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We report on simulations in general relativity of magnetized disks onto black hole binaries. We
vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary-
disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single,
non-spinning black hole), variability, effective α-stress levels and luminosities as functions of the mass
ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling.
The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into
one common jet at large distances. The magnetic fields give rise to much stronger shock heating
than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates
and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the
1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the
bulk of the disk is ∼ 105(M/108M�)−1/4(L/Ledd)

1/4K yielding characteristic thermal frequencies

∼ 1015(M/108M�)−1/4(L/Ledd)
1/4(1+z)−1Hz. These systems are thus promising targets for many

extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

PACS numbers: 04.25.D-, 04.25.dg, 47.75.+f

I. INTRODUCTION AND MOTIVATION

Supermassive black hole (SMBH) binaries can form
in magnetized plasma following galaxy mergers, via bar-
mode instability in rapidly rotating supermassive stars,
or by other dynamical processes [1]. After formation, a
combination of dynamical friction and gas-driven migra-
tion is likely to catalyze the binary inspiral into the grav-
itational radiation-driven regime [1–7]. The exact details
of these processes, including the “last-parsec problem”,
remain active areas of research (see e.g. [8–10] and refer-
ences therein). As a result, event rates and population
synthesis studies at this stage are highly uncertain [11].

The exciting prospect of a simultaneous observation
of both electromagnetic (EM) and gravitational waves
(GWs) arising from accreting binary BHBHs makes these
systems prime targets in the era of multi-messenger as-
tronomy. Such observations will enable us to determine
the binary masses, BH spins, redshift and even determine
the Hubble constant to better than 1% [12–14].

Gravitational waves (GWs) from SMBHs are expected
to be detected by planned GW interferometers such as
eLISA/NGO detectors [15], sensitive to GW frequencies
10−5 − 1Hz, and the currently operating Pulsar Timing
Arrays [16–18], sensitive to frequencies 10−9 − 10−6Hz.
As SMBHs are typically believed to have masses in the
range 106 − 109M�, the GW strain at orbital separa-
tion d = 10M - the value adopted in this work - is

h ∼ 10−16(d/10M)−1(M/108M�)(D/16Gpc)−1. Here
M is the total mass of the binary, and we normal-
ized to a luminosity distance D corresponding to red-
shift z � 2 in a standard ΛCDM Universe. The
corresponding gravitational-wave frequency is fGW ∼
10−4

(
M/108M�

)−1
(d/10M)

−3/2
[(1 + z)/3]−1Hz. The

expected GW strain is above the eLISA strain sensitiv-
ity at these frequencies [15], hence these systems will be
detectable by eLISA. In particular, for M ∼ 106M�,
the value of fGW at d = 10M falls well within the
eLISA sensitivity band even for larger redshifts, while
for M ∼ 108M� and large redshifts (z ∼ 10), the value
of fGW at d = 10M is marginally within the eLISA sen-
sitivity band. However, the inspiral time from these sep-
arations is tGW ∼ 20(M/108M�) days assuming equal
masses. Hence, these systems will quickly enter the
eLISA sweet spot, and EM precursor signals can trig-
ger targeted GW searches with a convenient lead time of
several days.

While awaiting the first detection of GWs, currently
operating and future electromagnetic (EM) detectors
such as LSST [19], WFIRST [20] and PanSTARRS [21]
are promising instruments to identify accreting BHBH
systems in the EM spectrum. Important steps have al-
ready been made toward realizing this goal.

Currently, we know of one spatially resolved SMBH
binary candidate at an orbital separation d ∼ 7pc:
0402+379 [22]. Other spatially unresolved, SMBH bi-
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nary candidates have been found, including OJ287 [23–
26] and SDSS J1536+0441 [27, 28]. Binary AGN can-
didates have been singled out based on offsets in the
broad line and narrow line regions, emission line pro-
files, and time variability [29, 30]. Recently, very-long
baseline interferometric observations interpreted ejection
components from AGN cores as undulations caused by
the precession of the accretion disks around a SMBH bi-
nary [31]. A simplified model was applied to two AGN
sources; for 1823+568 their analysis yields d ∼ 0.42pc,
and a mass ratio q in the range 0.095 < q < 0.25, while
for 3C 279 d ∼ 2.7pc, q ∼ 0.36. However, given the
lack of a robust circumbinary accretion disk theory these
results are at best preliminary. Nevertheless, they still
motivate a study of accretion flows onto supermassive
BH binaries with different mass ratios, which we initiate
in this work in general relativity (GR).

Other features identified as “smoking guns” for binary
black holes include BH recoil/kicks [32], used to explain
the large velocity offsets between emission lines in AGN
spectra, as well as observed kinks in jets probably due
to changes in BH spin (X-shaped radio sources), a past
merger event, or precession effects [33–35]. Modifications
to the line profiles have also been proposed as promis-
ing characteristic features to distinguish binary BH AGN
from classical, single BH AGN sources [36].

To assist and solidify all these detection efforts, it is
crucial to identify and model possible electromagnetic
“precursor” and “afterglow” signatures [37–43].

Depending on the physical regime the properties char-
acterizing the gas can differ considerably, and different
accretion models are applicable. For example, if the gas
has little angular momentum, the accretion flow resem-
bles the binary analog of a Bondi-Hoyle-Lyttleton solu-
tion [44–46] (see [47–49] for GR studies). If the gas has
significant angular momentum, then the gas can become
rotationally supported and form a disk.

For a BHBH embedded in a disk, one can identify sev-
eral different regimes based on the time scales for mi-
gration of the binary. For a SMBH binary engulfed by
a (thin) disk at large separation, the migration of the
binary is initially governed by binary-disk angular mo-
mentum exchange mediated by (effective) viscosity [3].
At large enough separations, the reduced mass μ of the
binary is less than the local interior disk mass (4πd2Σ
where Σ is the surface density of the disk). This leads
to the so-called disk-dominated type II migration occur-
ring on the viscous time scale tvis. As the migration
proceeds, the reduced mass of the system becomes larger
than the local disk mass and the migration enters the
secondary-dominated type II regime, which occurs on a
longer time scale tsd ≡ (4πd2Σ/μ)−k × tvis ≥ tvis, where
k a constant of order ∼ 0.4 if 4πd2Σ/μ < 1 and 0 oth-
erwise. Ultimately, the binary enters a regime at smaller
orbital separations where angular momentum losses due
to GWs dominate, and the binary migrates on the GW
time scale tGW. In all regimes, the disk moves inwards
on the viscous time scale. When tvis ≤ tsd < tGW or

tvis < tGW < tsd the disk can follow the inspiral of the
binary and settle in a quasi-steady state - this is called
the predecoupling regime. When tGW < tvis, the binary
decouples from the disk, i.e. the inward migration of the
binary out-paces the inward drift of the disk.
In this paper we focus on the phase near decoupling,

while the postdecoupling regime will be the subject of a
future paper. We note that unlike eLISA, Pulsar Timing
Arrays are sensitive only to SMBH binaries well within
the predecoupling regime.
Accretion onto a single BH has been studied in great

detail for decades, and magnetohydrodynamic studies in
GR have drastically improved our understanding of these
flows (see [50] for a recent review). Many different disk
models have been proposed in the literature. These mod-
els range from geometrically-thin, optically thick disks
[51, 52] and slim disks [53], to geometrically thick, opti-
cally thin, radiatively inefficient accretion flows (RIAF)
[54–58]. However, our understanding of accretion flows
onto BHBHs remains poor and studies of these systems
are still in their infancy.
The first analytic Newtonian model and smooth par-

ticle hydrodynamic simulation of a circumbinary accre-
tion disk was given in [59]. Since then, other Newto-
nian (semi-)analytic studies [40–42, 60, 61] and hydrody-
namic simulations in 2D [62–65], and 3D [66–70] have fol-
lowed. Newtonian magnetohydrodynamic (MHD) simu-
lations were presented in [71], and Post-Newtonian MHD
simulations in [72]. Many of these earlier studies ex-
cluded the binary and most of the inner cavity from
the computational domain, introducing an artificial in-
ner boundary condition. The importance of treating the
inner regions self-consistently has been discussed in [69],
and only full GR calculations can achieve this goal reli-
ably.
A “GR-hybrid” orbit-averaged model for thin disks, in

which the viscous part is handled in GR and the tidal
torques in Newtonian gravity was introduced in [43], and
GR hydrodynamical simulations of accretion onto BHBH
binaries - taking into account the dynamical spacetime -
have been performed in [47, 73–75]. To date the only GR
magnetohydrodynamic (GRMHD) simulations of disk ac-
cretion onto BHBHs that account both for the dynamical
spacetime and the BH horizons were presented in [76].
Using a different approach by assuming that the B-field

is anchored to a circumbinary disk outside the computa-
tional domain, [77–80] modeled EM signatures by solving
the GR force-free electrodynamic equations.
Close to merger a single BH remnant is formed on a

time scale much shorter than the dynamical time scale
in the disk. The mass and angular momentum of the
remnant BH is different from the total mass and angular
momentum prior to merger due to GW emission, causing
a quasi-instantaneous perturbation to the disk. This ef-
fect has been modeled using hydrodynamical and MHD
simulations in Newtonian gravity and in GR [81–85].
A realistic and ideal 3D global model for a circumbi-

nary disk around a SMBH binary near the decoupling



3

radius requires: a) a fully relativistic treatment of grav-
itation in a dynamical spacetime, b) GRMHD for the
plasma flow, c) realistic cooling processes, and d) radia-
tive transfer in curved spacetime. Simulations incorpo-
rating these effects must also have high resolution and
long integration times (several viscous time scales). How-
ever, including all these ingredients in one simulation
would make these computations prohibitive, because the
wall-clock times required to integrate for even ∼ 5 vis-
cous time scales at the inner disk radius at high resolution
are far too long with current supercomputer resources.
Thus, some of these ingredients must be relaxed in order
to obtain a qualitative understanding of these systems.
For this reason, the models in this work feature a) and
b). High resolution is only adopted for a few models. In
addition, we model radiative cooling by a simple cool-
ing function and consider the extreme opposite limits of
“rapid” cooling and “no cooling” to bracket the possibil-
ities.

