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Abstract The heliosphere represents a uniquely accessible domain of space, where funda-
mental physical processes common to solar, astrophysical and laboratory plasmas can be
studied under conditions impossible to reproduce on Earth and unfeasible to observe from
astronomical distances. Solar Orbiter, the first mission of ESA’s Cosmic Vision 2015 – 2025
programme, will address the central question of heliophysics: How does the Sun create and
control the heliosphere? In this paper, we present the scientific goals of the mission and
provide an overview of the mission implementation.
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1. Introduction

We live in the extended atmosphere of the Sun, a region of space known as the heliosphere.
Understanding the connections and the coupling between the Sun and the heliosphere is of
fundamental importance to understanding how our solar system works. The results from
current and past solar and heliospheric missions such as Helios (Porsche, 1977; Schwenn
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and Marsch, 1990; Schwenn and Marsch, 1991), Voyager (Stone, 1977), Ulysses (Wenzel
et al., 1992), Yohkoh (Acton et al., 1992), SOHO (Domingo, Fleck, and Poland, 1995),
TRACE (Handy et al., 1999), RHESSI (Lin et al., 2002), Hinode (Kosugi et al., 2007),
STEREO (Kaiser et al., 2008) and SDO (Pesnell, Thompson, and Chamberlin, 2012) have
formed the foundation of our understanding of the solar corona, the solar wind, and the
three-dimensional heliosphere. Each of these missions had a specific focus, being part of
an overall strategy of coordinated solar and heliospheric research. However, none of these
missions have been able to fully explore the interface region where the solar wind is born
and heliospheric structures are formed with sufficient instrumentation to link solar wind
structures back to their source regions at the Sun (Helios 1 and 2, e.g., carried no imaging
instruments). This is the goal of Solar Orbiter, a mission of collaboration between ESA and
NASA that was recently selected as the first medium (M)-class mission of ESA’s Cosmic
Vision 2015 – 2025 programme.
With a combination of in-situ and remote-sensing instruments and its inner-heliospheric

mission design, Solar Orbiter will address the central question of heliophysics: How does
the Sun create and control the heliosphere? This primary, overarching scientific objective
can be expanded into four interrelated top-level scientific questions that will be addressed
by Solar Orbiter:

• What drives the solar wind and where does the coronal magnetic field originate from?
• How do solar transients drive heliospheric variability?
• How do solar eruptions produce energetic particle radiation that fills the heliosphere?
• How does the solar dynamo work and drive connections between the Sun and the helio-
sphere?

These questions represent fundamental challenges in solar and heliospheric physics to-
day. By addressing them, we expect to make major breakthroughs in our understanding of
how the inner solar system works and is driven by solar activity. To answer these questions,
it is essential to make in-situ measurements of the solar wind plasma, fields, waves, and
energetic particles close enough to the Sun that they are still relatively pristine and have not
had their properties modified by subsequent transport and propagation processes. This is one
of the fundamental drivers for the Solar Orbiter mission, which will approach the Sun to as
close as 0.28 AU.
Relating these in-situ measurements back to their source regions and structures on the

Sun requires simultaneous, high-resolution imaging and spectroscopic observations of the
Sun in and out of the ecliptic plane. The resulting combination of in-situ and remote-sensing
instruments on the same spacecraft, together with the new, inner-heliospheric perspective,
distinguishes Solar Orbiter from all previous and current missions, enabling science which
can be achieved in no other way.
The following section introduces the science payload and mission design. Section 3 de-

scribes the mission’s science objectives in detail: The present state of knowledge is presented
for all major science questions of the mission, followed by descriptions of how Solar Orbiter
will advance our understanding. Section 4 introduces the Solar Orbiter spacecraft, followed
by an overview of the science operations in Section 5. Table 1 gives a one-page mission
summary.
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Table 1 Solar Orbiter mission summary.

Top-level science questions • What drives the solar wind and where does the coronal mag-
netic field originate from?

• How do solar transients drive heliospheric variability?
• How do solar eruptions produce energetic particle radiation
that fills the heliosphere?

• How does the solar dynamo work and drive connections be-
tween the Sun and the heliosphere?

Science payload In-Situ Instruments:

• Energetic Particle Detector (EPD)
• Magnetometer (MAG)
• Radio and Plasma Wave analyser (RPW)
• Solar Wind Analyser (SWA)
Remote-Sensing Instruments:

• EUV full-Sun and high-resolution Imager (EUI)
• Coronagraph (METIS)
• Polarimetric and Helioseismic Imager (PHI)
• Heliospheric Imager (SoloHI)
• EUV spectral Imager (SPICE)
• X-ray spectrometer/telescope (STIX)

Mission profile • Launch on NASA-provided Evolved Expendable Launch
Vehicle (Ariane 5 as back-up)

• Interplanetary cruise with chemical propulsion and gravity
assists at Earth and Venus

• Venus resonance orbits with multiple gravity assists to in-
crease inclination

Closest perihelion 0.28 AU

Max. heliolatitude 25° (nominal mission)/34° – 36° (extended mission)

Spacecraft three-axis stabilized platform, heat shield, two adjustable,
single-sided solar arrays, dimensions: 2.5× 3.0× 2.5 m3
(launch configuration)

Telemetry band Dual X-band

Data downlink 150 kbit s−1 at 1 AU spacecraft–Earth distance
Launch date Jan. 2017 (March 2017 and Sept. 2018 back-ups)

Nominal mission duration 7 years (incl. cruise phase)

Extended mission duration 3 years

2. Instruments and Mission Design

2.1. Scientific Payload

The scientific payload elements of Solar Orbiter will be provided by ESA member states,
NASA and ESA and have been selected and funded through a competitive selection process.
These are:

The in-situ instruments:

• The Energetic Particle Detector (EPD) experiment (J. Rodriguez-Pacheco, PI, Spain) will
measure the properties of suprathermal ions and energetic particles in the energy range
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of a few keV n−1 to relativistic electrons and high-energy ions (100 MeVn−1 protons,
200 MeVn−1 heavy ions).

• The Magnetometer (MAG) experiment (T.S. Horbury, PI, UK) will provide detailed in-
situ measurements of the heliospheric magnetic field.

• The Radio and Plasma Waves (RPW) experiment (M. Maksimovic, PI, France) will mea-
sure magnetic and electric fields at high time resolution and determine the characteristics
of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz.

• The Solar Wind Analyser (SWA) instrument suite (C.J. Owen, PI, UK) will fully charac-
terize the major constituents of the solar wind plasma (protons, alpha particles, electrons,
heavy ions) between 0.28 and 1.2 AU.

The remote-sensing instruments:

• The Extreme Ultraviolet Imager (EUI, P. Rochus, PI, Belgium) will provide image se-
quences of the solar atmospheric layers from the photosphere into the corona.

• The Multi Element Telescope for Imaging and Spectroscopy (METIS) Coronagraph
(E. Antonucci, PI, Italy) will perform broad-band and polarized imaging of the visible
K-corona, narrow-band imaging of the UV and EUV corona and spectroscopy of the
most intense lines of the outer corona.

• The Polarimetric and Helioseismic Imager (PHI, S.K. Solanki, PI, Germany) will provide
high-resolution and full-disk measurements of the photospheric vector magnetic field and
line-of-sight velocity as well as the continuum intensity in the visible wavelength range.

• The Solar Orbiter Heliospheric Imager (SoloHI, R.A. Howard, PI, USA) will image both
the quasi-steady flow and transient disturbances in the solar wind over a wide field-of-
view by observing visible sunlight scattered by solar wind electrons.

• A European-lead extreme ultraviolet imaging spectrograph Spectral Imaging of the Coro-
nal Environment (SPICE) with contributions from ESA member states and ESA. This
instrument will remotely characterize plasma properties of regions at and near the Sun.

• The Spectrometer/Telescope for Imaging X-rays (STIX) (S. Krucker, PI, Switzerland)
provides imaging spectroscopy of solar thermal and non-thermal X-ray emission from
∼4 – 150 keV.

The accommodation of the science payload onboard the spacecraft is illustrated in Figure 1.
A detailed description of the payload elements, as well as traceability matrices of the science
goals are given in Marsden and Müller (2011).

2.2. Mission Design

The baseline mission is planned to start in January 2017 with a launch on a NASA-provided
launch vehicle from Cape Canaveral, placing the spacecraft on a ballistic trajectory that will
be combined with planetary gravity assist maneuvers (GAM) at Earth and Venus (Figure 2).
The second Venus GAM places the spacecraft into a 4:3 resonant orbit with Venus at a
perihelion radius of 0.284 AU. The first perihelion at this close distance to the Sun is reached
3.5 years after launch. This orbit is the start of the sequence of resonances 4:3–4:3–3:2–5:3
that is used to raise gradually the solar inclination angle at each Venus GAM (Figure 3).
The resulting operational orbit has a period of 168 days during the nominal mission with a
minimum perihelion radius of 0.28 AU. The end of the nominal mission occurs 7 years after
launch, when the orbit inclination relative to the solar equator reaches 25°. The inclination
may be further increased during an extended mission phase using additional Venus GAMs,
to reach a maximum of 34° for the January 2017 baseline and 36° for a launch in March
2017.
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Figure 1 Payload accommodation onboard Solar Orbiter. In this rendering, one side wall has been removed
to expose the remote-sensing instruments mounted on the payload panel. The SPICE instrument (not visible)
is mounted to the top panel from below. See Section 2.1 for a payload description and acronyms.

Figure 2 Solar Orbiter’s trajectory viewed from above the ecliptic (January 2017 launch). The gravity assist
maneuvers (GAM) at Earth (E) and Venus (V) are indicated, along with the orbits of these two planets.
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Figure 3 Mission profile for a January 2017 launch, showing heliocentric distance (top) and latitude (bot-
tom) of Solar Orbiter as a function of time. Also indicated are the times at which gravity assist maneuvers at
Venus and Earth occur (blue).
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Figure 4 Polar plots of the solar wind speed, colored by the interplanetary magnetic field (IMF) polarity for
Ulysses’ first two polar orbits. The earliest times are on the left (nine o’clock position) and progress around
counterclockwise. The characteristic solar images for solar minimum for Cycle 22 (left), solar maximum for
Cycle 23 (right) are from SOHO EIT and C2 coronagraph and the Mauna Loa K coronameter. Through a
combination of remote-sensing and in-situ measurements, Solar Orbiter will map structures measured in the
inner heliosphere to features observed in the corona. (From McComas et al. (2008).)

3. Science Objectives

The solar corona continuously expands and develops into a supersonic wind that extends
outward, interacting with itself and with Earth and other planets, to the heliopause bound-
ary with interstellar space, far beyond Pluto’s orbit, as measured by the Voyager spacecraft
(Stone, 1977). The solar wind has profound effects on planetary environments and on the
planets themselves – for example, it is responsible for many of the phenomena in Earth’s
magnetosphere and is thought to have played a role in the evolution of Venus and Mars
through the erosion of their upper atmospheres.
Two classes of solar wind – ‘fast’ and ‘slow’ – fill the heliosphere, and the balance

between them is modulated by the 11-year solar cycle (Figure 4). The fast solar wind
(∼700 km s−1 and comparatively steady) is known to arise from coronal holes. The slow
solar wind (∼300 – 500 km s−1) permeates the plane of the ecliptic during most of the solar
cycle so it is important to Earth’s space environment. The slow solar wind shows different
mass flux and composition than the fast wind, consistent with confined plasma in the solar
corona.
The specific escape mechanism through the largely closed magnetic field is not known

since candidate sites and mechanisms cannot be resolved from 1 AU as much of the crucial
physics in the formation and activity of the heliosphere takes place much closer to the Sun.
By the time magnetic structures, shocks, energetic particles and solar wind pass by Earth
they have already evolved and in many cases mixed so as to blur the signatures of their origin
(Figure 5). It is clear that our understanding can be advanced by flying a spacecraft combin-
ing remote and in-situ observations into the inner solar system. From this inner-heliospheric
vantage point, solar sources can be identified and studied accurately and combined with
in-situ observations of solar wind, shocks, energetic particles, etc., before they evolve sig-
nificantly. Solar Orbiter can therefore be seen as the next step in our exploration of the Sun
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Figure 5 Small-scale structures flowing in the solar wind are visible as diagonal lines in this time–distance
plot from the STEREO Heliospheric Imager instrument, moving further from the Sun (elongation) with time.
Structures moving at different speeds collide and merge, smoothing out the flow and removing information
about their relative origins. Solar Orbiter will travel to 0.28 AU, corresponding to an elongation of 15.6°
(black horizontal line), making it possible to measure unevolved small-scale solar wind structures for the first
time. (Courtesy J. Davies, Rutherford Appleton Laboratory, UK.)

and heliosphere. In this section, we will expand the four overarching science questions of
Solar Orbiter into subquestions and describe how Solar Orbiter will address them.

