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a b s t r a c t

The 27-day variations of topside ionosphere are investigated using the in situ electron density

measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the

two satellite systems orbit at the altitudes of �370 km and �480 km, respectively, the satellite data

sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a

27-day period, the electron density measurements from the satellites are in good agreements with the

solar flux, except during the solar minimum period. The time delays are mostly 1–2 day and represent

the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar

flux and in situ satellite measurements show poor correlations in the (magnetic) equatorial region,

which are not found from the ground measurements of vertically-integrated electron content. We

suggest that the most plausible cause for the poor correlation is the vertical movement of ionization

due to atmospheric dynamic process that is not controlled by the solar extreme ultraviolet radiation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Earth’s ionosphere is strongly controlled by solar extreme
ultraviolet irradiance. It is therefore not surprising that the
27-day periodicity observed in solar flux recordings, that is due
to the solar rotation period, can also be observed in ionospheric
parameter recordings like the F peak plasma frequency, foF2, and
the total ionospheric electron content, TEC. Nevertheless, some
earlier studies have found only a weak correlation between these
parameter’s 27-day periodicities (Doherty et al., 2000; Richards,
2001). It was suggested that, besides the solar extreme ultraviolet
(EUV) forcing, other factors could affect the local ionosphere
parameters and at times even more strongly than the solar EUV
flux. They include neutral winds, plasma vertical drift, vertical
coupling in the atmosphere-ionosphere system through atmo-
spheric waves (tidal and planetary waves), and geomagnetic
activity (Rich et al., 2003).

Unlike the local ionospheric parameters, the global mean TEC
measured by GPS and as compiled in the Global Ionospheric Map
(GIM) shows a correlation with the solar activity proxy such as
the radio flux at 10.7 cm (F10.7) or the Mg II index (Afraimovich

et al., 2008; Hocke, 2008). The Defense Meteorological Satellite
Program (DMSP) satellite also observed a 27-day variation in
plasma density with an amplitude of up to 40–50% at the altitude
of �840 km (Rich et al., 2003). A similar result was found from
the analysis of KOMPSAT-1 measurements at�675 km (Min et al.,
2009).

In this study, we investigate the 27-day ionospheric modula-
tion at the altitudes of �370 km and �480 km close to the F2
peak by analyzing the electron density measured by the CHAllen-
ging Minisatellite Payload (CHAMP) planar Langmuir probe (PLP)
and the Gravity Recovery and Climate Experiment (GRACE)
K-band ranging system. We study the spatial dependence of
cross-correlations between the electron density measurements
and the solar flux measurements globally. We also discuss the
altitude dependence of the 27-day ionospheric variations by
analyzing the in situ satellite measurement and the ground-based
TEC from GPS.

2. Data and method

The CHAMP satellite measures the electron density with the
on-board PLP instrument every 15 seconds in a near-circular orbit
with an inclination of 87.31 (Reigber et al., 2002). Its mean
altitude decreased from �450 km in 2000 to �320 km in 2009.
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The orbital configuration is such that CHAMP sweeps through all
local times every 131 day allowing the satellite to monitor the
global ionospheric climatology. The two GRACE satellites measure
inter-satellite distance changes every 5 seconds from the dual-
frequency K-band ranging system at an orbit altitude of �480 km
and an inclination of 891 (Tapley et al., 2004). The phase
difference between the K- and Ka-band signals can be used to
deduce the (biased) electron content between the two GRACE
satellites. The electron density at the intermediate position
between the two satellites is approximated by the electron
content divided by the baseline length of �220 km (Lee et al.,
2011).

We use two solar flux measurements, F10.7 index and SOHO/
SEM, to derive the correlation with the electron density in iono-
sphere. The F10.7 indicates the solar radiation flux on the
wavelength of 10.7 cm in s.f.u. units (10�22 Wm�2 Hz�1)
(Tapping and Charrois, 1994), and has been most widely used
for ionospheric studies and monitored over 60 years. Recently, the
solar EUV radiation in two bands (0.1–50 nm and 26–34 nm) has
been measured by the Solar EUV Monitor (SEM) spectrometer
aboard the Solar Heliospheric Observatory (SOHO) (Judge et al.,
1998). We use the SOHO/SEM daily averages in the 0.1–50 nm
band since the two bands are strongly correlated. Although it is
apparently nonlinear with F10.7, the solar EUV radiation from
SOHO/SEM is more linearly correlated with a solar activity factor
P, (F10.7þF10.7A)/2 (Liu et al., 2006). Thus a few extremely large
or small records in SOHO/SEM apart from the linear relation with
P are removed and then interpolated using their neighbors.