In this paper we study the effects of the binary mass
ratio on the disk near decoupling. We vary the BHBH
binary mass ratio q ≡ M1/M2 ≤ 1, considering 1:1, 1:2,
1:4, 1:8 and 1:10 mass ratios. The mass ratio regime
0.1 � q � 1 is shown to be of high astrophysical relevance
in [86, 87]. Also, it has been argued that BHBHs forming
in major galaxy mergers will typically have mass ratios
in the range (0.01, 1) [88]. These results motivate our
choice of mass ratios. Note that Newtonian simulations
studying the effects of mass ratio in the context of 2D
thin-disk models were performed in [64, 65].

The new aspects of our work are the inclusion of rela-
tivistic gravitation to resolve the crucial physics near the
BH horizons, effective viscosity arising from the magne-
torotational instability [89, 90], geometrically thick disks,
three spatial dimensions (3D), a Γ-law equation of state
(EOS), and effective cooling. We model the decoupling
epoch by fixing the binary separation d, evolving the
spacetime by rotating our conformal-thin-sandwich ini-
tial data [91–94] as we have done in [76, 95]. The depen-
dence of the flow variability, EM signatures, the magnetic
field structure and the matter dynamics inside the low-
density “hollow” on the mass ratio q are investigated. We
estimate thermodynamic properties of the gas and scale
our results with the binary total mass and the luminos-
ity in units of the Eddington luminosity where feasible.
From this, emission characteristics including typical ther-
mal frequencies and luminosities are given and relevant
detectors are discussed.

In the absence of any observational constraints on the
thermodynamic state of accreting BHBHs, the models we
consider in this work adopt an adiabatic EOS governed
by an adiabatic index Γ = 4/3, appropriate for radiation
pressure-dominated, optically thick disks. This choice
is motivated in part both by theory and observations.
First, accretion disk theory [50] predicts that the inner
part of circumbinary disks around SMBH binaries are op-
tically thick, radiation pressure dominated for a large set
of possible disk parameters (see e.g. [4, 52] and the next

section). Furthermore, as discussed in [3], steady-state
disk models predict that radiation pressure-dominated
circumbinary disks will channel more material into the
cavity for a given central mass. This finding makes radi-
ation pressure-dominated circumbinary disks promising
sources for electromagnetic counterparts.

Second, AGN data from the Sloan Digital Sky Survey
(SDSS) [96–98], the AGN and Galaxy Evolution Survey
(AGES) [99], XMM-COSMOS [100] and others [101] cov-
ering mostly type I AGNs and the local Universe to red-
shift of z � 5, reveal Eddington ratio distributions in the
range 0.01 � L/LEdd � 1 with the tendency that higher
L/LEdd values occur at higher z (and possibly smaller
central mass M). A comparison of accretion time scales
with the age of the Universe suggests that earlier ac-
cretion episodes are closer to the Eddington limit, sim-
ilar to the recently discovered quasar at z ∼ 7.1 with
a central mass of M ∼ 2 × 109M� [102] accreting at
L/LEdd ∼ 1.2 ± 0.5. These surveys therefore motivate
studies of disks accreting near the Eddington luminosity,
for which radiation pressure is important. Moreover, ra-
diation pressure-dominated disks accreting near the Ed-
dington limit are more likely to be detectable, even at
large cosmological redshifts.

This paper is structured as follows: In Sec. II we
present a qualitative discussion of the range of param-
eters and the associated physical regimes for which our
simulations are appropriate. In Sec. III we describe our
methods and techniques for evolving the spacetime, fluid,
and magnetic fields, as well as our simple cooling pre-
scription. We also present the different cases we consider
and list our diagnostics for characterizing the accretion
flow and EM signatures. In Sec. IV we show several tests
we performed to motivate our numerical setup. In Sec. V
we present the results from our simulations. We conclude
in Sec. VI with a summary of the main results and a dis-
cussion of future work.

Here and throughout we adopt geometrized units,
where G = c = 1, unless otherwise stated.

II. QUALITATIVE CONSIDERATIONS

In this section we use the Shakura-Sunyaev/Novikov-
Thorne thin-disk model [51, 52] to make rough analytic
estimates regarding the physical regime our disk mod-
els probe. While the Shakura-Sunyaev/Novikov-Thorne
model strictly applies to a viscous flow onto a single BH
neglecting the binary tidal torques, we expect that our
qualitative analysis will apply roughly to our circumbi-
nary disk models, which have H/R = O(0.1), where H
is the disk scale height. This expectation should be best
realized outside the binary orbit because the ratio of the
tidal to viscous torques decays quickly far away from the
binary orbit (see e.g. Fig. 6 in [43]).
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A. Radiation pressure dominance

1. Shakura-Sunyaev/Novikov-Thorne model

The simulations reported here apply to any total
(ADM) binary black hole mass M and, since we neglect
the self-gravity of the gas, to any rest-mass density ρ0,
provided it has the same initial disk profile adopted here.
The quantities that are fixed, in addition to the initial
disk profile, are the adiabatic index Γ appearing in the
adopted ideal gas EOS, the ratio of the initial magnetic-
to-total disk pressure, the initial magnetic field profile,
the initial binary separation and the cooling law. In
this section we use the steady-state thin-disk solution for
a Shakura-Sunyaev/Novikov-Thorne disk about a single
BH of mass M to estimate the physical values of some
of the gas dynamical quantities as functions of M and
luminosity L. We show below that for a range of astro-
physically relevant choices of these parameters the disk
is thermal radiation pressure-dominated, and this fact
motivates our setting Γ = 4/3.

Neglecting the perturbative role of the secondary tidal
torque, the steady-state accretion flow in a geometri-
cally thin disk is uniquely specified by the Shakura-
Sunyaev viscosity parameter α, the central mass M
and the accretion rate Ṁ . The quantity Ṁ is spec-
ified in turn by the disk luminosity L and efficiency
ε. The Shakura-Sunyaev/Novikov-Thorne model [51, 52]
describes a disk that is radiation pressure-dominated in-
side a radius rinner. In this region the radiation to gas
pressure ratio is [50]

Prad

Pgas
∼ 5.4× 105

( r

20M

)−21/8 ( α

0.1

)1/4

(
M

108M�

)1/4 (
L

Ledd

)2 ( ε

0.1

)2

, (1)

where ε ≡ L/Ṁc2 is the radiative efficiency, LEdd � 1.3×
1046(M/108M�)erg/s, and we chose the normalization
for the α parameter based on typical values found in our
simulations. For a thin-disk model the efficiency ranges
from 0.057 for a non-spinning BH to 0.42 for a maximally
spinning BH, so we scale to a value residing between these
limits. The size of the inner region is determined by the
condition Prad/Pgas = 1, for which Eq. (1) yields

rinner/M ∼ 3000
( α

0.1

)2/21
(

M

108M�

)2/21

(
L

Ledd

)16/21 ( ε

0.1

)−16/21

. (2)

The geometrically thick disks we evolve in this work
extend radially out to rout ∼ 100M−200M . Hence, when
scaling the accretion rate such that our models accrete
near the Eddington limit, our models are fully immersed
in this inner radiation pressure-dominated region.

In this region the typical rest mass densities are [50]

ρ0 ∼ 5.5 · 10−12
( r

20M

)3/2 ( α

0.1

)−1

(
M

108M�

)(
Ṁ

2.3M�/yr

)−2
g

cm3
(3)

∼ 5.5 · 10−12
( r

20M

)3/2 ( α

0.1

)−1

(
M

108M�

)−1 (
L

Ledd

)−2 ( ε

0.1

)2 g

cm3
. (4)

As we will show later, these characteristic values for
Prad/Pgas and ρ0 are comparable to the values found in
our simulations.
The Shakura-Sunyaev/Novikov-Thorne model predicts

that the effective optical depth to absorption is τ∗ � 0.02
adopting the same normalizations as in the equation
above. This well-known inconsistency near the Edding-
ton limit of the Novikov-Thorne model is removed with
the generalization to the slim disk model [53]. This model
differs from a thin disk in that it allows for cooling to
occur via advection, which dominates radiative cooling
at high accretion rates (L � 0.3LEdd), thereby puffing
up the disk. When scaling our models to accrete near
the Eddington limit, they are closer to slim-disk models,
which remain optically thick in this high luminosity limit
[50, 53].
As we discuss later, near the Eddington limit and

M = 108M�, the effective optical depth satisfies τ� � 1
in the bulk of our disk models, implying that the gas
is optically thick to absorption and the photons eventu-
ally thermalize. Thus, these qualitative considerations
motivate the adoption of an adiabatic index Γ = 4/3,
appropriate for thermal radiation pressure dominance.
Note also that alternative disk models have been pro-

posed, e.g. [4]. However, they largely share the prediction
that the inner regions of the disk are radiation pressure
dominated.