3.1. What Drives the Solar Wind and Where Does the Coronal Magnetic Field Originate
from?

Hot plasma in the Sun’s atmosphere flows radially outward into interplanetary space to form
the solar wind, filling the solar system and blowing a cavity in the interstellar medium known
as the heliosphere. During solar minimum, large-scale regions of a single magnetic polar-
ity in the Sun’s atmosphere – polar coronal holes – open into space and are the source of
high speed, rather steady solar wind flows (Figure 4). The slow wind emanates from mag-
netically complex regions at low latitudes and the periphery of coronal holes. It is highly
variable in speed, composition, and charge state. The origin of the slow wind is not known.
At solar maximum, this stable bimodal configuration gives way to a more complex mix-
ture of slow and fast streams emitted at all latitudes, depending on the distribution of open
and closed magnetic regions and the highly tilted magnetic polarity inversion line. The fast
wind from the polar coronal holes carries magnetic fields of opposite polarity into the he-
liosphere, which are then separated by the heliospheric current sheet (HCS) embedded in
the slow wind. Ulysses and Wind measurements over a range of latitudes far from the Sun
show that this boundary is not symmetric around the Sun’s equator, but is on average dis-
placed southward (Smith et al., 2000). Wang and Robbrecht (2011) demonstrate that this
southward displacement follows from Joy’s law and the observed hemispheric asymmetry
in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere
during the declining (rising) phase of Cycles 20 – 23. They find that during the last four
cycles, the polarity of the interplanetary magnetic field (IMF) around the equator tended to
match that of the north polar field both before and after polar field reversal, while during
Cycle 19, the HCS showed in fact an average northward displacement, when the northern
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hemisphere became far more active than the southern hemisphere during the declining phase
of the cycle.
The energy that heats the corona and drives the wind comes from the mechanical energy

of convective photospheric motions, which is converted into magnetic and/or wave energy.
In particular, both turbulence and magnetic reconnection are implicated theoretically and
observationally in coronal heating and acceleration (for reviews, see, e.g., Klimchuk, 2006
and Reale, 2010).
However, existing observations have not been able to adequately constrain these theo-

ries, and the identity of the mechanisms that heat the corona and accelerate the solar wind
remains one of the unsolved mysteries of solar and heliospheric physics. How the coronal
plasma is generated, energized, and the way in which it breaks loose from the confining
coronal magnetic field are fundamental physical questions with crucial implications for pre-
dicting our own space environment, as well as for the understanding of the physics of other
astrophysical objects, from other stars, to accretion disks and their coronae, to energetic
phenomena such as jets, X- and gamma-ray bursts, and cosmic-ray acceleration.
The solar wind contains waves and turbulence on scales from millions of kilometers to

below the electron gyroradius. The turbulence scatters energetic particles, affecting the flux
of particles that arrives at the Earth; local kinetic processes dissipate the turbulent fluctua-
tions and heat the plasma. Properties of the turbulence vary with solar wind stream structure,
reflecting its origins near the Sun, but the turbulence also evolves as it is carried into space
with the solar wind, blurring the imprint of coronal conditions and making it difficult to
determine its physical origin. The inner heliosphere, where Solar Orbiter will conduct its
observations, provides the ideal laboratory for understanding magnetohydrodynamic turbu-
lence, which is expected to be ubiquitous in astrophysical environments.
Below we discuss in more detail three interrelated questions which flow down from this

top-level question: What are the source regions of the solar wind and the heliospheric mag-
netic field? What mechanisms heat and accelerate the solar wind? What are the sources of
turbulence in the solar wind and how does it evolve?

3.1.1. What Are the Source Regions of the Solar Wind and the Heliospheric Magnetic
Field?

Present State of Knowledge. At large scales, the structure of the solar wind and helio-
spheric magnetic field and their mapping to the solar corona are reasonably well understood.
However, extending this global understanding of the overall connection between the corona
and the solar wind deeper into the solar atmosphere and to the photosphere where the mag-
netic field can be measured has been difficult due to the dynamically evolved state of the
plasma measured in situ at 1 AU and to the lack of simultaneous in-situ measurements and
high-cadence, high-resolution remote sensing of solar plasma. A number of fundamental
questions remain unanswered both about the source of the fast and slow solar wind and
about the source of the magnetic field that the solar wind carries into the heliosphere.
(a) Source regions of the solar wind. The speed of the solar wind is empirically anti-

correlated with the (modeled) expansion rate of the magnetic field with radial distance close
to the Sun (Wang and Sheeley, 2006), where central areas of polar coronal holes give rise
to the fastest solar wind streams, while regions closer to the coronal hole boundary give rise
to progressively slower wind. Within coronal holes, strong outflows are well correlated with
the intense flux elements found at the intersection of the photospheric supergranular cells;
these expand into the corona as ‘funnels,’ preferentially from regions dominated by flux of
the dominant hole polarity (Tu et al., 2005; McIntosh, Davey, and Hassler, 2006).
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Figure 6 The modeled magnetic field of the transition region and lower corona in a polar coronal hole based
on measurements of the photospheric magnetic field strength. The figure illustrates the complex connections
between the solar surface and space: only the black field lines extend far from the surface. A central goal
of Solar Orbiter is to establish the links between the observed solar wind streams and their sources back on
the Sun. Understanding the dynamics of the Sun’s magnetic atmosphere and its signatures in the measured
solar wind holds the key to understanding the origin of all solar wind flows. (From Marsch et al. (2006),
reproduced with permission © ESO.)

The source region of the wind, at chromospheric and transition region heights, is ex-
tremely structured and dynamic (Figure 6). The chromosphere is permeated by spicules,
cool and dense jets of chromospheric plasma. Spicules have been thought to be too slow
and cold to contribute significantly to the solar wind, but a more dynamic type of spicule,
with shorter lifetimes, faster motions, and a hotter plasma component has recently been dis-
covered by Hinode. Such spicules also support waves, possibly with sufficient energy to
accelerate fast wind streams in coronal holes (De Pontieu et al. 2009, 2011).

Hinode has also observed the frequent occurrence of very small-scale X-ray jets in polar
coronal holes (Cirtain et al., 2007). Given the high velocities and frequency of these events,
it has been suggested that they contribute to the fast solar wind. Their relation to the pho-
tospheric magnetic field, however, has not been established as the high latitudes at which
they are observed hamper the accurate determination of their photospheric footpoints from
the ecliptic plane. Other fine-scale ray-like structures – coronal plumes – permeate coro-
nal holes and are correlated with small-scale bipolar structures inside the hole. Ultraviolet
measurements show that these structures are cooler than the surrounding background hole
plasma, and have slower, but denser outflows. In-situ measurements reveal the existence of
faster and slower microstreams within the fast wind (Neugebauer et al., 1995) as well as
other fine-scale structures (Thieme, Marsch, and Schwenn, 1990), but the two have not been
unambiguously linked to coronal features.
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Figure 7 Convective cells (white lines) in the photosphere can bring together oppositely directed magnetic
field lines (left). These can undergo interchange reconnection, altering which field lines open into space and
which close back to the surface (right). This process is thought to be important in generating the slow solar
wind flow, as well as moving magnetic flux over the solar cycle, but observational evidence for it is currently
weak. Solar Orbiter will combine high-resolution observations of photospheric motion and magnetic fields
with measurements of the solar wind and magnetic field flowing outward to determine the quantitative effects
of interchange reconnection. (From Fisk and Zurbuchen (2006).)

The anti-correlation of expansion/wind speed suggests that the slow wind is accelerated
along those open field lines with the greatest expansion rate, notably corresponding to the
bright rays at the coronal hole-streamer interface (e.g., Wang et al., 2007) and to outflows
from coronal hole boundaries (Antonucci, Abbo, and Dodero, 2005). However, composition
measurements tend to call this notion into question: a significant elemental fractionation is
observed in the solar wind plasma relative to that of the photosphere (e.g., Geiss, 1982),
which scales with the first ionization potential (FIP). Metallic ions, with low FIP, are more
abundant in the solar wind than mid- or high-FIP elements, when compared with their pho-
tospheric compositions (von Steiger, Geiss, and Gloeckler, 1997). Ulysses has revealed a
systematic difference in the degree of fractionation depending on the solar wind type. Fast
wind associated with coronal holes has a composition similar to that of the photosphere,
whereas the slow solar wind is characterized by a substantially larger degree of fractiona-
tion.
Recently, Antiochos et al. (2011) have presented a new model, which can account both

for the observed large angular width (up to ≈60°) of the slow wind as well as its FIP-
enhanced coronal composition. They argue that the most likely source for the slow wind is
a network of narrow, possibly singular, open-field corridors in the surrounding closed-field
corona that map to a web of separatrices (termed ‘S-web’) and quasi-separatrix layers in the
heliosphere. In this case, the process that releases the coronal plasma to the wind would have
to be either the opening of closed flux or interchange reconnection between open and closed
magnetic field lines. Closed magnetic fields lines close to the Sun confine the plasma in
loops, where the compositional differentiation occurs, but these are continuously destroyed
when neighboring open field lines are advected into them. Interchange reconnection between
the open and closed field allows the plasma to flow outwards into space (Figure 7). This
process should occur predominantly at the coronal hole boundary, but may also be active in
the intermediate areas of quiet Sun, and is the underlying mechanism invoked by Fisk and
coworkers (Fisk, Schwadron, and Zurbuchen, 1998; Fisk, 2003; Fisk and Zurbuchen, 2006;
Fisk and Zhao, 2009) in their model for the heliospheric magnetic field.
Additional contributions to the slow wind could arise from the opening of previously

closed field lines in the middle and lower corona, from the tops of helmet streamers
or the complex magnetic fields around active regions (Figure 8), for example, releasing
plasma blobs or plasmoids into the heliosphere. White-light coronagraph observations show
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Figure 8 Ultraviolet emission from plasma in the Sun’s atmosphere, revealing the complex magnetic field
structures around active regions. (SDO AIA 17.1 nm image.)

streamer blobs that might be plasmoids or might be pile-up from reconnection high in the
corona. Finally, there might be a continuous outward leakage of plasma from high in the
solar corona where the plasma pressure becomes comparable to the magnetic pressure in the
weak field at the apex of closed loops.
(b) Source regions of the heliospheric magnetic field. Our current knowledge of the sur-

face magnetic field of the Sun and its extension into the solar atmosphere and interplanetary
space is based on measurements of the photospheric line-of-sight (and recently, vector) mag-
netic field, coupled with spacecraft measurements of the field in situ. The vast majority of
the magnetic flux from the Sun closes in the lower layers of the solar atmosphere, within the
chromosphere and lower corona, in multiple small-scale bipolar regions with strong local
fields, and it is only a small fraction which extends high enough in the solar atmosphere
to be dragged out into the heliosphere by the solar wind. In addition, the intense magnetic
fields in the lower atmosphere are highly variable and dynamic at scales extending down
to instrument resolution limits in both time and space, continuously reconnecting and con-
tributing to the intense activity, spicules and jets in the chromosphere and lower corona. The
magnetic connection between the solar wind and the solar source therefore hinges on un-
derstanding what determines the amount of open flux from the Sun, how open field lines are
distributed at the solar surface at any given time, and how these open field lines reconnect
and change their connection across the solar surface in time, processes which are controlled
by interchange reconnection (Wang, Lean, and Sheeley, 2000; Fisk and Schwadron, 2001).
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The HCS is embedded in slow solar wind and, like the slow wind, is full of small-scale
structure. The origin of fine-scale structure in the magnetic field is therefore directly related
to the origin of the slow solar wind. As mentioned in Section 3.1, one of the most surprising
results regarding the heliospheric current sheet is that it is not symmetric around the equator,
but appears to be displaced southward by around 10° (Smith et al., 2000) during solar min-
ima, causing a difference in cosmic-ray fluxes between hemispheres. Similar asymmetries
exist in the Sun’s polar magnetic fields and even sunspot numbers (Wang and Robbrecht,
2011), but what is the origin of this asymmetry, and how does the Sun produce it in space?