The 27-day periodic variation in the satellite measurements is
modulated by long-period trends. As discussed in Rich et al.
(2003) and Oinats et al. (2008), the percentage change is more
useful than the original time-series of measurements for comput-
ing the cross-correlation with the solar flux recordings. We take
the following steps to compute the cross-correlation of the
percentage change: (i) All electron density measurements within
a day are averaged (denoted by Nd) to be comparable to the daily
F10.7; (ii) By using a finite impulse response low-pass filter, we
remove short-period (o13 day) variations, such as the strong
periodicities of 7 and 9 day that might be associated with
variations in solar wind high-speed streams and geomagnetic
activity and that are generally not observed in the F10.7 data
(Thayer et al., 2008); (iii) Long-period trends are removed by
subtracting the 27-day running average Nd from the low-pass
filtered daily electron density N̂d and then a percentage change
dNd is calculated by dNd ¼ ðN̂d�NdÞ=Nd; (iv) The percentage
changes of the F10.7 and the SOHO/SEM are also calculated
following the same steps (ii) and (iii); (v) The time-series of
electron density measurements and SOHO/SEM have an effective
time tag of 12 h UT because we have averaged the data over a
day; conversely, the F10.7 has a time tag of 20 h UT since it is
measured at noon (local time) at Penticton, Canada (Tapping and
Charrois, 1994). In order to match the time tags of F10.7 and
others and improve the resolution of time delay, all time-series
are resampled every 8 h at time tags of 4 h, 12 h, and 20 h UT by a
cubic spline interpolation; (vi) Finally, the correlation functions
between the two time-series of percentage changes in the
electron density and the solar flux are calculated with a time
lag varying from �5 to 5 day. The correlation coefficient (C) and
time delay (D) are defined as the maximum value of the correla-
tion function and the corresponding time lag, respectively (Oinats
et al., 2008).

The ground-based TEC data in our study are from the CODE
(Center for Orbit Determination in Europe) GIMs (http://aiuws.
unibe.ch/ionosphere). The GIM TEC (CHAMP) and GIM TEC
(GRACE) represent the TEC interpolated at the time and location
of the CHAMP and GRACE measurements, respectively.

3. Results

The time-series of daily-averaged electron densities (Nd) from
CHAMP and GRACE are characterized by annual, semiannual, and
27-day variations with a decreasing trend due to the 11-year solar
cycle (Fig. 1). Our low and high-pass filtering removes most of
these variations and the percentage change shown in the lower
part of the panels in Fig. 1 is dominated by the 27-day variation.
The percentage change of solar flux is visibly correlated with the
percentage change of the satellite measurements. To study the
time-dependence of the correlation, we divide the time-series
into the overlapped subsets and then calculate the correlation
coefficient in each subset. The length of subset segments is 81 day
and the interval between two consecutive subsets is 27 day. For
an 81-day sample length, the correlation coefficient correspond-
ing to the 0.01 significance level (99% confidence level) is 0.285 in
Strudent’s t distribution. In general, the correlation varies from
0.7 to 0.9 depending on time, as shown in Fig. 2. The correlation
coefficient is decreasing with decreasing solar activity because
with diminishing solar influence other effects like the meteor-
ological forcing from below become more influential. The magni-
tude of the meteorological forcing does not depend on solar
activity and therefore during low solar activity it is responsible
for a larger percentage of the ionospheric variability than during
high solar activity. Another possible cause of the de-correlation
with diminishing solar influence is the random noise in the solar
flux measurements because, for example, the F10.7 variation at
the solar minimum is only in the range of 70.7 S.F.U. close to the
accuracy of F10.7 index. The SOHO/SEM is more highly correlated
with the electron densities than the F10.7 is (C¼0.84 for F10.7-
CHAMP, C¼0.85 for F10.7-GRACE, C¼0.90 for SOHO/SEM-CHAMP,
and C¼0.89 for SOHO/SEM-GRACE, averaged from 2003 to 2007),
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Fig. 1. Time-series of the daily averaged electron density from CHAMP and GRACE

and of the F10.7 index and the solar EUV radiation in the 0.1–50 nm wavelength

(SOHO/SEM). They are depicted in black. The percentage changes of the daily

values are shown in gray.
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representing that the SOHO/SEM is a better proxy for ionospheric
parameters than F10.7.