2. Decoupling radius

We estimate the decoupling radius ad by equating
tGW = tvis and solve for the separation to find [76]

ad
M

≈ 13.3

(
α

0.1

)−2/5(
H/R

0.3

)−4/5(
η̃

1

)2/5
(5)

where we assumed that the inner disk edge radius set-
tles to rin ≈ 1.5d as typically found in our simulations,
α is the Shakura-Sunyaev turbulent viscosity parame-
ter, and η̃ ≡ 4q/(1 + q)2 (see also [5]). Notice that in
contrast to geometrically thick disks, where the decou-
pling radius is a few tens of M , geometrically thin disks
have ad/M � 100. The decoupling radius estimate (5)
for the mass ratios considered in this work ranges from
ad(q = 0.1) ≈ 8.5M to ad(q = 1) ≈ 13.3M . The normal-
izations in Eq. (5) are based on typical values obtained
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from our simulations. We choose the binary separation
d ∼ 10M for all cases studied in this work, a value which
is consistent with the crude estimate of Eq. (5). In the
future we intend to start our evolutions at larger separa-
tions in order to dynamically determine the decoupling
radius and evolve through it as in [43].

III. METHODS

The models we adopt here assume: a) circular binary
orbits, neglecting the binary inspiral (justified for large
separations; see Sec. II A 2), b) non self-gravitating disks,
which likely is a good assumption (see, e.g. [103]), c) ideal
MHD, d) no radiative feedback, e) an effective cooling
scheme that brackets no cooling and rapid cooling.
Some of these assumptions may not be obeyed strictly,

e.g. the binary may become eccentric in the predecou-
pling regime [6, 66–69, 104], or radiative feedback may
become important near Eddington accretion rates. How-
ever, our simulations still provide a qualitative under-
standing of the physics that will be useful in designing
the next set of more realistic models of binary black holes
immersed in circumbinary disks. In this section, we de-
scribe the initial data and computational methods we
adopt to account for a)-e).

A. Initial data and AMR hierarchy

1. Metric initial data

At large separation the binary inspiral time scale is
much longer than the binary orbital period and the vis-
cous time scale at the inner edge of the disk just be-
yond the binary orbit. Accordingly, the inspiral can
be neglected over many orbital periods. To model this
epoch in GR, we adopt quasi-equilibrium conformal-thin-
sandwich (CTS) solutions for the black hole binary [91–
94]. The spacetime initial data satisfying the CTS equa-
tions correspond to a circular orbit and possess a helical
Killing vector. The CTS initial data have been generated
using the spectral techniques described in [105] as imple-
mented in the Spectral Einstein Code (SpEC) [106] (see
also [107]). We list the initial data parameters describing
our spacetimes in Table I.

2. Matter and B-field initial data

For the fluid we use the same family of equilibrium
disk models around single BHs as in [95, 108, 109]. We
choose the initial inner disk edge radius rin,0 = 18M and
specific angular momentum l(rin,0) = 5.15M2 around a
non-spinning BH as in [76]. However, the disk model is

TABLE I. CTS initial data parameters for the BHBH vac-
uum spacetime. Columns show mass ratio (q), ADM mass
(MADM) and angular momentum (JADM), and irreducible
masses (M i

irr), and apparent horizon radii (rihor) for the two
black holes. Diagnostics generating these quantities, but com-
puted from vacuum, test simulations agree with these values
to within one part in 104.

q MADM JADM M1
irr M2

irr r1hor r2hor

1 : 1 0.98989 0.96865 0.50000 0.50000 0.42958 0.42958

1 : 2 0.99097 0.85933 0.66667 0.33333 0.60192 0.27312

1 : 4 0.99342 0.61603 0.80000 0.20000 0.75140 0.15832

1 : 8 0.99589 0.37868 0.88889 0.11111 0.85640 0.08618

1 : 10 0.99656 0.31652 0.90909 0.09091 0.88081 0.07022

not identical to [76] due to the different polytropic index
(Γ = 4/3 here versus Γ = 5/3 in [76]).

We seed the initial disk with a small, purely poloidal B-
field using the same procedure as in [76, 110]; see Fig. 1.
The field is dynamically unimportant initially: the initial
maximum value for the ratio of magnetic PM to total
pressure P is 0.025. All cases we consider in this work
are initialized with the same disk and magnetic field.

FIG. 1. B-field lines (white curves) and volume rendering of
rest-mass density normalized to its maximum value at t = 0.
The two black dots at the center indicate the BH apparent
horizons for the q = 1 case.

Although we will qualitatively discuss how the evolu-
tion of these matter initial data depends on the binary
mass ratio, it is important to stress that the goal of our
work is to assess how the final relaxed state of the disk de-
pends on the binary mass ratio. The initial data, which
governs the early evolution, has no physical significance.

B. Evolution equations and techniques

1. GRMHD evolution

We use the Illinois GRMHD adaptive-mesh-refinement
(AMR) code [111–113], which adopts the Cactus/Carpet
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infrastructure [114–116]. This code has been extensively
tested and used in the past to study numerous sys-
tems involving compact objects and/or magnetic fields
(see e.g. [110, 117–121]), including black hole binaries in
gaseous media [47, 76, 95].
The code solves the equations of ideal GRMHD in a

flux-conservative formulation [see Eqs. (27)-(29) in [112]]
employing a high-resolution-shock-capturing scheme (see
[111, 112] for details), and including effective cooling
source terms [see Eqs. (65) and (66) in [117]]. To en-
force the zero-divergence constraint of the magnetic field,
we solve the magnetic induction equation using a vec-
tor potential formulation [see Eq. (9) in [113]]. As our
EM gauge choice we use the generalized Lorenz gauge
condition we developed in [76] and used in [118, 121].
We choose the damping parameter ξ = 8/M . The
advantage of this gauge condition is that it leads to
damped, propagating EM gauge waves preventing spu-
rious magnetic fields from arising near AMR boundaries
even more effectively than the standard Lorenz gauge
choice (ξ = 0) [113]. The damping properties of the gen-
eralized Lorenz gauge are crucial for stable and accurate
long-term GRMHD evolutions. The “algebraic” gauge
condition used in the first GRMHD simulations adopt-
ing A-field evolution (see e.g. [49, 112, 122]) was shown
in [113] to suffer from spurious conversion of EM gauge
modes into physical modes and vice-versa, due to inter-
polation at AMR boundaries. These spurious magnetic
fields contaminate the evolution and the effect is exacer-
bated when matter crosses refinement boundaries.
To close the system of equations we use a Γ-law EOS

P = ρ0ε(Γ− 1), (6)

where P is the total pressure, ρ0 the rest-mass density,
and ε the specific internal energy. This EOS allows for
shock heating. We choose Γ = 4/3 appropriate for radi-
ation pressure-dominated, optically thick disks.

2. Metric evolution

The metric evolution is treated under the approxima-
tion that the inspiral time scale due to GW emission is
long compared to both the binary orbital period and the
viscous time scale of the disk. Hence, we can neglect
the inspiral for multiple binary orbits. The CTS initial
data we adopt possess a helical Killing vector, which im-
plies that the gravitational fields are stationary in a frame
corotating with the binary. As a result, we can perform
the metric evolution in the center-of-mass frame of the
binary by simply rotating the initial spacetime fields as
was done in [47, 76]. This technique simplifies our com-
putations substantially. In addition, the rotating metric
method facilitates our evolving dynamically to relaxed
disk/magnetic field initial data for the inspiral.
To implement this method, we map the CTS solution

from the spectral grid onto three grids corresponding to
three partially overlapping spherical coordinate systems:

One spherical coordinate system covers the entire evolu-
tion domain and is centered on the binary center of mass,
and two smaller ones are centered on each BH. These new
grids employ a logarithmic radial coordinate. We use the
CTS solution stored on these spherical grids to interpo-
late the data onto the Cartesian evolution grids whenever
we perform the rotation transformation.
We have checked that the mapping from the spectral

grid to the spherical grids is implemented correctly by
performing vacuum simulations that use the CTS solu-
tion stored in the spherical grids as initial data. More
specifically, we have computed several diagnostic quan-
tities which characterize the BHs and the global space-
time and compared them with the values known from
the spectral CTS initial data (see Table I). These agree
to within 1 part in 104. Moreover, we have verified that
a crude estimate for the orbital frequency of the binary
(orbital trajectory traverses a full phase of 2π) as deter-
mined by a dynamical vacuum evolution agrees with the
value given by the initial data (MΩ = 0.028) to within
∼ 10%. We have computed the normalized L2,N norm
of the Hamiltonian and momentum constraint violations
as introduced in Eqs. (59) and (60) in [123], with the
modification that we split up the Laplacian operator into
its individual components when computing normalized
norms. We find the normalized norm of the Hamiltonian
constraint to be dominant, with L2,N (H) ∼ 2%. We con-
clude that the CTS solutions are mapped correctly and
accurately.