How Solar Orbiter Will Address the Question. Solar Orbiter will measure the solar wind
plasma and magnetic field in situ while simultaneously performing remote-sensing mea-
surements of the photosphere and corona, thus allowing the properties of the solar wind
measured in situ to be correlated with structures observed in the source regions at the Sun.
During its perihelion passages, Solar Orbiter will determine the plasma parameters and
compositional signatures of the solar wind, which can be compared directly with the spec-
troscopic signatures of coronal ions with differing charge-to-mass ratios and FIP.

Solar Orbiter will determine magnetic connectivity by measuring energetic electrons
and the associated X-rays and radio emissions and using these measurements to trace the
magnetic field lines directly to the solar source regions. Photospheric magnetic field mea-
surements, together with those made in situ, will allow the coronal magnetic field to be
reconstructed by extrapolation with well-defined boundary conditions. Extreme ultraviolet
(EUV) imaging and spectroscopy will provide the images and plasma diagnostics needed to
characterize the plasma state in the coronal loops, which can erupt and deliver material to
solar wind streams in the outer corona. As Solar Orbiter observes different source regions,
from active regions to quiet Sun to coronal holes, hovering for substantial amounts of time
over each during the near-corotation periods, it will be able to provide insight into the origin
of the solar wind.
EUV spectroscopy and imaging are needed to detect magnetic reconnection in the transi-

tion region and corona, e.g., by the observation of plasma jets or of explosive events as seen
in the heavy-ion Doppler motions believed to mark the reconnection-driven plasma outflow.
These events appear to be associated with impulsive energetic particle bursts observed near
1 AU. The study of the time evolution of such events, and of their particle and radiation
output, can reveal whether reconnection is quasi-steady or time-varying, and a comparison
with magnetic field data will indicate the locations of the reconnection sites with respect to
the overall magnetic field structure and topology. Solar Orbiter’s coronagraph will construct
global maps of the H and He outflow velocity and measure the degree of correlation of wind
speed and He fraction.
Within the solar wind, the in-situ instruments will measure the radial, latitudinal, and

longitudinal gradients of plasma and field parameters in the inner heliosphere, providing
information fundamental to diagnosing the connection of the solar wind with the coronal
structure. Combining Solar Orbiter data from the in-situ and remote-sensing instruments
taken at different intervals will make it possible to determine the relative contributions of
plumes, jets, and spicules to the fast wind.

3.1.2. What Mechanisms Heat and Accelerate the Solar Wind?

Present State of Knowledge. Despite more than a half-century of study, the basic physical
processes responsible for heating the million-degree corona and accelerating the solar wind
are still not known. Identification of these processes is important for understanding the ori-
gins and impacts of space weather and to make progress in fundamental stellar astrophysics.
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Ultimately, the problem of solar wind acceleration is a question of the transfer, storage
and dissipation of the abundant energy present in the solar convective flows. The key chal-
lenge is to establish how a small fraction of that energy is transformed into magnetic and
thermal energy above the photosphere. Both emerging magnetic flux and the constant con-
vective ‘braiding’ of magnetic field lines contribute to the processing of the energy in what
is an extremely structured, highly dynamic region of the solar atmosphere, the route to dis-
sipation involving cascading turbulence, current sheet collapse and reconnection, shocks,
high-frequency waves, and wave–particle interactions. The advent of high-cadence high-
resolution observations has demonstrated the extremely complex phenomenology of the en-
ergy flux in the lower atmosphere, including many types of transient events discovered and
classified by Yohkoh, SOHO, TRACE, RHESSI, Hinode and SDO.
Energy deposited in the corona is lost in the form of conduction, radiation (neg-

ligible in coronal holes), gravitational enthalpy, and kinetic energy fluxes into the ac-
celerating solar wind plasma. Transition region pressure, coronal densities, temperature
and the asymptotic solar wind speed are sensitive functions of the mode and location
of energy deposition. The mass flux is not, however, as it depends only on the ampli-
tude of the energy flux (Hansteen and Leer, 1995). A relatively constant coronal en-
ergy flux therefore explains the small variations in mass flux between slow and fast so-
lar wind found by Ulysses during its first two orbits, although the dramatic decrease in
mass flux over the present cycle points also to a decreased efficiency of coronal heat-
ing and therefore to its dependence on the solar magnetic field (McComas et al., 2008;
Schwadron and McComas, 2008).
One of the fundamental experimental facts that has been difficult to account for the-

oretically is that the fast solar wind originates in regions where the electron temperature
and densities are low, while the slow solar wind comes from hotter regions of the corona.
The anti-correlation of solar wind speed with electron temperature is confirmed by the anti-
correlation between wind speed and ‘freezing in’ temperature of the different ionization
states of heavy ions in the solar wind (Geiss et al., 1995) and implies that the electron pres-
sure gradient does not play a major role in the acceleration of the fast wind. On the other
hand, the speed of the solar wind is positively correlated with the in-situ proton temperature,
and the fastest and least collisionally coupled wind streams also contain the largest distribu-
tion function anisotropies. Observations of the very high temperatures and anisotropies of
coronal heavy ions suggest that other processes such as magnetic mirror and wave–particle
interactions should also contribute strongly to the expansion of the fast wind (Li et al., 1998;
Kohl et al. 1997, 1998, 2006; Dodero et al., 1998). In particular, either the direct generation
of high-frequency waves close to the cyclotron resonance of ions or the turbulent cascade
of energy to those frequencies should play an important role (Figure 9). For an extensive
review of the kinetic physics of the solar corona and solar wind, see Marsch (2006).
Theoretical attempts to develop self-consistent models of fast solar wind acceleration

have followed two somewhat different paths. First, there are models in which the convection-
driven jostling of magnetic flux tubes in the photosphere drives wave-like fluctuations that
propagate up into the extended corona. The waves partially reflect back toward the Sun,
develop into strong turbulence, and/or dissipate over a range of heights. These models also
tend to attribute the differences between the fast and slow solar wind not to any major dif-
ferences in the lower boundary conditions, but to the varying expansion factor of magnetic
field lines in different areas of coronal holes (Cranmer, van Ballegooijen, and Edgar, 2007,
and references therein).
In the second class of models, the interchange reconnection models, the energy flux usu-

ally results from magnetic reconnection between closed, loop-like magnetic flux systems
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Figure 9 Histograms of the solar wind proton temperature anisotropy (ratio of perpendicular to parallel tem-
peratures) versus the plasma pressure parallel to the field (parallel plasma beta) in the fast solar wind mea-
sured at two different radial distances by Helios. The dark line shows the decrease of anisotropy expected if
the wind were expanding adiabatically without heating (dark continuous), and the actual distribution function
contours with best fit of the run of anisotropy. Instability threshold conditions for the ion-cyclotron (solid),
the mirror (dotted), the parallel (dashed) and oblique (dash-dotted) fire hose instabilities are also shown. Dis-
tribution functions display perpendicular heating and evolve towards marginal stability with distance from
the Sun. Solar Orbiter will determine initial conditions for the perpendicular anisotropies and help determine
the nature of the plasma-wave interactions responsible for this heating. (From Matteini et al. (2007).)

(which are in the process of emerging, fragmenting, and being otherwise jostled by convec-
tion) and the open flux tubes that connect to the solar wind. Here the differences between
fast and slow solar wind result from qualitatively different rates of flux emergence, recon-
nection, and coronal heating in different regions on the Sun (Axford and McKenzie, 1992;
Fisk, Schwadron, and Zurbuchen, 1999; Schwadron and McComas, 2003). It has been diffi-
cult to evaluate competing models of fast wind acceleration and to assess observationally the
relative contributions of locally emerging magnetic fields and waves to the heat input and
pressure required to accelerate the wind largely because of the absence of measurements of
the solar wind close to the Sun where they can be mapped with sufficient precision to a solar
source region.

How Solar Orbiter Will Address the Question. Solar Orbiter’s combination of high-
resolution measurements of the photospheric magnetic field together with images and spec-
tra at unprecedented spatial resolution will make it possible to identify plasma processes
such as reconnection/shock formation and wave dissipation in rapidly varying surface fea-
tures, observe Doppler shifts of the generated upflows, and determine compositional sig-
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natures. Whatever the scale, magnetic reconnection leads to particle dissipative heating and
acceleration and wave generation, which have the net effect of a local kinetic energy increase
in the lower solar atmosphere that can be revealed through high-resolution extreme ultravi-
olet (EUV) imaging and spectroscopy. Wave propagation will be traced from the source site
to the region of dissipation through observations of EUV-line broadening and Doppler shifts.
Global maps of the H and He outflow velocity, obtained by applying the Doppler dim-

ming technique to the resonantly scattered component of the most intense emission lines of
the outer corona (H I 121.6 nm and He II 30.4 nm), will provide the contours of the max-
imum coronal acceleration for the two major components of the solar wind, and the role
of high-frequency cyclotron waves will be comprehensively assessed by measuring spectro-
scopically the particle velocity distribution across the field and determining the height where
the maximum gradient of outflow velocity occurs (Telloni, Antonucci, and Dodero, 2007).

Solar Orbiter’s heliospheric imager will measure the velocity, acceleration, and mass
density of structures in the accelerating wind, allowing precise comparison with the different
acceleration profiles of turbulence-driven and interchange reconnection-driven solar wind
models.
As it is performing imaging and spectroscopic observations of the corona and photo-

sphere, Solar Orbiter will simultaneously measure in situ the properties of the solar wind
emanating from the source regions. The in-situ instrumentation will determine all of the
properties predicted by solar wind acceleration models: speed, mass flux, composition,
charge states, and wave amplitudes. Moving relatively slowly over the solar surface near
perihelion, Solar Orbiter will measure how properties of the solar wind vary depending on
the changing properties of its source region, as a function of both space and time, distin-
guishing between competing models of solar wind generation.

3.1.3. What Are the Sources of Turbulence in the Solar Wind and How Does It Evolve?

Present State of Knowledge. The solar wind is filled with turbulence and instabilities. At
large scales, the fast solar wind is dominated by anti-sunward propagating Alfvén waves
thought to be generated by photospheric motions. At smaller scales, these waves decay and
generate an active turbulent cascade, with a spectrum similar to the Kolmogorov hydro-
dynamic scaling of f −5/3. In the slow solar wind, turbulence does not have a dominant
Alfvénic component, and it is fully developed over all measured scales. There is strong evi-
dence that the cascade to smaller scales is anisotropic, but it is not known how the anisotropy
is generated or driven (Horbury, Forman, and Oughton, 2008). What do the differences be-
tween the turbulence observed in the fast wind and that observed in the slow wind reveal
about the sources of the turbulence and of the wind itself?
Little is known about what drives the evolution of solar wind turbulence. Slow-fast wind

shears, fine-scale structures, and gradients are all candidate mechanisms (Tu and Marsch,
1990; Breech et al., 2008). To determine how the plasma environment affects the dynam-
ical evolution of solar wind turbulence it is essential to measure the plasma and mag-
netic field fluctuations in the solar wind as close to the Sun as possible, before the ef-
fects of mechanisms such as velocity shear become significant, and then to observe how
the turbulence evolves with heliocentric distance. The dissipation of energy in a turbu-
lent cascade contributes to the heating of the solar wind plasma. However, while mea-
surements of the properties of solar wind turbulence in near-Earth orbit largely agree with
observed heating rates (Smith et al., 2001; Marino et al., 2008), the details are controver-
sial and dependent on precise models of turbulent dynamics. In order to establish a full
energy budget for the solar wind, the heating rates as a function of distance and stream
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properties must be determined, including turbulence levels before the cascade develops
significantly. The statistical analysis of the fluctuating fields also reveals pervasive fine-
scale structure (e.g., discontinuities and pressure balanced structures). The origin of these
structures is uncertain: are they the remnant of complex coronal structuring in the form
of strands of small-scale flux tubes advected by the solar wind flow (Borovsky, 2008;
Bruno et al., 2001), or are they generated locally by turbulent fluctuations?
At scales around the proton gyroradius and below, turbulent fluctuations interact directly

with the solar wind ions. The precise nature of the turbulent cascade below the proton gy-
roradius is poorly understood and might even vary depending on local plasma conditions.
Below the electron gyroradius, conditions are even less certain and the partitioning of tur-
bulent energy into electron or ion heating is unknown at this time. In addition, solar wind
expansion constantly drives distribution functions toward kinetic instabilities, where fluctu-
ations with characteristic signatures are generated (e.g., Marsch et al., 2006). What physical
role do kinetic effects play with distance from the Sun? What role do wave–particle interac-
tions play in accelerating the fast solar wind? What contribution do minor ions make to the
turbulent energy density in near-Sun space?