The temporal distribution of the time delay is also shown in
Fig. 2. The electron density dominantly correlates best with the
solar flux at a time lag of 1–2 day. This means that it takes 1–2
day for changes in solar activity to document themselves in the
ionosphere. Similar time lags have been reported based on radio
beacon and GPS-TEC observations (Jakowski et al., 1991, 2002).
Such a time lag may be caused by the long lifetime of atomic
oxygen, a major source for ionospheric electrons and Oþ ions. O is
created at lower altitudes (�100 km) by photo-dissociation, and
then diffuses upward where neutral densities are much lower and
chances for the required 3-body collisions are very small resulting
in Oþ lifetimes of one to several days. From 2003 to 2007, the

time delay for F10.7 (1.771.2 day) is larger than that for SOHO/
SEM (1.171.0 day), as locally observed (Maruyama, 2010). Large
delays (43 day) are observed from F10.7 in year 2004 and every
2 years, which are not found in the SOHO/SEM. They induce such
averaged difference in the time delay estimates (�0.6 day).

The spatial patterns of correlation and time delay are com-
puted by locally averaging the electron density measurements in
the period from 2003 to 2007. In a specific area, the ascending and
descending track represent the observations with a 12-hour local
time difference. Therefore, we grouped the satellite measure-
ments into ascending and descending track sets and then calcu-
late the correlation and time delay. In each set, the data within a
day are binned and averaged on an 18�16 grid (i.e., 101 in
latitude and 22.51 in longitude) that corresponds to the satellites’
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Fig. 2. Correlation coefficients and time delays (a) between the electron density and the F10.7 and (b) between the electron density and the SOHO/SEM. The dashed lines in

the left plots indicate the correlation coefficient of 0.01 significance level. The right plots show the histograms of the respective time-series. The gray symbols in the time

delay are only from the sub-set data with low correlations (0.6 or below), which are excluded for the histogram.
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sampling interval of 16 revolutions per day. The time-series of
averaged electron density in each grid are processed following the
procedure described in the previous section. No significant
difference is found between the results from ascending and
descending track sets, which allows us to look into only one set,
for example, ascending track data. The time-series in each grid
cell may include the local time variation as well as the seasonal
variation, since the CHAMP and GRACE sweep all local time every
131 day and 160 day, respectively. However, significant changes
in the correlation with respect to either local time or season are
not observed.

The spatial patterns of the correlation between F10.7 and
electron density on a 101 (latitude)�22.51 (longitude) grid are
shown in Fig. 3 (The ones for SOHO/SEM are similar and not
shown). The highest correlation is found at mid-latitudes. The
correlation coefficients are relatively low in high-latitudes and
generally higher in the northern hemisphere than in the southern
hemisphere. In the southern hemisphere, the low correlation
extends from the South Pole to the mid-latitude over the Indian
and Atlantic sectors. At high latitudes, the direct impact of the
solar wind through open magnetic field lines and the downpour
of precipitating particles at auroral latitudes compete with the
solar EUV influence on the ionosphere. Most interestingly, at low
latitudes around the magnetic equator the in situ satellite data
show a low correlation while the TEC data exhibit a high
correlation. At low latitudes, the atmospheric dynamic processes
such as the equatorial ionization fountain (often called Equatorial
Ionization Anomaly, EIA) are the dominant forces shaping the
ionosphere plasma (Stening, 1992). Those distinct effects at the
high and low latitudes may be responsible for the spatial pattern
in the correlation of the electron density with the solar flux.