3. Cooling

Without cooling, the binary tidal and the viscous
torques act to gradually heat and puff up the disk. “Ad-
vective” cooling, which is crucial in slim-disk and ADAF
models [50], is self-consistently accounted for in our simu-
lations. However, adding radiative cooling may be neces-
sary to achieve a steady state. Realistic radiative cooling
based on actual physical mechanisms depends on com-
plicated microphysics, which we do not model here, but
intend to incorporate in future studies. To model steady-
state solutions in this work, we introduce “radiative”
cooling via an effective cooling leakage scheme. This
scheme is, strictly speaking, valid in the optically thin
regime. While this is a very crude approach to radiative
cooling, treating both extremely rapid radiative cooling
as well as no radiative cooling can help bracket the pos-
sibilities. Different formulae for the cooling emissivity Λ
have been proposed in the literature:

I. Non-exponential cooling [72, 124]:

Λ =
ρ0ε

τcool

(ΔS

S0
+

∣∣ΔS

S0

∣∣), (7)

where S ≡ K = P
ρΓ
0

is an entropy parameter, and

S0 the initial target value. We call this emissiv-
ity “non-exponential”, because the effective cooling
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time scale for this scheme is not just τcool, but de-
pends on the internal energy ε (see Appendix A).

II. Exponential cooling [117, 119]

Λ =
ρ0εth
τcool

=
ρ0ε0
2τcool

(ΔS

S0
+

∣∣ΔS

S0

∣∣), (8)

where ε0 is the internal energy calculated using S0,
and εth = ε−ε0. In this scheme the effective cooling
time scale is τcool.

Both emissivities dissipate all shock-induced thermal en-
ergy, driving the entropy of the gas to its initial value.
We use prescription II, instead of I, because we have
found that prescription I is prone to the development of
a Courant instability, as the effective cooling time scale
of this scheme depends on the amount of shock heating,
which can be very strong in low-density regions (see e.g.
Appendix B in [125]). Thus, to stabilize the simulations
with prescription I, one typically excludes cooling of the
low-density regions or unbound matter [72, 76]. As both
the BH horizons and the low-density cavity is included
in our computational domain (unlike earlier studies), we
find that the strong shock heating inside the cavity in
conjunction with emissivity I leads to a numerical insta-
bility. In order to bracket the effect of cooling, this inner
cavity needs to be cooled when cooling is enabled. In
Appendix A, we present an analytic calculation illustrat-
ing the above considerations. We demonstrate that shock
heating of matter in the cavity is important in Sec. IVC.
To model “rapid” radiative cooling we set the cooling

time scale equal to 10% of the local, Keplerian time scale
τcool/M = 0.1τKep/M = 0.1 · 2π(r/M)3/2, where r is the
cylindrical radial coordinate measured from the center of
mass of the binary. In order to prevent the cooling time
from becoming prohibitively small as r → 0 we floor the
cooling time at τcool ≥ 10M . Throughout this paper we
refer to cases with Λ 	= 0 as the cooling cases and Λ = 0
as the no-cooling cases.

4. Evolution grids & models

We use a hierarchical, box-in-box adaptive mesh pro-
vided by the Cactus/Carpet infrastructure [115, 116]. We
constructed two sets of nested boxes, with one set cen-
tered on each BH, on which we discretize the GRMHD
evolution equations. The coarsest level has an outer
boundary at r = 240M . Due to a range of resolution
requirements related to the different sizes of the BHs,
different models use different number of refinement lev-
els, which in turn yields different finest grid spacings (see
Table II). We set up the locations of our AMR bound-
aries such that the computational grids resolve both the
BHs and the inner disk region for the given resources.

The grid spacing is also motivated by both MRI resolu-
tion requirements and the results gleaned from test runs
involving hydrodynamic disk evolutions around a single,
non-spinning BH, which we report on in Sec. IV.

In Table II we also list the distinguishing characteris-
tics of the different cases we consider in this work. The
labels are chosen to designate the mass ratio, whether
cooling is applied or not, and the resolution. For ex-
ample, the label 1:1nc-hr means mass ratio q = 1, no-
cooling, and high resolution.

We point out that the disparity in length scales (hori-
zon vs. disk size) and time scales (the Courant condi-
tion vs. viscous time scale) intrinsic to the circumbinary
BHs disk problem introduces a large computational cost.
Most of our simulations were run continuously (excluding
queue waiting times) for ∼ 2 months on Blue Waters,
Kraken, Lonestar, as well as the Illinois Relativity group
36-node Beowulf cluster. The CPU hours used depended
on the computer cluster, but we estimate that the simu-
lations presented here required ∼ 2× 106 CPU hours.

C. Diagnostics

We distinguish two types of diagnostics. The first type
consists of probes of the MHD flow, including the den-
sity and velocity profiles, accretion rates, luminosity esti-
mates, magnetic field profiles, the establishment of MRI
turbulence and jets, etc. The second type concerns prop-
erties of the plasma such as local temperatures, optical
depths, characteristic frequencies of emitted radiation,
etc. The first type are straightforward to calculate from
our simulation data, as they depend on the overall MHD
behavior of the disk, and once we have chosen an EOS
and cooling prescription, are independent of detailed mi-
crophysics. We are quite careful and confident in re-
porting these diagnostic quantities. The second type de-
pends crucially on the specific physical values we assign
to our nondimensional input parameters (e.g. BH mass
and disk density) and to the microphysics that is not
incorporated in our calculation (e.g. realistic radiative
cooling and radiative transport). Nevertheless, we can
make crude estimates for the latter quantities, and do so
below. Although considerable caution must be applied to
these estimates, they may serve as useful guides to subse-
quent, more detailed investigations and to astronomical
instruments that may be able to observe the scenarios we
are simulating.

The first type of diagnostics includes: 1) Accretion

rate Ṁ as defined in [47]. We compute the total accre-
tion rate onto the binary, and also the accretion rate onto
each individual BH. 2) Fourier analysis of the accretion

rate FFT (Ṁ), targeted to identify possible quasiperi-
odic signatures in the accretion flow. 3) Surface den-
sity profile Σ(r) as defined in [95]. This diagnostic is
also useful to compare with studies of 1D orbit-averaged
disk models. 4) Shakura-Sunyaev α-stress parameter
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TABLE II. List of grid parameters for all models. Equatorial symmetry is imposed in all cases. The computational mesh
consists of two sets of nested AMR grids, one centered on each BH, with the outer boundary at 240M in all cases. From left
to right the columns indicate the case label, mass ratio q, whether cooling is included or not, the coarsest grid spacing Δxmax,
number of AMR levels around the primary (BH) and the secondary (bh), and the half length of each AMR box centered on
each BH. The grid spacing of all other levels is Δxmax/2

n−1, n = 1, 2, . . . , nmax, where n is the level number such that n = 1
corresponds to the coarsest level. A dash “–” indicates “no information available”.

Case q cooling? Δxmax levels(BH) levels(bh) Grid hierarchy

1:1nc-hr 1:1 No 4.8M 7 7 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, 7

1:1nc-mr 1:1 No 6.0M 7 7 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, 7

1:1nc-lr 1:1 No 8.0M 7 7 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, 7

1:2nc-lr 1:2 No 8.0M 7 8 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, 7, 8

1:4nc-lr 1:4 No 8.0M 7 9 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, . . . , 9

1:8nc-lr 1:8 No 8.0M 6 10 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, . . . , 10

1:10nc-lr 1:10 No 8.0M 6 10 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, . . . , 10

0nc-hr 0 No 4.8M 6 – 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6

0nc-mr 0 No 6.0M 6 – 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6

0nc-lr 0 No 8.0M 6 – 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6

1:1c-mr 1:1 Yes 6.0M 7 7 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, 7

1:2c-lr 1:2 Yes 8.0M 7 8 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, 7, 8

1:4c-lr 1:4 Yes 8.0M 7 9 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, . . . , 9

1:8c-lr 1:8 Yes 8.0M 6 10 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, . . . , 10

1:10c-lr 1:10 Yes 8.0M 6 10 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6, . . . , 10

0c-lr 0 No 8.0M 6 – 240M/2n−1, n = 2, . . . 5, 240M/2n, n = 6

computed as α ∼ αEM ≡ 〈 〈T
EM
r̂φ̂

〉
〈P 〉 〉t where TEM

r̂φ̂
is the

dominant orthonormal component to the Maxwell stress-
energy tensor evaluated using the tetrad defined in [126]
(the brackets denote an orbit averaged quantity). More
specifically, we report an azimuthally- and z- averaged
α = α(r) profile, which can be used in 1D orbit-averaged
disk models. 5) Disk scale height H = Σ/ρ0(z = 0).
6) Inner disk edge radius rin: In all Σ(r)-profiles we ob-
serve that inside the cavity Σ(r) declines rapidly with
decreasing r and becomes convex. We fit a fifth or-
der polynomial to the orbit-averaged Σ(r) in the con-
vex region at small r, and define rin as the radius where
the curvature of the Σ(r) fitting function is maximized,
[Σ′′(r)/(1 + Σ′(r)2)3/2]′ = 0 where ′ ≡ d/dr. 7) EM
Poynting luminosity (LEM) as defined in Eq. (1) of
[121]. 8) Energy loss rate carried off by the outflowing
gas Lgas =

∮
s
T0,

r
(gas)dS. This surface integral must be

performed in the asymptotically flat regime. Given that
we do not perform the integration at an infinite radius,
as a crude approximation to Lgas we include in the in-
tegration only matter that is unbound, i.e., matter for
which at large radii E = −u0 > 1. We compute 7) and
8) at several radii including 90M, 140M, 210M . 9) For
cases where our cooling scheme is enabled, we compute
the cooling luminosity Lcool =

∮
s
T0,

r
(rad)dS, which we

estimate via the volume integral Lcool =
∫
Λu0α

√
γd3x.