How Solar Orbiter Will Address the Question. Solar Orbiter will measure waves and tur-
bulence in the solar corona and solar wind over a wide range of latitudes and distances,
including closer to the Sun than ever before, making it possible to study turbulence before
it is significantly affected by stream-stream interactions. By traveling over a range of dis-
tances, the spacecraft will determine how the turbulence evolves and is driven as it is carried
anti-sunward by the solar wind. Detailed in-situ data will make it possible to distinguish
between competing theories of turbulent dissipation and heating mechanisms in a range of
plasma environments and are thus of critical importance for advancing our understanding of
coronal heating and of the role of turbulence in stellar winds.
By entering near-corotation close to the Sun, Solar Orbiter will be able to distinguish

between the radial, longitudinal, and temporal scales of small-scale structures, determining
whether they are the signatures of embedded flux tubes or are generated by local turbulence.

Solar Orbiter’s magnetic and electric field measurements, combined with measurement
of the full distribution functions of the protons and electrons will fully characterize plasma
turbulence over all physically relevant time scales from very low frequencies to above the
electron gyrofrequency. Because Solar Orbiter is a three-axis stabilized spacecraft, it can
continuously view the solar wind beam with its proton instrument, measuring proton distri-
butions at the gyroperiod and hence making it possible directly to diagnose wave–particle
interactions in ways that are not possible on spinning spacecraft. By traveling closer to the
Sun than ever before, it will measure wave–particle interactions before the particle distri-
butions have fully thermalized, studying the same processes that occur in the corona. By
measuring how the distributions and waves change with solar distance and between solar
wind streams with different plasma properties, Solar Orbiter will make it possible to deter-
mine the relative effects of instabilities and turbulence in heating the plasma.
The solar wind is the only available plasma ‘laboratory’ where detailed studies of mag-

netohydrodynamic (MHD) turbulence can be carried out free from interference with spatial
boundaries, and in the important domain of very large magnetic Reynolds numbers. Detailed
comparison between experimental in-situ data and theoretical concepts will provide a more
solid physical foundation for MHD turbulence theory, which will be of critical importance
for understanding the solar (stellar) coronal heating mechanism and the role or turbulence
in the solar (a stellar) wind.
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3.2. How Do Solar Transients Drive Heliospheric Variability?

The Sun exhibits many forms of transient phenomena, such as flares, coronal mass ejec-
tions (CMEs), eruptive prominences, and shock waves. Many directly affect the structure
and dynamics of the outflowing solar wind and thereby also eventually affect Earth’s mag-
netosphere and upper atmosphere. Understanding these impacts, with the ultimate aim of
predicting them, has received much attention during the past decade and a half under the
banner of ‘space weather.’ However, many fundamental questions remain about the physics
underpinning these phenomena and their origins, and these questions must be answered be-
fore we can realistically expect to be able to predict the occurrence of solar transients and
their effects on geospace and the heliosphere. These questions are also pertinent, within the
framework of the ‘solar-stellar connection,’ to our understanding of other stellar systems
that exhibit transient behavior such as flaring (e.g., Getman et al., 2008).

Solar Orbiter will provide a critical step forward in understanding the origin of solar
transient phenomena and their impact on the heliosphere. Located close to the solar sources
of transients, Solar Orbiter will be able both to determine the input to the heliosphere and to
measure directly the heliospheric consequences of eruptive events at distances close enough
to sample the fields and plasmas in their pristine state, prior to significant processing during
their propagation to 1 AU. Solar Orbiter will thus be a key augmentation to the chain of
solar-terrestrial observatories in Earth orbit and at the libration points, providing a critical
perspective from its orbit close to the Sun and out of the ecliptic.
Below we discuss in more detail three interrelated questions which flow down from this

top-level question: How do CMEs evolve through the corona and inner heliosphere? How
do CMEs contribute to solar magnetic flux and helicity balance? How and where do shocks
form in the corona and inner heliosphere?

3.2.1. How Do CMEs Evolve Through the Corona and Inner Heliosphere?

Present State of Knowledge. Following earlier observations by space-based white-light
coronagraphs, considerable progress in understanding CMEs has been achieved using data
from the ESA-NASA SOHO mission, which provides continuous coverage of the Sun and
combines coronagraphs with an EUV imager and off-limb spectrometer. Other spacecraft,
such as ACE,Wind and Ulysses, which carried comprehensive in-situ instrumentation, have
contributed significantly to our understanding of the interplanetary manifestation of these
events. With a full solar cycle of CME observations, the basic features of CMEs are now
understood. CMEs often appear to originate from highly sheared magnetic field regions on
the Sun known as filament channels, which support colder plasma condensations known
as prominences. Eruptions are frequently impulsively accelerated in the low corona within
10 – 15 minutes (the initial phase can take significantly longer, see Liu et al., 2010), while
the associated shocks cross the solar disk within 1 hour. CMEs reach speeds of up to
3000 km s−1 and carry energies (kinetic, thermal and magnetic) of ∼1025 J (=1032 ergs).
They can also accelerate rapidly during the very early stages of their formation, with the
CME velocity being closely tied, in time, to the associated flare’s soft X-ray light pro-
file (Zhang and Dere, 2006). SOHO’s coronagraph images (Figure 10) have provided ev-
idence for a magnetic flux rope structure in some CMEs as well as for post-CME current
sheets. Both features are predicted by CME initiation models (e.g., Lin and Forbes, 2000;
Lynch et al., 2004).
STEREO observations are making it possible to chart the trajectories of CMEs in the

corona and heliosphere in three dimensions, thereby improving our understanding of CME
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Figure 10 A coronal mass ejection (CME) on the solar limb as viewed by LASCO on SOHO in December
2002. The dark, low-density region inside the structure formed by the bright loop of streamer material is
thought to be the magnetic flux rope predicted by current CME initiation models. CMEs are believed to
originate from prominence eruptions, yet in interplanetary coronal mass ejections (ICMEs) observed at 1 AU
prominence plasma (the bright core in this image) is very rarely detected. Solar Orbiter will enable in-situ
measurements of the ejecta and their radial (and out-of-the-ecliptic) evolution in more detail than possible
from Earth orbit, where many features have been washed out.

evolution and propagation. STEREO data have supported detailed comparison both of in-
situ measurements with remote-sensing observations and of MHD heliospheric simulations
with observations. The combination of high-cadence coronagraphic and EUV imaging sim-
plifies the separation of the CME proper from its effects in the surrounding corona (Pat-
sourakos and Vourlidas, 2009) and allows a more accurate determination of its dynamics.
Despite the advances in our understanding enabled by SOHO and STEREO, very basic

questions remain unanswered. These concern the source and initiation of eruptions, their
early evolution, and the heliospheric propagation of CMEs. All current CME models pre-
dict that the topology of interplanetary coronal mass ejections (ICMEs) is that of a twisted
flux rope as a result of the flare reconnection that occurs behind the ejection. Observations
at 1 AU, however, find that less than half of all ICMEs, even those associated with strong
flares, have a flux rope structure (Richardson and Cane, 2004; Richardson and Cane, 2010;
Kilpua et al., 2011). Many ICMEs at 1 AU appear to have a complex magnetic structure
with no clearly defined topology. Moreover, for ICMEs that do contain flux ropes, the ori-
entation is often significantly different from that expected on the basis of the orientation of
the magnetic fields in the prospective source region. CMEs are believed to originate from
prominence eruptions, yet in ICMEs observed at 1 AU prominence plasma is very rarely
detected. These major disconnects between theoretical models of prominence eruption and
CME propagation and observations need to be resolved if any understanding of the CME
process is to be achieved.
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How Solar Orbiter Will Address the Question. To advance our understanding of the struc-
ture of ICMEs and its relation to CMEs at the Sun beyond what has been achieved with
SOHO and STEREO requires a combination of remote-sensing and in-situ measurements
made at close perihelion and in near-corotation with the Sun. Through combined observa-
tions with its magnetograph, imaging spectrograph, and soft X-ray imager, Solar Orbiter
will provide the data required to establish the properties of CMEs at the Sun and to de-
termine how coronal magnetic energy is released into CME kinetic energy, flare-associated
thermal/non-thermal particle acceleration, and heating. Observations with the imaging spec-
trograph will be used to determine the composition of CMEs in the low corona and to estab-
lish how they expand and rotate and will also provide important clues to the energy partition
within a CME once it is released. Solar Orbiter will make comprehensive in-situ measure-
ments of the fields and plasmas (particularly composition) of ICMEs during the early phases
of their propagation through the heliosphere.
These measurements will allow the properties of an ICME to be related to those of the

CME at the Sun and to the conditions in the CME source region as observed by Solar
Orbiter’s remote-sensing instruments and will make it possible to examine the evolution of
CMEs in the inner heliosphere. Solar Orbiter’s combination of remote-sensing and in-situ
observations will also establish unambiguously the magnetic connectivity of the ICME and
reveal how the magnetic energy within flux ropes is dissipated to heat and accelerate the
associated particles. Solar Orbiter data will also reveal how the structure of the magnetic
field at the front of a CME evolves in the inner heliosphere – a critical link in understanding,
and eventually predicting, the geoeffective potential of transient events on the Sun.
To fully understand the physical system surrounding CME ejection, the temporal evo-

lution of active regions and CME-related shocks and current sheets must be tracked from
their formation in the corona to their expulsion in the solar wind. During the mission phases
when the spacecraft is in near-corotation with the Sun, Solar Orbiter will continuously ob-
serve individual active regions, free from projection complications, over longer periods than
are possible from Earth orbit. Solar Orbiter will thus be able to monitor the development
of sheared magnetic fields and neutral lines and to trace the flux of magnetic energy into
the corona. Observations from this vantage point will make it possible to follow the evolu-
tion of the current sheet behind a CME with unprecedented detail and to clarify the varying
distribution of energy in different forms (heating, particle acceleration, kinetic).

3.2.2. How Do CMEs Contribute to the Solar Magnetic Flux and Helicity Balance?

Present State of Knowledge. Magnetic flux is transported into the heliosphere both by the
solar wind, in the form of open flux carried mostly by the fast wind from polar coronal holes,
and by coronal mass ejections, which drag closed flux with them as they propagate into the
heliosphere. At some point the closed flux introduced by CMEs must be opened to avoid an
unsustainable build-up of magnetic flux in the heliosphere. Measurements of the magnetic
flux content of the heliosphere from near Earth, covering more than 40 years, show that
the total amount of magnetic flux in the solar system changes over the solar cycle (Owens
et al., 2008 and Figure 11). In addition, there is evidence that the heliospheric magnetic
flux has increased substantially in the last 100 years, perhaps by as much as a factor of two
(Lockwood, Stamper, andWild, 1999; Rouillard, Lockwood, and Finch, 2007), possibly due
to a long-term change in the Sun’s dynamo action. Surprisingly, however, during the recent
solar minimum the IMF strength was lower than at any time since the beginning of the space
age.
The relative contribution of the solar wind and CMEs to the heliospheric magnetic flux

budget is an unresolved question, as is the process by which the flux added by the CMEs is
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Figure 11 Near-Earth interplanetary magnetic field strength (thick line) and sunspot number (background
filled values) for the last 45 years. The magnetic field strength varies over the solar cycle, but was lower
during the recent minimum than at any time since the beginning of the space age. The depth, as well as the
length of this minimum was not predicted and is not understood. Solar Orbiter will investigate the evolving
links between solar and interplanetary magnetic fields. (From M. Owens, University of Reading.)

removed. Models to explain the solar cycle variation assume a background level of open flux,
to which CMEs add extra flux during solar maximum, increasing the intensity of the IMF.
The exceptionally low intensity of the IMF during the current minimum has been attributed
to the low rate of CME occurrence (Owens et al., 2008). Alternatively, there may simply be
no ‘background’ open flux level.
There is evidence that the flux introduced into the heliosphere by CMEs may be removed

by magnetic reconnection within the trailing edges of CMEs, which disconnects the CME
from the Sun or by interchange reconnection closer to the solar surface (e.g., Owens and
Crooker, 2006). Recent observations show that reconnection processes occur quite often
in the solar wind, even when the magnetic field is not being compressed. However, the
rate and/or locations at which reconnection generally removes open flux are not at present
known.
Together with magnetic flux, the solar wind and CMEs carry magnetic helicity away

from the Sun. Helicity is a fundamental property of magnetic fields in plasmas, where it
plays a special role because it is conserved not only by the ideal dynamics, but also during
the relaxation which follows instabilities and dissipation. Helicity is injected into the corona
when sunspots and active regions emerge, via the twisting and braiding of magnetic flux.
During the coronal heating process the overall helicity is conserved and tends to accumulate
at the largest possible scales. It is natural to assume that critical helicity thresholds may be
involved in the triggering of CMEs, but how solar eruptions depend on the relative amounts
of energy and helicity injection during active region emergence and evolution is unknown.
Yet this understanding could be a crucial element in the prediction of large solar events.

