatively high are characterized by large detection errors. Thus, 445 

eliminating these pixels using a temperature threshold will help to avoid assimilating 446 

unreliable data into land surface and hydrological applications. As illustrated in Figure 6, 447 

if the pixels with temperatures above 10oC are eliminated, the POD will increase about 448 

2% when using NLDAS 2m air temperature data and about 1.5% when using in-situ 2m 449 

air temperature. The use of modeled 2m temperatures to define a temperature threshold 450 

leads to a slightly better increase in POD than does using in-situ temperature, and a 451 
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comparison using both temperature data sources shows similar results in the number of 452 

pixels retained (98% when using in-situ air temperature and 97% when using NLDAS 453 

temperature at a 10oC defined temperature threshold). If the temperature threshold is set 454 

at 0oC, the POD increases approximately 10% when using either temperature data source. 455 

However, this also leads to the elimination of over 30% of MODIS pixels (not shown 456 

here). Thus, there is a need to coordinate the POD increase and the pixels eliminated so 457 

that more reliable MODIS data can be used in the data assimilation practices. With this in 458 

mind, a temperature threshold of 6oC—leading to a 4% increase in POD and 459 

approximately 90% of MODIS pixels retained—is recommended.  460 

 461 

6. Summary and Discussion 462 

 463 

This study has investigated remotely-sensed MODIS snow cover estimation 464 

uncertainty for the new Collection 6 (C6) products. In this study, we find significant 465 

improvements in C6 POD and FAR relative to C5 for California, Nevada and to a lesser 466 

extent Colorado.  We have also extended the previous error analysis of Dong and Peters-467 

Lidard (2010) by analyzing all USHCN and SNOTEL data for CONUS.  This analysis 468 

demonstrates that MODIS C6 shows a strong ability to detect snow presence during the 469 

snow season with POD above 80% from November to April and snow-free land with 470 

FAR below 1.5% all year round. 471 

For cloud-free pixels, the MODIS C6 FSC retrieval errors can be quantitatively 472 

predicted using temperature data and a calibrated set of parameters over the CONUS. 473 

Generally, both in-situ and model-based NLDAS daily mean air temperature data are 474 
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good proxies for predicting MODIS FSC retrieval errors. It is shown that MODIS FSC 475 

errors may be reliably predicted from temperature using a cumulative double exponential 476 

distribution function with parameters that are a function of temperature over the CONUS.  477 

The in-situ daily mean air temperature data represent cumulative diurnal temperature 478 

variations. These measurements are limited in their spatial representativeness and by their 479 

spatial and temporal availability in mountainous regions. Model-based 2-m air 480 

temperature data are of relatively high accuracy (Luo et al., 2003), and so could replace 481 

the in-situ air temperature in successfully classifying the error-prone pixels in the MODIS 482 

FSC product for land surface hydrological data assimilation applications. The 483 

quantitative nonlinear relationship of MODIS snow cover retrieval error versus 484 

temperature will enable end users to  merge MODIS snow cover information into various 485 

hydrological applications in a more informed and beneficial fashion.  486 

The high spatial resolution Landsat snow cover product provided an alternate 487 

capability to validate the model for estimating the MODIS fractional snow cover (FSC) 488 

(Painter et al., 2009), and evaluating the FSC product (Rittger et al., 2013). Landsat 489 

ETM+ is available at a 30 m spatial resolution, and the Landsat systems, in particular, are 490 

a source of data for hydrological and glaciological research at the drainage basin scale. 491 

Using Landsat images to validate MODIS retrieval does assume that errors in the MODIS 492 

retrieval derive mostly from spatial effects. The less frequent (16-day interval) Landsat 493 

snow cover mapping provides less assimilation benefit in the spring when melt frequently 494 

occurs. Saturation in some of the Landsat ETM+ bands makes the sensor an imperfect 495 

source of validation data, and even at a 30 m resolution, many ETM+ pixels are mixed. 496 

Therefore, a future, more complete approach may combine the in-situ field measurements 497 
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and fine resolution Landsat imagery in the validation and verification of model 498 

simulations and remote sensing estimates to characterize the MODIS fractional snow 499 

cover over moderate resolution scales. 500 

MODSCAG performs the most consistently through the accumulation, mid-winter 501 

and melt stages as assessed by comparing 172 images spanning a range of snow classes 502 

and vegetation types including the Colorado Rocky Mountains, the Upper Rio Grande, 503 

California’s Seerra-Nevada, and the Nepal Himalaya (Rittger et al, 2013). Snow class and 504 

forest factors are considered as the key inputs of the MODSCAG (future GOESRSCAG) 505 

spectral library and have been shown to impact snow cover estimation accuracy (Painter 506 

et al., 2009). The snow class indicates the snow crystal size by climate and season, which 507 

shows differences in the spectral reflectance of snow. We note that the defined recall and 508 

F score in Rittger et al (2013) still show some temperature effects in the early snow 509 

season (October and November) and in the late snow season (June and July). It should be 510 

also noted that MOD10A1 is a global, automated algorithm that is not tuned to any 511 

particular area. To properly understand and be able to predict the relationship between the 512 

MODIS SCA retrieval error and temperature for different land surface characteristics, 513 

future work will investigate the relationships between the parameters of the error model 514 

and known sources of FSC error, such as elevation, topographic roughness, land cover, 515 

and forest fraction. As in the investigation of Dong and Peters-Lidard (2010), each of 516 

these land surface factors result in modifications to the relationship between MODIS FSC 517 

retrieval errors and temperature. These modifications could be represented by slightly 518 

adjusting the parameters (Coeff, Tf and/or b) in Equation 1.   519 

 520 
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Figure Captions: 

 

Figure 1. Spatial distribution of in-situ SWE and meteorological stations including 670 

SNOTEL (dots) and 1062 USHCN (plus) stations over CONUS. The background 

colors show the mean elevation at 4 km resolution derived from the United States 

Geological Survey (USGS) 1 arc-second National Elevation Dataset (NED).  