The volume integration is exactly equal to the surface in-
tegration at steady-state and in spacetimes possessing a
timelike Killing vector and when we ignore any radiation
captured by the BHs. We also compute the bolometric

radiative luminosity Lb = LEM + Lcool.

The second type of diagnostics includes: 10) Opti-
cal depth to true absorption τ∗ =

√
3τesτff (Eddington

approximation), where we assume pure hydrogen and
where τes (τff) is the optical depth to electron scatter-
ing (free-free absorption), calculated using the Thomp-
son scattering opacity κes = 0.4cm2/g (Rosseland mean
opacity κ̄ff = 6.45 · 1023ρ0T−3.5cm2/g) as τes = κesΣ
(τff = κffΣ) [127]. τ∗ > 1 implies the matter is optically
thick to absorption. 11) Local temperature of the matter,
calculated by solving ε = aT 4/ρ0 + 2kBTρ0/mp, where
mp is the proton mass and kB the Boltzmann constant.
12) In the cases with cooling, the effective disk temper-
ature (in cooling cases), estimated by assuming that all
cooling luminosity is emitted as black body radiation:

Teff = [Lcool/4πσ(r
2
out − r2in)]

1/4, (9)

where σ is the Stefan-Boltzmann constant and rout is the
disk outer radius. 13) Characteristic observed thermal
radiation frequencies νbb = kBTeff/h(1 + z), where h is
the Planck constant and z the cosmological redshift. This
is calculated only when Λ 	= 0. 14) Cyclotron emission.
While we find the bulk of the disk to be optically thick
near Eddington accretion rates, the low-density “cavity”
is optically thin. From these regions cyclotron lines may
be detectable. 15) In cases where Λ 	= 0 we compute the
characteristic cyclotron frequencies νcy = eB/mc(1 + z),
where e is the electron charge, m the electron mass and
B the magnitude of the magnetic field.



9

IV. TESTS AND RESOLUTION
REQUIREMENTS

In this section we describe tests we performed that
motivate the choices for the grid resolution and cooling
time scale.

A. Hydrodynamical evolutions with B = 0

To set a lower limit on the necessary resolution to
perform our GRMHD simulations, we found the mini-
mum resolution required so that our code maintains sta-
ble equilibrium of an unmagnetized disk around a single
non-spinning BH for several thousands of M of evolution.
The equilibrium disk solution we use is described at the
beginning of Sec. IIIA 2. Our study indicates that for
the low resolution (Δxmax = 8.0M) listed in Table II the
surface density profile of the initial disk is maintained to
within 2% throughout the disk for at least t ∼ 5000M .

B. MRI resolution requirements

Here we check the conditions for MRI to operate in our
disk models. For this to be the case three conditions have
to be satisfied: (I) A magnetic field configuration must
be present that violates the stability condition for MRI
dΩ/dr ≥ 0, (II) The wavelength of the fastest-growing
mode λMRI has to be resolved by � 10 gridpoints [128–
130], and (III) the B-field must be sufficiently weak for
λMRI � 2H. In other words the wavelength of the fastest
growing mode should fit in the disk [131].

Regarding (I) our initial disk model is unstable to the
MRI because of the outwardly decreasing angular veloc-
ity and the presence of an initially small poloidal mag-
netic field. Regarding (II) we plot the quality factor
Q ≡ λMRI/dx where dx is the local grid spacing (which
jumps by a factor of two at AMR boundaries); see Fig. 2.
One can see that we satisfy the criterion Q � 10 over a
rather large portion of the disk initially except for the re-
gion near the radius where the poloidal field changes sign
and becomes very small. We chose our low-resolution
grids such that condition (II) is satisfied at t = 0 in the
innermost parts of the disk.

Regarding (III) we plot a meridional (x, z)- slice of the
rest-mass density overlayed by a line plot showing λMRI

as a function of x in Fig. 3. The plot shows that for
the most part λMRI fits within the disk. At the inner
disk edge the MRI is likely to be suppressed initially,
but as the evolution proceeds magnetic winding converts
poloidal fields into toroidal ones lowering λMRI and even-
tually triggering the MRI near the inner disk-edge.

FIG. 2. Contours of the λMRI-quality factor Q = λMRI/dx in
the equatorial plane, corresponding to the equal mass (q = 1)
medium resolution case [divide (multiply) by 1.33 (1.25) for
the low (high) resolution case] at t = 0M . We resolve the
fastest growing MRI mode by � 10 gridpoints over a large
part of the disk (the blue ring stems from extremely small
values of λMRI, when the vertical component of the B-field
changes sign).

FIG. 3. Rest-mass density contours (color coded) on a merid-
ional slice, and λMRI/2 (black solid line) at t = 0M . The plot
corresponds to equal mass (q = 1) but is the same among all
cases considered in this work. For the most part λMRI/2 fits
within disk.

C. Cooling

We seek to compare two opposite limiting cases for
each mass ratio: (I) No-cooling, τcool  τKep for which
Λ = 0. Here τKep is the local Keplerian time scale which
is comparable to the (shock) heating time scale; (II) ex-
tremely rapid cooling, τcool � τKep which we model with
the effective emissivity Λ = ρ0εth

τcool
.
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To determine the value for τcool at which cooling be-
comes rapid (at least in the bulk of the disk), we per-
formed the q = 1 cooling case using different cooling
time scales. We concluded that rapid cooling requires
a cooling time scale significantly shorter than the lo-
cal Keplerian time scale. In Fig. 4, we plot K/K0,
where the entropy parameter S ≡ K = P/(ρΓ0 ) and
S0 = K0 = K(t = 0) for a run with τcool = 0.1τKep

(left panel), a run with τcool = τKep (middle panel) and a
run without cooling τcool = ∞ (right panel). It becomes
apparent that when τcool = τKep, K is not driven back to
its initial value. Physically, this means that not all shock
generated entropy is radiated away, hence τcool = τKep

does not correspond to rapid cooling and steady state
is not achieved. For τcool = 0.1τKep we find K/K0 ∼ 1
in the bulk of the disk. The values depart from unity
only inside the cavity where low density gas exists and
can be shock heated to very high K/K0, demonstrating
that shock heating is extremely strong in the low-density
cavity. We adopt τcool = 0.1τKep in all our cooling simu-
lations because it leads to rapid cooling, at least through-
out the bulk of the disk.

V. RESULTS

In this section we present the results of our numerical
simulations. First, in Sec. VA we show results from our
resolution study. In Sec. VB, we directly compare the
q = 1 binary case with B 	= 0 to the B = 0 case. Lastly,
we report on the variation of our diagnostics with mass
ratio for all magnetized cases in Sec. VC.
Our simulations have two parameters that scale out

of the problem: the total mass of the BHBH binary M
and the rest-mass density of the disk. Alternatively, we
can exchange one of these parameters with another pa-
rameter that depends on these two free parameters. So,
instead of the rest-mass density, in the results we quote
we choose the Eddington ratio Lb/LEdd, where Lb is the
bolometric EM luminosity described in Sec. III C. The
relation between these parameters is determined as fol-
lows: the accretion rate through the horizon must scale
like Ṁ ∝ ρ0,refM

2, where ρ0,ref is a reference rest-mass
density in the disk. We choose the maximum rest-mass
density at t = 0 as the reference density, and our simula-
tions determine the proportionality constant. For exam-
ple, in the single, nonspinning BH case with cooling we
find

ρref = 9× 10−12

(
Lb

LEdd

)(
M

108M�

)−1

g cm−3,

where we have replaced the accretion rate via the follow-
ing expression

Ṁ = Lbε
−1 =

(
Lb

LEdd

)
LEddε

−1

≈ 2.75

(
Lb

LEdd

)(
M

108M�

)
M� yr−1,

(10)

and where ε ≡ Lb/Ṁ = 0.08 is the radiative efficiency
as computed via our simulations for our adopted cooling
law in the single, nonspinning BH case. In the no-cooling
cases the only radiation luminosity estimate we have is
the Poynting luminosity which is expected to be a small
fraction of the total radiative luminosity. Hence, in the
no-cooling cases we do not scale our results with the Ed-
dington ratio. Instead, we choose a fiducial accretion rate
similar to the one given in Eq. (10).