How Solar Orbiter Will Address the Question. Fundamental to the question of contribution
of CMEs to the heliospheric flux budget is the flux content of individual events. Encounter-
ing CMEs close to the Sun before interplanetary dynamics affects their structure, Solar
Orbiter will measure their magnetic flux content directly; comparisons with remote-sensing
measurements of their source regions will clarify the relation between CME flux and the
eruption process. As Solar Orbiter moves through the inner heliosphere, it will encounter
CMEs at different solar distances, making it possible to quantify the effect of interplanetary
dynamics on their apparent flux content. The flux carried outwards by CMEs must eventu-
ally disconnect completely from the Sun, or undergo interchange reconnection with existing
open field lines. Solar Orbiter will diagnose the magnetic connectivity of the solar wind
and CME plasma using suprathermal electron and energetic particle measurements. These
particles, which stream rapidly along the magnetic field from the Sun, indicate whether a
magnetic flux tube is connected to the Sun at one end, at both ends, or not at all. Suprather-
mal particles disappear when the field is completely disconnected, or may reverse their flow
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direction as a result of interchange reconnection. However, scattering and reflection due to
curved, tangled, or compressed magnetic field lines act to smear out these signatures with
increasing solar distance, leading to ambiguity in connectivity measurements. Around peri-
helion, Solar Orbiter will be able to determine the original level of magnetic connectivity;
covering a wide range of distances in the inner heliosphere, the spacecraft will measure how
the connectivity changes as field lines are carried away from the Sun.

Solar Orbiter will also directly sample reconnection regions in the solar wind as they pass
the spacecraft, determining their occurrence rates in the inner heliosphere as a function of
distance and testing theories of CME disconnection by searching for reconnection signatures
in the tails of CMEs.
The contribution to the heliospheric magnetic flux of small-scale plasmoids, ejected from

the tops of streamers following reconnection events, is unclear. Solar Orbiter, slowly mov-
ing above the solar surface during perihelion passes, will determine the magnetic structure,
connectivity, and plasma properties including composition of these ejecta, using spectro-
scopic imaging observations to unambiguously link them to their source regions. To assess
the role of CMEs in maintaining the solar magnetic helicity balance, Solar Orbiter will
compare the helicity content of active regions as determined from remote sensing of the
photospheric magnetic field with that of magnetic clouds measured in situ. Such a compar-
ison requires both extended remote-sensing observations of the same active region over the
region’s lifetime and in-situmeasurements of magnetic clouds from a vantage point as close
to the solar source as possible. Around its perihelia, Solar Orbiter will ‘dwell’ over partic-
ular active regions and observe the emergent flux for a longer interval (more than 22 days)
than is possible from 1 AU, where perspective effects complicate extended observations.
The resulting data will be used to calculate the helicity content of an active region, track
its temporal variation, and determine the change in helicity before and after the launch of
any CMEs. Should a magnetic cloud result from an eruptive event in the active region over
which Solar Orbiter is dwelling, the relatively small distance between the solar source and
the spacecraft will make it probable that Solar Orbiter will directly encounter the magnetic
cloud soon after its release. Determination of the cloud’s properties and connectivity through
Solar Orbiter’s in-situ measurements will enable the comparison of a magnetic cloud in a
relatively unevolved state with the properties of the solar source, an impossibility with mea-
surements made at 1 AU. The comparison of the helicity change in the source region with
the value measured in the magnetic cloud will provide insight into the role of CMEs in the
helicity balance of the Sun.

3.2.3. How and Where Do Shocks Form in the Corona and Inner Heliosphere?

Present State of Knowledge. The rapid expulsion of material during CMEs can drive shock
waves in the corona and heliosphere. Shocks in the lower corona can also be driven by flares,
and in the case of CME/eruptive flare events it may be difficult to unambiguously identify
the driver (Vršnak and Cliver, 2008). CME-driven shocks are of particular interest because
of the central role they play in accelerating coronal and solar wind particles to very high
energies in solar energetic particles (SEP) events (see Section 3.3).
Shocks form when the speed of the driver is super-Alfvénic. The formation and evolution

of shocks in corona and the inner heliosphere thus depend i) on the speed of the driving CME
and ii) on the Alfvén speed of the ambient plasma and its spatial and temporal variations.
According to one model of the radial distribution of the Alfvén speed in the corona near
active regions, for example, shocks can form essentially in two locations, in the middle
corona (1.2 – 3 RSun), where there is an Alfvén speed minimum, and distances beyond an
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Alfvén speed maximum at ∼4 RSun (Mann et al., 2003). A recent study of CMEs with
and without type II radio bursts (indicative of shock formation) has shown that some of
the fast and wide CMEs observed produced no shock or only a weak shock because they
propagated through tenuous regions in the corona where the Alfvén velocity exceeded that
of the CME (Gopalswamy et al., 2008). CME shock formation/evolution can also be affected
by the interaction between an older, slower-moving CME and a faster CME that overtakes it.
Depending on the Alfvén speed in the former, the interaction may result in the strengthening
or weakening of an existing shock driven by the overtaking CME or, if there is no existing
shock, the formation of one (Gopalswamy et al. 2001, 2002).
Recent studies of LASCO images obtained during the rising phase of Solar Cycle 23 have

demonstrated the feasibility of detecting CME-driven shocks from a few to∼20 RSun and of
measuring their density compression ratio and propagation direction (Vourlidas et al., 2003;
Ontiveros and Vourlidas, 2009). This development has opened the way for the investiga-
tion of shock formation and evolution in the lower corona and heliosphere through Solar
Orbiter’s combination of remote-sensing observations and in-situ measurements.

How Solar Orbiter Will Address the Question. Understanding shock generation and evo-
lution in the inner heliosphere requires knowledge of the spatial distribution and temporal
variation of plasma parameters (density, temperature, and magnetic field) throughout the
corona. Solar Orbiter’s remote-sensing measurements – in particular electron density maps
derived from the polarized visible-light images and maps of the density and outflow veloc-
ity of coronal hydrogen and helium – will provide much improved basic plasma models of
the corona, so that the Alfvén speed and magnetic field direction can be reconstructed over
the distance range from the Sun to the spacecraft. Remote sensing will also provide ob-
servations of shock drivers, such as flares (location, intensity, thermal/non-thermal electron
populations, time-profiles) and manifestations of CMEs (waves, dimmings, etc.) in the low
corona with spatial resolution of a few hundred kilometers and cadence of a few seconds.
It will measure the acceleration profile of the latter and then track the CMEs through the
crucial heights for shock formation (2 – 10 RSun) and provide speed, acceleration, and shock
compression ratio measurements.
Type II bursts, detected by Solar Orbiter, will indicate shock-accelerated electron beams

produced by the passage of a CME and thus provide warning of an approaching shock to the
in-situ instruments. These in-situ plasma and magnetic field measurements will fully charac-
terize the upstream and downstream plasma and magnetic field properties and quantify their
microphysical properties, such as turbulence levels and transient electric fields (while also
directly measuring any solar energetic particles (SEPs) – cf. Section 3.3). Spacecraft poten-
tial measurements also allow for rapid determinations of the plasma density, and of electric
and magnetic field fluctuations, on microphysical scales, comparable to the Doppler-shifted
ion scales, which are characteristic of the spatial scales of shocks. The evolution of such
parameters will provide insight into the processes dissipating shock fronts throughout the
parameter space. Because of Solar Orbiter’s close proximity to the Sun, the measurements
of the solar wind plasma, electric field, and magnetic field will be unspoiled by the dynam-
ical wind interaction pressure effects due to solar rotation and will provide the first reliable
data on the magnetosonic speed, the spatial variation of the plasma pressure and magnetic
field in the inner heliosphere. A recent MHD modeling study has shown that interactions
among recurring CMEs and their shocks occur typically in the distance range around 0.2 –
0.5 AU (Lugaz, Manchester, and Gombosi, 2005). Solar Orbiter will spend significant time
in the regions of recurring CME interactions and so will be able to investigate the effects of
such interactions on the evolution of CME-driven shocks.
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3.3. How Do Solar Eruptions Produce Energetic Particle Radiation that Fills the
Heliosphere?

Astrophysical sites that have the ability to accelerate ions and electrons to high speeds,
forming energetic particle radiation, exist throughout the solar system and beyond. Detected
remotely from radio and light emission around supernovae remnants, the Sun and planets,
or directly from particles that reach our detectors, this radiation arises from the explosive
release of stored energy that can cause magnetic fields to rearrange, or can launch shock
waves which accelerate particles by repeatedly imparting many small boosts to their speed.
The nearly universal occurrence of energetic particle radiation, along with the effects it can
have on planetary environments, evolution of life forms, and space systems has fostered a
broad interest in this phenomenon that has long made it a high priority area of investigation
in space science. Since remote sites in the galaxy cannot be studied directly, solar system
sources of energetic particles give the best opportunity for studying all aspects of this com-
plex problem.
The Sun is the most powerful particle accelerator in the solar system, routinely produc-

ing energetic particle radiation at speeds close to the speed of light, sufficiently energetic
to be detected at ground level on Earth even under the protection of our magnetic field and
atmosphere. SEP events can severely affect space hardware, disrupt radio communications,
and cause re-routing of commercial air traffic away from polar regions. In addition to large
events, which occur roughly monthly during periods of high sunspot count, more numerous,
smaller solar events can occur by the thousands each year, providing multiple opportunities
to understand the physical processes involved. Below we discuss in more detail three inter-
related questions that flow down from this top-level question: How and where are energetic
particles accelerated at the Sun? How are energetic particles released from their sources and
distributed in space and time? What are the seed populations for energetic particles?