When the correlation maps from in situ satellite data near the
F2-peak altitudes and the TEC from GIM are compared, we find
systematic differences, particularly along the magnetic equator.
Within the latitude band of 101 from the magnetic equator, the
correlation coefficients from in situ satellite data are low, i.e. less
than 0.5 for CHAMP, whereas those of GIM TEC (CHAMP) are 0.7 or
higher. A similar pattern is found for the GRACE in situ and TEC data
as well, although to a lesser extent. Rich et al. (2003), on the other
hand, using the DMSP satellite data, found that the correlation
coefficient in the equatorial region is higher than in the mid-latitude
region, similar to our results with the GIM TEC data. Recalling the

altitudes of these satellites (i.e., �370 km for CHAMP, �480 km for
GRACE, and �840 km for DMSP), our analysis suggests that the
lower correlation in the equatorial region may be confined to the F2
peak altitude and its vicinity.

For the time delay, all four data sets (Fig. 3e–h) show a consistent
spatial distribution. The dominant pattern is a hemispheric asym-
metry with a time delay of predominantly one day in the northern
hemisphere and two days or longer in the southern hemisphere.

4. Discussion

Studying the correlation between electron density and solar
flux, we find that while many of the global correlation features
are similar for F-region in situ data and corresponding GPS-TEC
data there is a distinct difference in correlation behavior at and
near the magnetic equator. TEC data are well correlated with solar
flux by means of the 27-day solar rotation, the GRACE data,
however, exhibit only a marginal correlation with solar flux, and
the CHAMP data not at all. Fig. 4 shows the variations of
correlation coefficients and time delays along geomagnetic lati-
tude (for a 21 resolution). A substantially decreased correlation
coefficient is found around the magnetic equator (7301) for the
CHAMP satellite data. Across all four data sets and both solar
fluxes, the hemispherical asymmetry of time delay is apparent.
The time delay in the southern hemisphere (especially 101S–701S)
is a day longer than in the northern hemisphere.

Fig. 5a indicates the altitude ranges of CHAMP and GRACE from
2003 to 2007 as well as the samples of the F2-peak heights
(hmF2) predicted by the IRI-2007 model (Bilitza and Reinisch,
2008) for the time and location of the CHAMP data. The CHAMP
orbits are closer to the hmF2 than the GRACE orbits and are
sometimes even below hmF2 in the equatorial region. The map of
mean distance from the height of CHAMP satellite to the hmF2,
depicted in Fig. 5b, shows a pattern similar to the correlation map
in Fig. 3a. The distance is smallest in the equatorial region and the
distances over the American and Eurasian continents are larger
than those over the Pacific Ocean in the northern hemisphere.
These coherent spatial patterns support the idea that the
decreased correlation along the magnetic equator is likely due
to the proximity of the satellite orbit to the F2 peak.
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So what is disturbing the correlation between the electron
density and the solar EUV radiation in the equatorial F2 layer? The
(vertically-integrated) TEC maintains a strong correlation in the
equatorial region unlike the satellite measurements near
the F-region, even though the F-region ionization dominantly
contributes to the TEC. This fact indicates that the ionosphere
as a whole is less affected by the re-distribution of ionization
causing the low correlation near the F2-peak. These distinct beha-
viors of electron contents near the F2-peak and in the whole
ionosphere suggest that the vertical movement of ionization (e.g.
ion drift constituting the EIA) near the F2-peak plays a leading role
in the short-term variation of electron density near the F2-peak.

5. Conclusion

We have studied the correlation and time delay between the
27-day solar rotation period as seen in the solar flux and as
documented in in situ electron density measurements by the
CHAMP and GRACE satellites and TEC measurements from GPS.
We find good correlation except at high latitudes where particle
precipitation competes with the solar influence. At low latitudes
the correlation also breaks down for electron density data close to
the F peak because of the dynamic process that is not under direct
solar control. As expected, we find that the correlation decreases

towards the solar cycle minimum because of the increasing
importance of influences other than solar, e.g. meteorological
forcing from below. The time delay between the solar rotation as
manifested in solar flux and the satellite data shows a consistent
behavior across all four data sets. We find a predominantly 1-day
difference of time delay between the northern and southern
hemisphere. Further study is needed to investigate the causes of
this hemispherical asymmetry.

The results of this study are important for an improved
representation of the solar dependence in data-based ionospheric
models like the International Reference Ionosphere (IRI). IRI is
widely used for many space weather applications but currently
only use solar dependence at a 12-month average level. With the
results of this study it might be possible to introduce solar
dependence at a daily F10.7 level keeping in mind the global
differences in correlation and time delay.
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