A. Resolution study

Here we present the results of our resolution study.
For the single BH, no-cooling and BHBH equal mass, no-
cooling cases we use the three resolutions (see Table II).
In the single BH-case the average accretion rate varies

little with resolution (see left panel in Fig. 5). The maxi-
mum fractional difference of the mean accretion rate be-
tween different resolutions is 15%. Other quantities show
a similar behavior. These results indicate that the res-
olutions used in this case are high enough for the main
MRI effects to be captured and the results to be qualita-
tively independent of resolution. However, the resolution
is not sufficiently high to perform a formal convergence
test.
For the equal-mass case we observe a different behav-

ior. The mean accretion rates appear to converge (see
right panel in Fig. 5), but the low resolution run under-
estimates the accretion rate by almost a factor of 2, while
the medium and high resolution runs are in good agree-
ment. For the latter resolutions mean accretion rates
agree to within 9%. We conclude that for the q = 1 case
our adopted medium and high resolutions are sufficient
for drawing qualitative conclusions and that higher res-
olutions are necessary for accurate quantitative results
that reside in the convergent regime.
The results of the resolution study in the q = 0 and

q = 1 cases differ because of the distribution of matter in
both cases and our grid setup. In the q = 0 case there is
more matter close to the BH, where very high resolution
refinement levels reside, whereas in the q = 1 case the
bulk of the matter remains outside the inner edge of the
disk, where the grid resolution is not as high. As we show
later, this is not the case in our q < 1 models. There,
more matter resides closer to the BHs, and hence closer
to the high resolution levels.
Based on our resolution study we conclude that the

low resolution used in the equal-mass case is not suffi-
ciently high to yield reliable results, but for the other
mass ratios we consider in this work, our adopted low
resolution suffices for a qualitative discussion. Thus, in
the equal-mass cases results will be reported mainly from
our medium resolution runs.
We stress here that these simulations, which include

all relativistic effects and resolve the BHs, are computa-
tionally very demanding (see Sec. III) and increasing the
resolution even further will incur a very large computa-
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FIG. 4. K/K0 for three q = 1 runs with different τcool at t = 7700M . Left panel: τcool = 0.1τKep. Middle panel: τcool = τKep.
Right panel: No-cooling (τcool = ∞). Cooling in the τcool = τKep case cannot keep up with heating, causing K to drift
away from its initial value. Values much smaller than τKep are required for rapid cooling. Steady state is not achieved in the
τcool ≥ τKepler cases.

FIG. 5. Left panel: rest-mass accretion rate vs time for the q = 0 no-cooling cases at low (lr), medium (mr), and high (hr)
resolutions. Right panel: rest-mass accretion rate vs time for the q = 1 no-cooling cases at low, medium, and high resolutions.
The accretion rate in the q = 0 (q = 1) case is normalized by the mean accretion of the high resolution q = 0 (q = 1) run. The
horizontal lines indicate the mean accretion rate at low, medium and high resolution.

tional cost. With increasing computer power and larger
computer allocations we plan to improve our results in
the near future.

B. Significance of B-fields

Previous hydrodynamic simulations and
(semi)analytic models of circumbinary accretion
disks using the simplified α-disk model (e.g. [59, 63])
showed that the main feature in the equal-mass binary
case is that the density inside and near the binary’s orbit
remains substantially lower than in the single BH case
(see, e.g., Fig. 6). Such an inner cavity or “hollow” can
have important consequences for the emergent radiation,
such as line emission due to small optical depth and
small bolometric luminosity from the hollow. Any such

difference between single BH vs. circumbinary accretion
disks can provide a path to distinguishing a binary AGN
versus a classical, standard (single BH) AGN [132]. The
explanation for the existence of a hollow is that the
binary tidal torques for q � 0.01, are strong enough to
push most matter away from the binary orbit [3]. The
effect is most prominent in geometrically thin disks,
which arise when radiative cooling is highly efficient.

However, even in the absence of viscosity or magnetic
fields, the time-dependent tidal field strips off matter
from the inner disk edge, giving rise to an accretion pat-
tern consisting of two streams which penetrate the inner
cavity and extend to the horizons of the BHs [3, 47, 73–
75, 95].

Furthermore, recent MHD simulations [71, 72, 76] uni-
versally revealed that the reduction of density inside the
cavity in the binary case is not as substantial as previ-
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ously thought. Such simulations explore regimes in which
the disk is geometrically thick, which partially accounts
for the difference.
Here we present a comparison between magnetized and

unmagnetized circumbinary accretion disks onto an equal
mass BHBH, while all other physical and numerical pa-
rameters remain identical, to illustrate the importance of
magnetic fields in filling the hollow with dense material.

1. Midplane-density

Figure 6 demonstrates the striking differences between
no-cooling evolutions with and without magnetic fields at
the same integration time. Magnetic-free hydrodynamic
evolutions severely underestimate both the density in the
inner regions and the overdensity due to the spiral arms.
This indicates that the amount of matter stripped off by
tidal torques is small compared to the amount of matter
flowing into the hollow due to MHD turbulence.

2. Σ-profiles, q = 1

Next we compare the surface density profiles of mag-
netized vs unmagnetized disks. We find different profiles
between the two cases as shown in Fig. 7. The B = 0
model remains relatively close to the initial data, apart
from a slow, mild expansion due to tidal heating and
shocks. When magnetic fields are present, the final disk
profile is completely different from the initial data even
though the binary torques are identical. This implies
that the MRI-driven viscous torques have a much larger
impact on the global disk structure than the binary tidal
torques, except perhaps near the inner disk edge.

3. Sensitivity to cooling

We find a fundamental difference between B = 0 and
B 	= 0 evolutions regarding their sensitivity to cooling. In
the B = 0 case both Λ 	= 0 and Λ = 0 evolutions lead to
essentially the same Σ-profile (see Fig. 7). This is in stark
contrast to the B 	= 0 (magnetized) cases shown in Fig. 7,
for which cooling has a strong impact, leading to a matter
pile-up near the inner disk edge. As our particular choice
of Λ serves to dissipate heat from shocks, we conclude
that magnetic fields lead to far stronger shock heating in
the disk than the binary tidal torques.

4. Accretion rate

The ratio of the time-averaged accretion rate with-
out magnetic fields to that with magnetic fields is
〈ṀBHBH,B=0〉/〈ṀBHBH,B �=0〉 � 1% (see also Sec. VC).
This result applies to both cooling and no-cooling cases.

In summary, B = 0 evolutions underestimate the ma-
terial inside the cavity and accretion rates by orders
of magnitude. Hence, incorporating magnetic fields is
paramount for a proper treatment of circumbinary ac-
cretion disks.

C. Trend with mass ratio, B �= 0

In this section we discuss the dependence of our mul-
tiple diagnostics on the binary mass ratio for our B 	= 0
cases. We use results from the single non-spinning BH
case (q = 0) to normalize and compare our results for the
binary cases.

1. Disk structure in the bulk and inside the cavity

We begin this section by discussing the qualitative evo-
lution of the disk rest-mass density ρ0. For q 	= 0, the
early evolution is similar for the different mass ratios, but
departs strongly in the subsequent evolution depending
on q. The onset of accretion occurs through two spiral
streams, which remain attached to the horizons through-
out the evolution, as shown in Figs. 8–15. Here we plot
the rest-mass density contours in the equatorial plane.
These streams are among the densest structures of the
accretion flow, especially for the lowest non-zero mass
ratio case q = 0.1 (see Figs. 14 and 15). Spiral density
waves are launched near the inner edge of the disk, which
propagate and dissipate into the outer disk. This feature
can also be seen in Figs. 8–15 for all mass ratios.
Late in the evolution we find that when q 	= 0, the

density of the matter inside the “cavity” in Λ = 0 cases
is larger than that in Λ 	= 0 cases (see Figs. 8 and 9).
Hence, the amount of matter in the hollow is smaller
when we allow rapid cooling. This dependence on cool-
ing arises because of the larger disk thickness in the no-
cooling cases, which leads to a reduction in tidal torques
[5, 133] near the binary orbit, allowing matter to overflow
more easily.
We also find that the smaller the mass ratio the more

matter pours into the cavity. This is anticipated from
the Newtonian expression for the binary tidal torque [5,
133], which decreases with decreasing q. As expected, the
largest contrast arises between the q = 1 and q = 0 cases,
which becomes obvious by simply inspecting the rest-
mass density contours in the equatorial plane as shown
in Fig. 16. One can see the main difference: The presence
of a region of lowered density with two accretion streams
near the BHs in the binary q = 1 case – the “hollow” (or
“cavity”) – and the absence of these features in the q = 0
case (left panel).
The relaxed disk structure in the predecoupling regime

is not axisymmetric. The back-sloshing of material to-
wards the inner disk edge occurs mainly in two opposing
directions and leads to a gradual overdense feature in the
disk, which has been referred to as a “lump” [71, 72], and
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FIG. 6. Contours of rest-mass density normalized to the initial maximum rest-mass density in the equatorial plane at t ∼ 5000M
for two q = 1 no-cooling cases. Left panel: B = 0. Right panel: B �= 0. Notice the higher densities in spiral arms in the inner
regions in the B �= 0 case.

its presence has been linked with a growth in disk eccen-
tricity (see also [63]). The nonaxisymmetric feature is
stronger for models with cooling. Hence, a more realistic
calculation with radiative transfer is necessary to assess
the strength of nonaxisymmetric structure in a circumbi-
nary disk.