3.3.1. How and Where Are Energetic Particles Accelerated at the Sun?

Present State of Knowledge. One of the two major physical mechanisms for energizing
particles involves particles interacting with moving or turbulent magnetic fields, gaining
small amounts of energy at each step and eventually reaching high energies. Called Fermi
or stochastic acceleration, this mechanism is believed to operate in shock waves and in
turbulent regions such as those associated with reconnecting magnetic fields or in heated
coronal loops. The second major physical mechanism is a magnetic field whose strength
or configuration changes in time, producing an electric field which can directly acceler-
ate particles in a single step. At the Sun, such changes occur when large magnetic loop
structures reconnect, or are explosively rearranged due to the stress from the motion of
their footpoints on the solar surface (e.g., Aschwanden, 2006; Giacalone and Kóta, 2006).
Multiple processes may take place in SEP events, and while it is not possible to cleanly
separate them, they can be split into two broad classes, the first being events associated
with shock waves. Figure 12 shows a sketch wherein an instability in coronal magnetic
loops has resulted in an eruption that launches a CME. As it moves into space, it drives a
shock creating turbulence that accelerates SEPs from a seed population of ions filling the
interplanetary medium (inset 2). Mixed into this may be particles from an associated so-
lar flare (inset 1). CMEs often accelerate particles for hours as they move away from the
Sun, and in some cases are still accelerating particles when they pass Earth orbit in a day
or two (Figure 13). Since CMEs can be huge as shown in the LASCO image, it is easy
to see how they can fill a large portion of the heliosphere with SEPs. However, the cor-
relation of the observed radiation intensities with CME properties is poor, indicating that
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Figure 12 Sketch showing a solar flare and CME driving an interplanetary shock. Both the flare source and
shock may contribute to the interplanetary energetic particle populations. However, the relative importance of
acceleration processes due to flares and CME-driven shocks cannot be determined at 1 AU because of particle
mixing. Solar Orbiter will allow tests of the relative importance of the different acceleration mechanisms
around perihelion. There, the shock will pass over Solar Orbiter while still in the early phases of particle
acceleration, making it possible to directly compare the energetic particles with shock properties such asMach
number, turbulence level, and with the local seed population. Simultaneous in-situ observations of magnetic
field lines connecting back to flare sites and to shock fronts driven by CMEs, together with concurrent remote
imaging of flares, wide field-of-view imaging of CMEs and spectroscopic identification of the CME-driven
shocks from Solar Orbiter, will help to determine the relative importance of the associated acceleration
processes. (Adapted from NASA’s Solar Sentinels STDT report.)

additional aspects of the mechanism such as seed populations or shock geometry must play
important roles that are not yet well understood (Gopalswamy, 2006; Desai et al., 2006;
Mewaldt, 2006).
The second class of events is associated with plasma and magnetic field processes in

loops and active regions that accelerate particles. Reconnecting magnetic loops, and emerg-
ing magnetic flux regions provide sites for stochastic energetic particle acceleration or accel-
eration by electric fields. Because these regions are relatively small, the acceleration process
is quick: on the order of seconds or minutes, but the resulting event is small and often diffi-
cult to observe. Since the energized particles are in the relatively high-density regions of the
corona, they collide with coronal plasma, producing ultraviolet (UV) and X-ray signatures
that make it possible to locate their acceleration sites and probe the local plasma density.
Most of these particles remain trapped on their parent loops, traveling down the legs to the
solar surface where they lose their energy to ambient material, producing X- and gamma-
rays. A few escape on magnetic field lines leading to interplanetary space, traceable by their
(type III) radio signatures, electrons, and highly fractionated ion abundances where the rare
3He can be enhanced by 1000 – 10000 times more than in solar material. Figure 14 illus-
trates another site where reconnection can accelerate particles: in the current sheet behind a
CME lift-off. In this case, particles can be accelerated for hours, and may ‘leak’ around
the CME structure and become mixed with the shock-accelerated particles (Lin, 2006;
Cargill et al., 2006; Drake et al., 2009).
The energetic particles from these events reach our detectors at Earth orbit after spiraling

around the IMF, which is an Archimedes spiral on average. But since the IMF meanders
and has many kinks, the length of the particle’s path has a high degree of uncertainty, and
the particles themselves scatter and mix, smearing and blurring signatures of the accelera-
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Figure 13 Upper panel: SOHOLASCO observations of a CME erupting from the Sun’s western hemisphere,
with exposure times at 00:50, 01:27 and 01:50 UT. The CME reached a speed of 2700 km s−1 at 18 RSun,
and the associated interplanetary shock passed Earth around ∼04:15 UT on 23 April 2002, about 51 hours
after the lift-off. Lower panel: ACE observations of high-energy SEP O nuclei showing an increase in inten-
sity of nearly five orders of magnitude beginning shortly after the CME lift-off. Note that, while the CME
photos are all taken near the intensity onset, the ACE intensities remained elevated for days, long after the
shock had passed the Earth. Solar Orbiter will provide much more accurate timing and particle distribution
measurements because of its much shorter magnetic connection to the acceleration sites. This will pinpoint
the acceleration mechanisms and determine the importance of interplanetary transport processes. (Adapted
from Emslie et al. (2004).)

tion at the Sun. Although we can enumerate candidate mechanisms for producing SEPs, a
critical question is: what actually happens in nature? Which processes dominate? How can
shocks form fast enough to accelerate ions and electrons to relativistic energies in a matter
of minutes, as happened in the 20 January 2005 SEP event?

How Solar Orbiter Will Address the Question. Solar Orbiter will make progress on the
origins of SEPs by enabling precise determination of the sequences of events, along with
comprehensive in-situ determination of the field and plasma properties and the suprather-
mal ion pool in the inner heliosphere. Recent progress at 1 AU has relied on combining re-
mote and in-situ observations from different missions such as ACE, SOHO,Wind, RHESSI,
TRACE, Hinode, and SDO – where using multiple spacecraft is possible since they are all
at virtually the same vantage point. But to do this close to the Sun, where there is an enor-
mous observational advantage due to proximity, it is necessary to carry the whole suite on
one spacecraft, since the probe’s trajectory is not in synchronization with Earth. Almost the
entire Solar Orbiter payload contributes to unraveling the question of SEP origins: visible,
UV, and X-ray imaging of loops, flares, and CMEs with their location and timing; X-ray
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Figure 14 Composite illustration of a unified flare/CME system showing potential solar energetic particle
source regions. The coronagraph image (red image off the limb) shows the CME with a trailing current sheet
seen nearly head-on. A cutaway of the modeled magnetic field structure is shown by the blue overlap. Post
flare loops are shown on the UV disk image. By going closer to the Sun, Solar Orbiter will help to distinguish
between the timing and release signatures from the shock front vs. the connection region at the current sheet.
(From NASA’s Solar Sentinels STDT report.)

signatures of energetic particle interactions at loop footpoints, or in loops themselves; ra-
dio signatures of coronal shocks and escaping electrons; magnetic field, plasma-wave and
solar wind measurements to determine turbulence levels and identify shock passages; seed
population specification from the heavy-ion composition of solar wind and suprathermals
in the inner heliosphere; finally, the accelerated energetic particles themselves: their timing,
velocity distributions, scattering characteristics, and composition.
(a) CME and shock associated SEPs. Moving from the lower corona to the interplanetary

medium, shocks evolve rapidly since the sound speed drops as plasma density and magnetic
field strength decline as ∼1/r2. Solar Orbiter’s coronagraphs will remotely identify shock
front location, speed, and compression ratios through this critical region within ∼10 RSun.
Combining this information with local electron densities as well as coronal ion velocities
given by Solar Orbiter radio and light polarization observations will provide critical con-
straints on shock evolution models in regions too close to the Sun for direct sampling.
In the regions explored by Solar Orbiter close to the Sun, the IMF is almost radial with

much less variation (uncertainty) in length than is the case at 1 AU, so the knowledge of
the actual path length improves by a factor of 3 – 5 as the length shortens. Having observed
the CMEs and their radio signatures in the corona and the X-ray signatures of the energetic
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particles near the Sun, Solar Orbiter will then determine subsequent arrival time of the par-
ticles in situ that can be accurately compared to CME position. As the shock then rolls past
the spacecraft, Solar Orbiter will measure the shock speed and strength as well as the asso-
ciated plasma turbulence, electric, and magnetic field fluctuations. This will give a complete
description of the acceleration parameters in the inner heliosphere where much of the parti-
cle acceleration takes place. Indirect evidence from 1 AU indicates that shock-acceleration
properties depend on the longitude of the shock compared to the observer; close to the Sun,
Solar Orbiter can cleanly test this property since the IMF is nearly radial, the CME lift-off
site is known, and the accelerated particles will have little chance to mix. In the high-latitude
phase of the mission, Solar Orbiter will be able to look down on the longitudinal extent of
CMEs in visible, UV, and hard X-rays, allowing first direct observations of the longitudinal
size of the acceleration region. This will make it possible to test currently unconstrained
acceleration and transport models by using measured CME size, speed, and shape to specify
the accelerating shock.
(b) SEPs associated with coronal loops and reconnection regions. As Solar Orbiter ap-

proaches the Sun, the photon and particle signatures from small events will increase by
1/r2, making it possible to observe events 15 – 20 times smaller than ever before, in effect
opening a new window for SEP processes. We may detect for the first time energetic particle
populations from X-ray microflares, a candidate mechanism for coronal heating that cannot
be studied further away from the Sun due to background problems. For the small flares that
produce X-ray, electron, and 3He-enrichments we will observe with great accuracy events
that at 1 AU are not far above the level of detection: the timing of particle and radio sig-
natures, the composition and spectra, etc., providing strong new constraints on the process
operating in these events. New insight into particle acceleration along coronal loops will be
obtained since the 1/r2 sensitivity advantage and viewing geometry will make it possible to
view the X-ray emission from the tops of loops in numerous cases where the much stronger
footpoint sources are occulted behind the solar limb. These studies of faint coronal sources
that are only rarely observable from 1 AU will give crucial information about the location
and plasma properties of suspected electron acceleration sites in the high corona. Further-
more, considering recent work of tracking of CMEs with heliospheric imagers (see Harrison
et al., 2009 and references therein), it is likely that Solar Orbiter’s heliospheric imager will
be able to further constrain CME speed, shape and size and, in turn, SEP acceleration by
imaging CMEs after they leave the coronagraph’s field-of-view.

3.3.2. How Are Energetic Particles Released from Their Sources and Distributed in Space
and Time?

Present State of Knowledge. SEPs associated with CME-driven shocks have been long
known to often arrive at Earth orbit much later than would be expected based on their
velocities (Van Hollebeke, Ma Sung, and McDonald, 1975; Tylka et al., 2006). There
are two alternate processes that might cause this. i) The acceleration may require sig-
nificant time to energize the particles since they must repeatedly collide with the shock
to gain energy in many small steps, so the process may continue for many hours as
the shock moves well into the inner solar system. Or ii) the particle intensities near the
shock may create strong turbulence that traps the particles in the vicinity of the shock,
and their intensity observed at Earth orbit depends on the physics of the particles es-
caping from the trapping region. Once free of the vicinity of the shock, SEPs may spi-
ral relatively freely on their way to Earth orbit, or more usually will be scattered re-
peatedly from kinks in the IMF, delaying their arrival further. The amount of scattering
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in the interplanetary space varies depending on other activity such as recent passage of
other shocks or solar wind stream interactions. By the time the particles reach Earth orbit,
they are so thoroughly mixed that these effects cannot be untangled (Gopalswamy, 2006;
Cohen et al., 2007).
Particles accelerated along magnetic loops can reach very high energies in seconds after

the onset of flaring activity, and then collide with the solar surface where they emit gamma
radiation. There is a poor correlation between the intensity of the gamma radiation and the
SEP intensities observed at Earth orbit, so most particles from this powerful acceleration
process do not escape. Much more common are flare events observed in UV and X-rays
that produce sudden acceleration of electrons, sketched in Figure 15. The electrons can
escape from the corona, producing non-thermal radio emission as they interact with the local
plasma. Moving from higher to lower frequencies as the local plasma density decreases with
altitude, the (type III) radio emission makes it possible to track the energetic electron burst
into interplanetary space where it may pass by the observer. Energetic ions, greatly enriched
in 3He and heavy nuclei, accompany these electron bursts (Lin, 2006; Mason, 2007). Key
open questions in shock associated events are whether particle arrival delays at 1 AU are due
to the length of time needed to accelerate the particles, or due to trapping in the turbulence
near an accelerating shock, or a combination of both? For particles accelerated along loops,
are the electrons and ions accelerated from sites low in the corona or at higher altitudes, and
how are they related to the X- and gamma-ray signatures?

How Solar Orbiter Will Address the Question. Solar Orbiter will advance our under-
standing of SEP acceleration associated with CME-driven shocks by probing the inner-
heliospheric sites where particle acceleration and release take place. Solar Orbiter will ob-
serve how shocks evolve, and whether they are still accelerating particles as they pass by
the spacecraft. If particle arrivals are controlled by the time it takes the shock to accelerate
them, then the highest energy particles will be delayed since they require many more inter-
actions with the shock. If trapping and release controls the timing, then the faster and slower
particles will have similar intensity changes as the shock moves by. Since Solar Orbiter will
simultaneously measure the turbulence properties in the shock-acceleration region, it will
be possible to construct a complete model of the acceleration process.
For SEPs accelerated along loops or in reconnection regions, Solar Orbiter will see the

coronal location from UV and X-rays, and then trace the progress of released electrons by
radio emission that will drift to the plasma frequency at the spacecraft for those bursts that
pass by. This unambiguously establishes that the magnetic field line at Solar Orbiter con-
nects to the coronal UV and X-ray emission site. Since Solar Orbiter can be connected to
active regions for periods of days, this will provide multiple tracings between the helio-
spheric magnetic field and its origin in the corona. X-ray emission from the flaring sites can
be used to derive the energetic electron spectrum at the flare site, which in turn can be com-
pared with the escaping population to see if most of the accelerated electrons are released
(usually most do not escape). Thanks to the 1/r2 intensity advantage, Solar Orbiter will
observe thousands of these cases and thereby permit detailed mapping of coronal sources
and the trapping properties of the acceleration sites.