Figure 2. Comparison of POD (upper row) and FAR (lower row) for MODIS Collection-

5 (C5 shown as black bars) binary (from Dong & Peters-Lidard, 2010) and 

Collection-6 (C6 shown as gray bars) FSC results, 2000 - 2005. The three selected 

states are California, Nevada, and Colorado from left to right columns. MODIS snow-

cover results are compared to data from SNOTEL and the U.S. Historical 

Climatology Network (USHCN) daily temperature, precipitation and snow data.  

Figure 3. Probability of detection (POD-black bars) and false alarm ratio (FAR-gray bars) 

for MODIS C6 fractional snow cover in each month over the SNOTEL and the U.S. 

Historical Climatology Network (USHCN) stations shown in Figure 1 from February 

2000 to December 2005.  

Figure 4. POD for MODIS snow cover relative to in-situ SWE (black bars) for snow 

season (October to June) from February 2000 to December 2005 and for three given 

daily mean air temperature groups: above 0oC (red bars), between -5oC and 0oC (blue 

bars), and below -5oC (green bars). Left end shows the FAR with three air 

temperature groups.  

Figure 5. MODIS SCA retrieval error relative to in-situ daily mean air temperature for all 

in-situ sites over CONUS (plusses). The cumulative double exponential distribution 
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function is used to construct the nonlinear relationship between the errors and 

temperature (solid line). 

Figure 6. Percent changes in POD of MODIS snow cover (thin solid line for using in-situ 

air temperature and thick solid line for using NLDAS air temperature) and percent 

changes in pixels of MODIS snow cover retrievals (thin dash line for using in-situ air 

temperature and thick dash line for using NLDAS air temperature) eliminated for 

daily mean air temperature greater than given temperature thresholds. 
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Table 1. Illustration of a confusion matrix for MODIS snow covered area retrievals 
relative to the field measurements. 

 Field measurement 
Snow Non snow 

MODIS  Snow SS SN 
Non Snow NS NN 

 
 
 
Table 2. Statistical parameters for reference temperature (Tf) and scale factor (b) in 
Equation (1) for fractional snow cover retrievals in California and Nevada (CA/NV), 
Colorado (CO) and over Continental US (CONUS) domain. 

Study region MODIS 
snow 

Temperature 
data Tf  (oC) b Coeff 

CA/NV C5 In-situ 4.5 5.0 90 
CO C5 In-situ 6.5 3.5 90 
CONUS C6 In-situ 7.8 3.7 89 
CONUS C6 NLDAS 7.8 4.2 98 
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Figure 1. Spatial distribution of in-situ SWE and meteorological stations including 670 
from SNOTEL (dots) and 1005 of 1062 from USHCN (plus) over CONUS. The 
background colors show the mean elevation at 4 km resolution derived from the United 
States Geological Survey (USGS) 1 arc-second National Elevation Dataset (NED).  
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Figure 2. Comparison of POD (upper row) and FAR (lower row) for MODIS Collection-
5 (C5 shown as black bars) binary (from Dong & Peters-Lidard, 2010) and Collection-6 
(C6 shown as gray bars) FSC results, 2000 - 2005. The three selected states are California, 
Nevada, and Colorado from left to right columns. MODIS snow-cover results are 
compared to data from SNOTEL and the U.S. Historical Climatology Network (USHCN) 
daily temperature, precipitation and snow data.  
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Figure 3. Probability of detection (POD-black bars) and false alarm ratio (FAR-gray bars) 
for MODIS C6 fractional snow cover in each month over the SNOTEL and the U.S. 
Historical Climatology Network (USHCN) stations shown in Figure 1 from February 
2000 to December 2005.  
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Figure 4. POD for MODIS snow cover relative to in-situ SWE (black bars) for snow 
season (October to June) from February 2000 to December 2005 and for three given daily 
mean air temperature groups: above 0oC (red bars), between -5oC and 0oC (blue bars), 
and below -5oC (green bars). Left end shows the FAR with three air temperature groups.  
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Figure 5. MODIS FSC retrieval error relative to in-situ (left) and NLDAS (right) daily 
mean air temperature for all in-situ sites over CONUS (pluses). The cumulative double 
exponential distribution function is used to construct the nonlinear relationship between 
the errors and temperature (solid lines). 
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Figure 6. Percent changes in POD of MODIS snow cover (thin solid line for using in-situ 
air temperature and thick solid line for using NLDAS air temperature) and percent 
changes in pixels of MODIS snow cover retrievals (thin dash line for using in-situ air 
temperature and thick dash line for using NLDAS air temperature) eliminated for daily 
mean air temperature greater than given temperature thresholds.  
 
 