As expected, the rest-mass density contrast between
the two accretion streams becomes larger with smaller

FIG. 7. Surface density profiles for several q = 1 cases: Ini-
tial profile (yellow, solid line), B = 0 no-cooling (green circles)
& cooling (green crosses), B �= 0 no-cooling (red, solid line) &
cooling (black, dashed line) cases. Apart from the initial pro-
file all other profiles are orbit-averaged over the last 10 orbits
of evolution, beyond which the profile does not change appre-
ciably. Notice the clear emergence of a pile-up near the inner
disk edge in the cooling B �= 0 case, as well as the relatively
small change relative to the initial data in the B = 0 cases,
and the similarity between Λ = 0 and Λ �= 0 unmagnetized
cases.

mass ratios. This effect is easily seen when comparing
the rest mass density contours in the equatorial plane for
q = 0.25, q = 0.125 and q = 0.1 cases (see Figs. 12 and
15).
In the q = 1 and 0.5 no-cooling cases we observe time

variations in the density of the streams relative to each
other: for about half an orbit one stream is stronger than
the other.
We find that the supply of material channeled onto the

BHs is sufficient to keep the BHs immersed in a persistent
gaseous environment with b2/ρ0 ∼ 10−3. This means
that the force-free electrodynamics approximation may
be inadequate to globally describe the systems considered
here.
For q = 0.1 there is hardly a low-density hollow (see

Fig. 14). This is also revealed by the inner disk edge being
close to or inside the orbit of the secondary, especially in
the no-cooling case. In the q = 0 limit no hollow appears,
as expected. However, we observe a region of lowered
surface density near and inside the ISCO of the primary
BH.

2. Inner disk edge

In Newtonian 2D studies of geometrically thin disks
and large binary separations, the location of the inner
disk edge is found to be roughly twice the binary sepa-
ration, independent of q; see, e.g., Table I in [59]. For
the geometrically thick disks and binary separations we
are considering, we find the inner disk edge in the re-
laxed state to be dependent on q and whether cooling is
enabled.
In all cases (see the snapshots in Figs. 8–15), the inner

disk edge is closer than predicted by Newtonian thin-
disk calculations [59, 63, 71]. In the equal-mass cooling
case the inner edge remains closer to the initial one (see
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FIG. 8. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 1 no-cooling case. Here ρmax � 5.6× 10−11
(

ṀBHBH
10M� yr−1

)(
M

108M�

)−2

g cm−3.

Fig. 7). The trend is such that the smaller the mass
ratio the closer the disk edge is to the binary orbit. In
the q = 0.1 no-cooling case the inner disk edge effectively
coincides with the orbit of the secondary. We report the
value for rin found in each case in Table III, and plot rin
vs q in Fig. 17.

3. Surface density

In Fig. 18 we show the surface density (Σ) profiles of
the relaxed disks, averaged over the last 10 binary orbital
periods (for all mass ratios, cooling- and no-cooling). For
all cases the relaxed state deviates strongly from the ini-
tial profile, highlighting the importance of evolving the
system for at least a viscous time scale tvis at the radii
of interest, where

tvis
M

≡ 2R2

3νM
= 8485

( α

0.1

)−1
(
H/R

0.3

)−2 (
R

18M

)3/2

,

(11)
and where ν ≡ 2αP/3ρ0ΩKep is the shear viscosity, with

ΩKep = (M/R3)1/2.

No-cooling: The evolutions for q = 1 and 0.5 are
similar in terms of their Σ profiles. The other cases
(q = 0.25 − 0) yield similar Σ which extend further in
than for q = 1 and 0.5. The surface density diagnostic
clearly demonstrates that the Newtonian thin-disk fea-
ture that the cavity edge is at twice the binary separation
and independent of the mass ratio does not hold in this
class of runs.

Cooling: For non-zero mass ratios, cooling yields a pile
up of dense gas near the inner disk edge, which is absent
in the no-cooling runs and is strongest for the equal-mass
case. Apart from the pile-up at small radii, all evolutions
have a rather similar profile at larger radii. In the cooling
cases the cavity edge is farther out than for no-cooling,
but still closer than twice the binary separation. The de-
pendence on mass ratio is weaker than in the no-cooling
cases, but still in some disagreement with the Newtonian
thin-disk calculations.

4. Effective α-stress

Figure 19 shows the averaged effective Shakura-
Sunyaev α parameter profiles for all mass ratios, both
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TABLE III. Table summarizing our main results. Columns show case label, inner disk edge normalized to the binary separation
rin/d, the mean accretion rate and its approximate standard deviation normalized to the no-cooling single BH mean accretion

rate (〈ṀBHBH〉 ± δṀBHBH)/〈Ṁq=0〉, main Fourier frequencies normalized by the binary orbital period in the Fourier analysis
of the accretion rate, Shakura-Sunyaev α-parametera, the mean Poynting luminosity 〈LEM〉, and the mean cooling luminosity
〈Lcool〉 both normalized to the binary mean accretion rate. A dash “–” indicates “no information available”.

Case rin/d (〈ṀBHBH〉 ± δṀBHBH)/〈Ṁq=0〉 f/forb α 〈LEM〉/〈ṀBHBH〉c2 〈Lcool〉/〈ṀBHBH〉c2
1:1nc-mr 0.89 0.43± 50% (1.0, 1.5) 0.04 0.013 –

1:2nc-lr 1.33 0.24± 60% (0.7, 1.5) 0.05 0.012 –

1:4nc-lr 1.24 0.36± 20% (0.7, 1.5) 0.03− 0.1 0.010 –

1:8nc-lr 1.06 0.41± 40% 0.7 0.03− 0.06 0.010 –

1:10nc-lr 0.92 0.50± 50% – 0.07 0.017 –

0nc-hr 0.32 b 1.00± 24% – 0.05 0.011 –

1:1c-mr 1.48 0.43± 60% (0.5, 1.5) 0.2 0.004 0.127

1:2c-lr 1.65 0.36± 30% 1.0 0.12 0.003 0.110

1:4c-lr 1.57 0.32± 60% 1.0 0.1 0.002 0.107

1:8c-lr 1.46 0.31± 30% 0.6 0.08 0.006 0.096

1:10c-lr 1.36 0.43± 30% – 0.013 0.006 0.081

0c-lr 0.39 0.62± 10% – 0.012 0.002 0.115

a In some cases we quote a range of values because a single radially averaged value would overestimate α.
b For ease of comparison, in the single BH case we normalize rin to 10M even though it does not correspond to an orbital separation.

for cooling and no-cooling models in the relaxed state.
The average is taken over the last 10 binary orbits. In
Table III we also quote characteristic α values obtained
by additionally averaging over radii from the inner disk
edge out to the location of the density maximum. We
plot α vs q in Fig. 17.

In all cases we observe larger values for α in the cooling
cases than for the no-cooling cases, and there is always a
steep increase in α-stress at smaller radii. For the q = 1
cooling case we find α(rin < r < rmax) ∼ 0.2 and α(rin <
r < rmax) ∼ 0.1 for all other cooling cases. A typical
value for all no-cooling cases is α(rin < r < rmax) ∼
0.05. The higher stress for cooling cases results from the
additional gas compression and associated amplification
of magnetic fields when cooling is allowed.

5. Accretion rates

We compute the accretion rates through the individual
BHs as well as the total accretion rate onto the binary,
and normalize these by the (time-averaged) single, non-
spinning BH accretion rate.
For a given maximum rest-mass density and total BH

mass, we find the highest accretion rate in the single BH
case. This is consistent with the expectation that the
absence of a tidal-torque barrier will allow matter to flow
more easily toward the BH(s).
By contrast, the tidal torque is maximized for q = 1 (all

else being equal), so the expectation is that the accretion
rate will be minimum for q = 1. In agreement with this
expectation we find the accretion rate in the q = 1 cases
to be smaller than all other mass ratios we consider here.
In Table III we list the average accretion rate vs mass

ratio, and plot the results in Fig. 17. The general trend is
that lower mass ratios have higher accretion rates. In the
q = 0.1 case the average accretion rate is about 50% that
of the single BH case with the same initial maximum rest-
mass density and total BHBH mass, while the average
accretion rate in the equal-mass case is roughly 33% of
that in the q = 0 case.
For q = 1 and 0.5 both black holes accrete at com-

parable rates whether cooling is applied or not (see four
upper rows, left panels Fig. 20). However, we observe
that often the accretion rates on the individual BHs are
anti-phased, i.e., accretion occurs for half an orbit pri-
marily on one BH and then for the second half of the
orbit on the other BH. This behavior in the relaxed state
is due to an “alternating” pattern in which denser mate-
rial primarily plunges first through one stream and then
through the other.
In Fig. 20 we also plot the accretion rates for q = 0.25

and 0.1, with and without cooling (three lower rows, left
panels). It is apparent that for q = 0.25 the accretion
rate onto the primary is comparable to that onto the
secondary when Λ = 0. However, when Λ 	= 0 the domi-
nant contribution to the total accretion rate comes from
the primary. In the q = 0.1 case we observe that the
dominant contribution to the total accretion rate comes
from the primary whether cooling is applied or not, and
the same holds true for the q = 0.125 case.
This result in the q = 0.1 case can be qualitatively

understood through a rough analogy to Bondi-Hoyle-
Lyttleton accretion: The secondary has a smaller mass
and moves faster on its orbit reducing its effective cap-
ture cross section as suggested by Bondi-Hoyle-Lyttleton
accretion (see e.g. [47]). Also the surface area of the sec-
ondary is roughly a factor M2

BH/m
2
bh ∼ 100 smaller than
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FIG. 9. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 1 cooling case. Here ρmax � 2.1 × 10−11
(

Ṁ
1.75M�/yr

)(
M

108M�

)−2

g cm−3 � 2.1 ×
10−11

(
Lb

LEdd

)(
M

108M�

)−1

g cm−3.