3.3.3. What Are the Seed Populations for Energetic Particles?

Present State of Knowledge. The low-energy particles accelerated by CME-driven shocks
to SEP energies are called the seed population. The observed ionization states of SEP ions
show temperatures typical of the corona, ruling out hot material on flare loops as the seeds.
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But SEPs also show significant abundances of ions such as 3He and singly ionized He, which
are virtually absent from the solar wind. The observed energetic particle abundances indicate
that the suprathermal ion pool, composed of ions from a few times the speed of the solar
wind to a few tens of it, is the likely source. At 1 AU the suprathermal ion pool is ∼100
times more variable in intensity than the solar wind, and varies in composition depending
on solar and interplanetary activity. The suprathermal ions are continuously present at 1 AU
(Figure 16), but it is not known if there is a continuous solar source, or if these ions are from
other activities such as acceleration in association with fast and slow solar wind streams.
Inside 1 AU, the suprathermal ion pool is expected to show significant radial dependence
due to the different processes that contribute to the mixture, but it is unexplored (Desai et al.,
2006; Mewaldt et al., 2007; Lee, 2007; Fisk and Gloeckler, 2007). For SEPs accelerated
along loops or in reconnection regions that give rise to electron and type-III radio bursts,
ionization states are coronal-like at lower energies and change over to much hotter flare-like
at high energies. This may be evidence for a complex source, or, more likely, of energetic
particle stripping as the ions escape from a low coronal source. For SEPs accelerated at
reconnection sites behind CMEs (Figure 14) abundances and ionization states would be
coronal (Klecker, Möbius, and Popecki, 2006).
Critical questions in this area are: what is the suprathermal ion pool in the inner helio-

sphere, including its composition and temporal and spatial variations? What turbulence or
stochastic mechanisms in the inner heliosphere accelerate particles to suprathermal ener-
gies?

How Solar Orbiter Will Address the Question. By systematically mapping the suprather-
mal ion pool in the inner heliosphere with spectroscopic and in-situ data, Solar Orbiter
will provide the missing seed particle data for models of SEP acceleration associated with
shocks. Since the suprathermal ion pool composition varies, different shock events will be
expected to produce correspondingly different energetic particle populations that can be ex-
amined on a case-by-base basis. The high-latitude phase of the mission will add an important
third dimension to the suprathermal pool mapping, since it will be more heavily influenced
by, e.g., mid-latitude streamer belts, making it possible to probe the solar and interplane-
tary origins of the seed particle populations. Taken together, these observations will make it
possible to significantly advance models of particle acceleration close to the Sun.
For SEPs accelerated on loops or in reconnection regions the 1/r2 advantage of Solar

Orbiter will again provide a decisive advantage since particle properties will be accurately
measured and comparable with much more precise information on the coronal location.
This will permit distinguishing between low coronal sources that result in stripping of es-
caping particles vs. higher sources which could mimic stripping properties. SEPs accelerated
from reconnection regions behind CME lift-offs will be identified by comparing energetic
particle timing with the location of the CME, and energetic particle composition with that
determined spectroscopically for the remote coronal source.

3.4. How Does the Solar Dynamo Work and Drive Connections Between the Sun and the
Heliosphere?

The Sun’s magnetic field dominates the solar atmosphere. It structures the coronal plasma,
drives much of the coronal dynamics, and produces all the observed energetic phenomena.
One of the most striking features of solar magnetism is its ∼11-year activity cycle, which is
manifest in all the associated solar and heliospheric phenomena. Similar activity cycles are
also observed in a broad range of stars in the right half of the Hertzsprung–Russell diagram,
and the Sun is an important test case for dynamo models of stellar activity.
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The Sun’s global magnetic field is generated by a dynamo generally believed to be seated
in the tachocline, the shear layer at the base of the convection zone. According to flux-
transport dynamo models (e.g., Dikpati and Gilman, 2008), meridional circulation, and other
near-surface flows transport magnetic flux from decaying active regions to the poles. There
subduction carries it to the tachocline to be reprocessed for the next cycle. This ‘conveyor
belt’ scenario provides a natural explanation for the sunspot cycle, and characterizing the
flows that drive it will provide a crucial test of our models and may also allow us to predict
the length and amplitude of future cycles. However, current models fail miserably at pre-
dicting actual global solar behavior. For example, the current sunspot minimum has been
far deeper and longer than predicted by any solar modeling group, indicating that crucial
elements are missing from current understanding.
A major weakness of current global dynamo models is poor constraint of the meridional

circulation at high latitudes. The exact profile and nature of the turnover from poleward flow
to subduction strongly affects behavior of the resulting global dynamo (e.g., Dikpati and
Charbonneau, 1999), but detecting and characterizing the solar flow is essentially impossible
at shallow viewing angles in the ecliptic plane. In addition to the global dynamo, turbulent
convection may drive a local dynamo that could be responsible for generating the observed
weak, small-scale internetwork field, which is ubiquitous across the surface and appears to
dominate the emergent unsigned flux there.
A key objective of the Solar Orbiter mission is to measure and characterize the flows

that transport the solar magnetic fields: complex near-surface flows, the meridional flow,
and the differential rotation at all latitudes. Of particular and perhaps paramount importance
for advancing our understanding of the solar dynamo and the polarity reversal of the global
magnetic field is a detailed knowledge of magnetic flux transport near the poles. Hinode,
peering over the Sun’s limb from a heliographic latitude of 7°, has provided a tantalizing
glimpse of the Sun’s high-latitude region above 70°; however, observations from near the
ecliptic lack the detail, coverage, and unambiguous interpretation needed to understand the
properties and dynamics of the polar region. Thus, Solar Orbiter’s imaging of the properties
and dynamics of the polar region during the out-of-the-ecliptic phase of the mission (reach-
ing heliographic latitudes of 25° during the nominal mission and as high as 34° during the
extended mission) will provided urgently needed constraints on models of the solar dynamo.
Most of the open magnetic flux that extends into the heliosphere originates from the

Sun’s polar regions, from polar coronal holes. The current solar minimum activity period,
which is deeper and more extended than previously measured minima, demonstrates the
importance of this polar field to the solar wind and heliosphere. There is evidence that the
solar wind dynamic pressure, composition and turbulence levels, as well as the strength
of the heliospheric magnetic field, have all changed in the last few years in ways that are
unprecedented in the space age. None of these changes were predicted, and current solar
conditions present a challenge to our understanding of the solar dynamo and its effects on
the solar system at large and the Earth in particular.
Below we discuss in more detail three interrelated questions that flow down from this top-

level question: How is magnetic flux transported to and reprocessed at high solar latitudes?
What are the properties of the magnetic field at high solar latitudes? Are there separate
dynamo processes in the Sun?

3.4.1. How is Magnetic Flux Transported to and Reprocessed at High Solar Latitudes?

Present State of Knowledge. In the last decade, the mapping of surface and subsurface
flow fields at low and middle latitudes has seen major advances, largely due to the avail-
ability of high-quality data from the SOHO’sMichelson Doppler Imager (MDI: Scherrer et
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Figure 17 Left: Rotation profile in the solar interior as derived from GONG and MDI data. By traveling to
high latitudes, Solar Orbiter will use local helioseismology to determine the currently unknown properties
of the solar interior below the poles (Corbard, 1998). Right: Solar Orbiter’s helioseismology capabilities:
i) probing near-polar regions with local helioseismology and ii) probing the deep solar interior with stereo-
scopic helioseismology in combination with near-Earth observations, e.g. from GONG or SDO. (From Roth
(2007).)

al., 1995) instrument and, more recently, SDO’s Helioseismic and Magnetic Imager (HMI:
Schou et al., 2012). These data have provided accurate knowledge of differential rotation,
the low latitude, near-surface part of the meridional flows, and the near-surface torsional
oscillations, which are rhythmic changes in the rotation speed that travel from mid-latitudes
both equatorward and poleward (Howe et al., 2006). Local helioseismic techniques have
also reached a level of maturity that allows the three-dimensional structure of the shallow
velocity field beneath the solar surface to be determined.
Despite these advances, progress in understanding the operation of the solar dynamo

depends on how well we understand differential rotation and the meridional flows near the
poles of the Sun. However, because of the lack of out-of-the ecliptic observations, the near-
polar flow fields remain poorly mapped, as does the differential rotation at high latitudes (see
Beck, 2000; Thompson et al., 2003 and Figure 17). The meridional flow in particular, the
very foundation of the flux-transport dynamo, is not well characterized above∼50° latitude;
it is not even certain that it consists of only one cell in each hemisphere. The return flow,
believed to occur at the base of the convection zone, is entirely undetermined save for the
requirement of mass conservation. All these flows must be better constrained observationally
in order to help solve the puzzle of the solar cycle and to advance our understanding of the
operation of the solar dynamo (and, more broadly, of stellar dynamos in general).

How Solar Orbiter Will Address This Question. Solar Orbiter will measure or infer local
and convective flows, rotation, and meridional circulation in the photosphere and in the
subsurface convection zone at all heliographic latitudes including, during the later stages of
the mission, at the critical near-polar latitudes. Solar Orbiter might be able to reveal patterns
of differential rotation, the geometry of the meridional flow, the structure of subduction
areas around the poles where the solar plasma dives back into the Sun, and the properties of
convection cells below the solar surface. This will be achieved through correlation tracking
of small features, direct imaging of Doppler shifts, and helioseismic observations.
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Figure 18 Comparison of solar granulation at the poles as viewed from 27°, where the fine-scale structure
can be resolved with much higher fidelity than from (7°) inclination, obtained in the ecliptic plane twice a
year. Hinode observations of the latter were used to obtain the first polar map of the vector magnetic field
(Tsuneta et al., 2008a). Solar Orbiter will characterize the properties and dynamics of the polar regions in
detail, including magnetic fields, plasma flows, and temperatures.

Solar Orbiter will resolve small-scale magnetic features near the poles, even within the
nominal mission phase (Figure 18), and right up to the poles during the extended mission. It
will determine the detailed surface flow field through tracking algorithms. Such algorithms
provide only inconclusive results when applied to polar data obtained from near-Earth orbit
due to the foreshortening. Doppler maps of the line-of-sight velocity component will com-
plement the correlation tracking measurements and will also reveal convection, rotation, and
meridional circulation flows.
Time series of Doppler and intensity maps will be used to probe the three-dimensional

mass flows in the upper layers of the convection zone, at high heliographic latitudes. The
flows will be inferred using the methods of local helioseismology (e.g., Gizon and Birch,
2005): time-distance helioseismology, ring diagram analysis, helioseismic holography, and
direct modeling. Using SOHO/MDI Dopplergrams, it was demonstrated that even complex
velocity fields can be derived with a single day of data (e.g., Jackiewicz, Gizon, and Birch,
2008). The deeper layers of the convection zone will be studied using both local and the
global methods of helioseismology. Moreover, Solar Orbiter will provide the first opportu-
nity to implement the novel technique of stereoscopic helioseismology to probe flows and
structural heterogeneities deep in the convection zone, even reaching down to the tachocline.
Combining Solar Orbiter observations with ground- or space-based helioseismic obser-

vations from 1 AU (e.g., GONG or SDO) will increase the observed fraction of the Sun’s
surface and thereby benefit global helioseismology because the modes of oscillation will
be easier to disentangle (reduction of spatial leaks). With stereoscopic helioseismology, new
acoustic ray paths can be taken into account to probe deeper layers in the interior (Figure 17),
including the bottom of the convection zone.

3.4.2. What Are the Properties of the Magnetic Field at High Solar Latitudes?

Present State of Knowledge. Meridional circulation transports the surface magnetic flux
toward the poles, where a concentration of magnetic flux is expected to occur. However,
because of the directional sensitivity of the Zeeman effect and magnetic polarity cancellation
resulting from geometric foreshortening, present-day observations from the ecliptic at 1 AU
can provide only a poor representation of the polar magnetic field. The high resolution of
Hinode’s Solar Optical Telescope (SOT: Tsuneta et al., 2008b) can partly overcome the
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second disadvantage (Tsuneta et al., 2008a), but not the first. Consequently, an accurate
quantitative estimate of the polar magnetic field remains a major and as yet unattained goal.
The polar field is directly related to the dynamo process, presumably as a source of

poloidal field that is wound up by the differential rotation in the shear layer at the base of the
convection zone. The distribution of the magnetic field at the poles drives the formation and
evolution of polar coronal holes, polar plumes, X-ray jets, and other events and structures
that characterize the polar corona. Polar coronal holes have been intensively studied from the
non-ideal vantage point offered by the ecliptic, but never imaged from outside the ecliptic.
Consequently the distribution of the polar field and the origin of polar structures are only
poorly determined. The fast solar wind is associated with open field lines inside coronal
holes, whereas at least parts of the slow solar wind are thought to emanate from the coronal
hole boundaries. Understanding the interaction of open and closed field lines across these
boundaries is of paramount importance for elucidating the connection between the solar
magnetic field and the heliosphere.
As described in Section 3.2.2, the magnetic flux in the heliosphere varies with the solar

cycle and, while there is evidence that the heliospheric magnetic flux has increased substan-
tially in the last hundred years, during the recent solar minimum the IMF strength was lower
than at any time since the beginning of the space age. Models based on the injection of flux
into the heliosphere by coronal mass ejections cannot explain this reduction, and it is be-
coming clear that the processes by which flux is added to and removed from the heliosphere
are more complex than previously thought.

How Solar Orbiter Will Address This Question. Solar Orbiter’s suite of imaging instru-
ments will characterize the properties and dynamics of the polar regions for the first time,
including magnetic fields, plasma flows, and temperatures (Figure 18). Solar Orbiter will
measure the amount of polar magnetic flux, its spatial distribution and its evolution (by
comparing results from different orbits), thereby providing an independent constraint on the
strength and direction of the meridional flow near the pole. The evolution of Solar Orbiter’s
orbit to higher heliographic latitudes will make it possible to study the transport of mag-
netic flux from the activity belts toward the poles, which drives the polarity reversal of the
global magnetic field (see Wang, Nash, and Sheeley, 1989; Sheeley, 1991; Makarov, Tla-
tov, and Sivaraman, 2003). From its viewpoint outside the ecliptic, Solar Orbiter will probe
the cancellation processes that take place when flux elements of opposite polarity meet as
part of the polarity reversal process. Joint observations from Solar Orbiter and spacecraft
in the ecliptic will determine, with high accuracy, the transverse magnetic field, which is
notoriously difficult to measure, along with derived quantities such as the electric current
density.

Solar Orbiter will measure the photospheric magnetic field at the poles, while simul-
taneously imaging the coronal and heliospheric structure at visible and EUV wavelengths.
In addition, as the spacecraft passes through the mid-latitude slow/fast wind boundary at
around 0.5 AU, the field and plasma properties of the solar wind will be measured. With
the help of magnetic field extrapolation methods these observations will, for the first time,
allow the photospheric and coronal magnetic field in polar coronal holes to be studied simul-
taneously and the evolution of polar coronal hole boundaries and other coronal structures to
be investigated. The images are complementary to those from low-latitude instruments (see
Figure 19 for a simulated EUI image).

Solar Orbiter’s observations from progressively higher heliographic latitudes (25° by the
end of the nominal mission) will enable coordinated investigation (jointly with spacecraft in
the ecliptic) of the three-dimensional structure of the inner heliosphere. These observations
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Figure 19 Simulated view of the ultraviolet corona from 35° heliolatitude. Solar Orbiter’s remote-sensing
instruments and out-of-ecliptic vantage point will enable the first simultaneous measurements of the polar
magnetic field and the associated structures in a polar coronal hole. (Courtesy EUI consortium.)

will reveal the links between the Sun’s polar regions and the properties of the solar wind
and interplanetary magnetic field, in particular the heliospheric current sheet, which is used
as a proxy for the tilt of the solar magnetic dipole. In addition, Solar Orbiter will pass both
north and south of the solar equatorial plane in each orbit, with repeated transits through the
equatorial streamer belt and through the slow/fast wind boundary at mid-latitudes into the
polar wind, making it possible to follow the evolution of the solar wind and interplanetary
magnetic field as well as of the sources in the polar coronal holes. Ulysses has shown that
poleward of the edge of coronal holes the properties of the solar wind are relatively uniform,
so that Solar Orbiter only needs to reach heliographic latitudes just above the coronal hole
edge to enter the high-speed solar wind. The orbital inclination of 25° reached during the
nominal mission is sufficiently high to satisfy this constraint.

3.4.3. Are There Separate Dynamo Processes Acting in the Sun?

Present State of Knowledge. MHD simulations indicate that a local turbulent dynamo
should be acting in the Sun’s turbulent convection zone (Brun, Miesch, and Toomre, 2004)
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and even in the near-surface layers (Vögler and Schüssler, 2007). Hinode/SOT has detected
ubiquitous horizontal magnetic fields in quiet regions of the Sun (Lites et al., 2007), which
are possibly generated by local dynamo action (Pietarila Graham, Danilovic, and Schüssler,
2009). These small, weak features (internetwork fields; Zirin, 1987) bring 100 times more
magnetic flux to the solar surface than the stronger features that are known to be the product
of the global dynamo, and have themselves shown to be in cross-scale turbulent equilibrium
(Schrijver et al., 1997). Even the smallest observable features have been shown to be formed
primarily by aggregation of yet smaller, yet more prevalent features too small to resolve with
current instrumentation (Lamb et al. 2008, 2010). It is, however, still uncertain whether a
separate local, turbulent dynamo really is acting on the Sun and how strongly it contributes
to the Sun’s magnetic flux (and magnetic energy). In particular, all solar magnetic features,
from the smallest observable intergranular flux concentrations to the largest active regions,
have been shown (Parnell et al., 2009) to have a power law (scale free) probability distri-
bution function, suggesting that a single turbulent mechanism may be responsible for all
observable scales of magnetic activity.

How Solar Orbiter Will Address This Question. One way to distinguish between the prod-
ucts of a global and a local dynamo is to study the distribution of small elements of freshly
emerging magnetic flux over heliographic latitude. The global dynamo, presumably owing
to the structure of the differential rotation and the meridional flow near the base of the con-
vection zone, leads to the emergence of large bipolar magnetic regions (active regions) at the
solar surface at latitudes between 5° and 30° and of smaller ephemeral active regions over a
larger range of latitudes, but concentrated also at low latitudes. In contrast, a local turbulent
dynamo is expected to enhance field more uniformly across the surface.
Observations carried out from the ecliptic cannot quantitatively determine the latitudinal

distribution of magnetic flux and in particular the emergence of small-scale magnetic fea-
tures (internetwork fields) due to foreshortening and the different sensitivity of the Zeeman
effect to longitudinal and transverse fields. Solar Orbiter, by flying to latitudes of 25° and
higher above the ecliptic, will be able to measure weak magnetic features equally well at
low and high latitudes (Martínez Pillet, 2007). If the number and size (i.e., magnetic flux)
distributions of such features are significantly different at high latitudes, then even the weak
features are probably due to the global dynamo. If, however, they are evenly distributed, then
the evidence for a significant role of a local dynamo will be greatly strengthened. Current
work is confounded by viewing angle restrictions near the poles, by the ubiquitous seething
horizontal field (e.g., Harvey et al., 2007), and by small deflections in near-vertical fields,
which dominate observed feature distributions near the limb of the Sun.

4. Spacecraft

The Solar Orbiter spacecraft (Figure 20) is a Sun-pointed, three-axis stabilized platform,
with a dedicated heat shield to provide protection from the high levels of solar flux near
perihelion. Feed-throughs in the heat shield (with individual doors) provide the remote-
sensing instruments with their required fields-of-view to the Sun. Single-sided solar arrays
provide the required power throughout the mission over the wide range of distances from
the Sun and can be rotated about their longitudinal axis to manage the array temperature,
particularly important during closest approach to the Sun.
An articulated high-temperature high-gain antenna provides nominal communication

with the ground station, and a medium-gain antenna and two low-gain antennas are included
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Figure 20 Front view of the spacecraft with the three RPW antennas, high-gain antenna, instrument boom
and solar arrays deployed. The heat shield has feed-throughs with doors for the remote-sensing instruments.

for use as back-up. The design drivers for the Solar Orbiter spacecraft come not only from
the need to satisfy the mission’s technical and performance requirements, but also from the
need to minimize the total cost of the mission. The adopted philosophy is therefore to avoid
technology development as far as possible, in order to maintain the cost-cap of the mission
in keeping with its Cosmic Vision M-class status. The design of Solar Orbiter has therefore
incorporated technology items from ESA’s BepiColombo Mercury mission (Benkhoff et al.,
2010) where appropriate. Furthermore, design heritage from ESA’s “Express” series of mis-
sions, with their goal of rapid and streamlined development, has also featured heavily in the
Solar Orbiter spacecraft design.

5. Science Operations

One of the strengths of the Solar Orbiter mission is the synergy between in-situ and remote-
sensing observations, and each science objective requires coordinated observations between
several in-situ and remote-sensing instruments. Another unique aspect of Solar Orbiter, in
contrast to near-Earth observatory missions like SOHO, is that Solar Orbiter will operate
much like a planetary encounter mission, with the main scientific activity and planning tak-
ing place during the near-Sun encounter part of each orbit. Specifically, observations with
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Figure 21 Observation modes of Solar Orbiter. Science data are collected at high rate during three 10-day
windows of each orbit, centered around the perihelion and the extrema in solar latitude, and at a lower rate
during the remainder of each orbit. Shown here is the first orbit that exceeds a heliographic latitude of 25°.
The area shaded in dark green indicates an overlap between two nominal observation windows. The rx axis
lies in the ecliptic plane and the rz axis is perpendicular to it.

the remote-sensing instruments will be organized into three 10-day intervals centered around
perihelion and either maximum latitude or maximum corotation passages (Figure 21). As a
baseline, the in-situ instruments will operate continuously during normal operations. An-
other important aspect of this mission, from a science operations standpoint, is that ev-
ery science orbit is different, with different orbital characteristics (Sun–spacecraft distance,
Earth–spacecraft distance, etc.). Science and operations planning for each orbit is therefore
critical, with specific orbits expected to be dedicated to specific science problems. This will
be similar to what has been used successfully in the ESA/NASA SOHO mission’s Joint
Observation Programs (JOPs).

6. International Cooperation

Solar Orbiter is an ESA-led mission with strong NASA participation. Specifically, NASA
will provide the launch vehicle and parts of the scientific payload (the SoloHI instrument and
the HIS sensor of SWA). The mission also has important synergies with NASA’s Solar Probe
Plus mission, and coordinated observations are expected to enhance greatly the scientific
return of both missions.

Solar Probe Plus, which has entered Phase B in February 2012, is scheduled for launch
in September 2018. Due to its exceptional launch characteristics, Solar Probe Plus will
reach its first perihelion of 0.16 AU already three months into the mission. If launched in
January 2017, Solar Orbiter will be in its cruise phase at this time, during which the in-
situ instruments are fully operational for heliodistances less than 1.2 AU, i.e. throughout
most of the orbit. It is envisaged that the remote-sensing instruments will be switched on for
dedicated observing campaigns with Solar Probe Plus.
In the overall international context, Solar Orbiter is ESA’s primary contribution to the

International Living With a Star (ILWS) initiative.

7. Conclusions

Understanding the connections and the coupling between the Sun and the heliosphere is of
fundamental importance to understanding how our solar system works. To reach this goal,
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Solar Orbiter will make in-situ measurements of the solar wind plasma, fields, waves, and
energetic particles as close as 0.28 AU from the Sun, simultaneously with high-resolution
imaging and spectroscopic observations of the Sun in and out of the ecliptic plane. The
combination of in-situ and remote sensing instruments on the same spacecraft, together with
the new, inner-heliospheric perspective, distinguishes Solar Orbiter from all previous and
current missions, enabling breakthrough science which can be achieved in no other way.
In addition to delivering ground-breaking science in its own right, Solar Orbiter also has

important synergies with NASA’s Solar Probe Plus mission. Coordinated observations with
this mission, combined with data from other missions operating in the inner heliosphere (or
providing remote-sensing observations of the near-Sun environment), will contribute greatly
to our understanding of the Sun and its environment.
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