FIG. 10. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 0.5 no-cooling case. Here ρmax � 8.3× 10−11
(

ṀBHBH
15.8M� yr−1

)(
M

108M�

)−2

g cm−3.
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FIG. 11. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 0.5 cooling case. Here ρmax � 4.2 × 10−11
(

Ṁ
2.85M�/yr

)(
M

108M�

)−2

g cm−3 � 4.2 ×
10−11

(
Lb

LEdd

)(
M

108M�

)−1

g cm−3.

that of the primary. Note however, that the secondary
plays a role in stripping matter off the inner disk edge ef-
fectively as it orbits closest to (or even through) the disk,
so the accretion rate onto the secondary is not generally
expected to be 100 times smaller than the accretion rate
onto the primary.
In particular, in the q = 0.1 no-cooling case a dense

persistent structure co-orbits with the secondary (see
Fig. 14). The density in this structure exceeds the den-
sity of matter near the primary by more than a factor of
two.

6. Variability

We now report results from the Fourier analysis of the
accretion rate. These can be seen in the right panels of
Fig. 20. A summary of the primary Fourier modes for
the different cases is presented in Table III.
In the q = 1 case a Fourier analysis of ṀBH (accre-

tion rate onto the primary) and ṁbh (accretion rate onto
the secondary) reveals a characteristic frequency near
(2/3)MΩBHBH, in agreement with [76]. The analysis of

ṀBHBH (the total binary accretion rate) gives a domi-
nant Fourier mode with a frequency twice as high. We
observe a peak at the binary period only for q = 0.5
and 0.25, and only for the cooling cases (see Fig. 20).
These results indicate that if the variability in the accre-
tion rate is directly translated into a variability of EM
signatures, inferring the binary frequency from EM ob-
servations may not be straightforward. We observe vari-
ability for other mass ratios as well. The frequencies for
the equal mass case also appear in other cases, in addi-
tion to other weaker contributions, but a clear trend is
not evident. The most prominent and clean periodic sig-

nature occurs in the q = 0.5 no-cooling case (see Fig. 20
and discussion in [64]). Other strong Fourier modes are
observed in q = 0.5 cooling and the q = 0.25 cases. For
q = 0.125 and q = 0.1 no significant periodicities are
observed.
In the q = 0.1 case the variability is dominated by

variations in the accretion flow onto the primary. The
Fourier analysis yields rather irregular accretion, i.e. not
very pronounced frequencies. The secondary accretes at
several pronounced frequencies, but the amplitude of the
variations is much smaller.
In [64, 65] the dependence on q of the variability

was studied for geometrically thin (“locally isothermal”
disks) and proposed as a key feature to observationally
distinguish accreting BHBHs from standard, single BH
AGNs. In our Fourier analysis the individual peaks are
less significant than in [64, 65] and the Fourier spectrum
yields a more complex structure. This discrepancy is
likely due to a combination of additional effects including
differences in the viscosity prescription (i.e. MHD turbu-
lence vs. α-viscosity), cooling prescriptions, thin vs. thick
disks, 2D vs 3D, and the EOS. These differences result in
geometrically thin vs thick disks, which are seen to have
different variability.

7. Luminosities

We compute the cooling (Lcool) and Poynting (LEM)
luminosities, as well as the energy loss rate due to out-
flowing matter (Lgas) for all cases. We typically find Lgas

is comparable to LEM and quite smaller than Lcool. We
highlight representative cases and summarize all values
for the different q characterizing the relaxed state in Ta-
ble III.
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FIG. 12. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 0.25 no-cooling case. Here ρmax � 6.7× 10−11
(

ṀBHBH
13M� yr−1

)(
M

108M�

)−2

g cm−3.

FIG. 13. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 0.25 cooling case. Here ρmax � 3.75 × 10−11
(

Ṁ
2.27M�/yr

)(
M

108M�

)−2

g cm−3 �
3.75× 10−11

(
Lb

LEdd

)(
M

108M�

)−1

g cm−3.

FIG. 14. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 0.1 no-cooling case. Here ρmax � 6× 10−11
(

ṀBHBH
11M� yr−1

)(
M

108M�

)−2

g cm−3.
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FIG. 15. Contours at select times of rest-mass density normalized to the initial maximum ρmax (log scale) in the equatorial

plane. The plot corresponds to the q = 0.1 cooling case. Here ρmax � 3.5 × 10−11
(

Ṁ
2.85M�/yr

)(
M

108M�

)−2

g cm−3 � 3.5 ×
10−11

(
Lb

LEdd

)(
M

108M�

)−1

g cm−3. The gas is denser everywhere compared to mass ratios closer to unity; compare to Figs. 8,

9, 10, 11, 12, 13.

FIG. 16. Contours of rest-mass density (linear color scale) normalized to the initial maximum in the equatorial plane at
t = 10000M . Left panel: q = 0 no-cooling. Right panel: q = 1 no-cooling case.

The large variability seen in the accretion rate is only
partially reflected in the cooling luminosities and not re-
flected in the Poynting luminosities. However, these con-
clusions need to be confirmed with a self-consistent treat-
ment involving radiative transfer.

In all cooling cases we find that the cooling luminosity
is significantly larger than the Poynting luminosity and
the energy loss rate due to outflowing matter by almost
a factor of 10 (see Table III).

We estimate and compare the contributions to the
cooling luminosity from various regions in the disk: the
outer disk, the inner edge, and the cavity (see Fig. 21).
We find that although the outer disk gives the largest
contribution, the inner edge and cavity interior are a sub-
stantial portion (∼ 30%) of the total cooling luminosity.
Therefore, the activity in the cavity cannot be ignored,

as has been done in earlier studies.

8. Opacities

We estimate the Thompson scattering (τes) and free-
free absorption (τff) optical depths in all cases. We do
not find a strong dependence of τ∗ = (3τesτff)

1/2, τes
and τff on the mass ratio. Our crude analysis shows
τ∗ ∼ O(1)(Lb/LEdd)

9/16(M/108M�)−1/16 throughout
the bulk of the disk. In conjunction with the radia-
tion pressure dominance found for near Eddington ac-
cretion rates, this result justifies our choice of Γ = 4/3
for the bulk of the disk. Some cases are marginal, how-
ever given the crudeness of our estimate and scaling ar-
guments the choice of adiabatic index is adequate. The
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FIG. 17. Mean accretion rate Ṁ (normalized to the no-
cooling single BH accretion rate), α, and rin (normalized to
twice the binary separation) as functions of q for cooling and
no-cooling cases (all at low resolution). In the absence of
medium and high resolution runs for q �= 1 we place error
bars in Ṁ based on the q = 1 resolution study. These error
bars are chosen to be 50%, corresponding to the fractional
difference between the high and low resolutions runs in the
q = 1 case (see Sec. VA). The error bar in the q = 0 case
is 15% corresponding to the fractional difference between the
high and low resolutions runs in the q = 0 case.

dominant source of opacity in all cases is electron scatter-
ing. Within the cavity we find that outside the accretion
streams the matter is optically thin. This means that
radiation from the cavity can freely stream out, and it
is likely that (depending on the local temperature) cy-
clotron lines may give rise to a nonthermal component
to the emergent EM spectrum.

We find that τ∗ is affected by cooling. The runs with
cooling have larger τ∗ than those without cooling.

9. Characteristic EM radiation frequencies

The characteristic effective temperatures [see Eq. (9)]
are

Teff ∼ 105
(

Lb

LEdd

)1/4 (
M

108M�

)−1/4

K. (12)

The corresponding characteristic thermal radiation fre-
quencies (νbb ∼ kBTeff/h) are reduced by a redshift fac-

tor 1/(1 + z), and are

νbb ∼ 1015
( ε

0.08

)1/4
(

M

108M�

)−1/2

(
Ṁ

2.25M�/yr

)1/4

(1 + z)−1Hz

∼ 1015
(

M

108M�

)−1/4 (
Lb

LEdd

)1/4

(1 + z)−1Hz.

(13)
The lower limit to the equatorial temperature in the

cavity for all cases (assuming ρ0ε = aT 4) is

T ∼ 105
(

Lb

LEdd

)1/4 (
M

108M�

)−1/4

K, (14)

implying that the electrons are nonrelativistic, and hence
they emit cyclotron and not synchrotron radiation. This
result, too, should be confirmed with radiative transfer
calculations. Typical cyclotron frequencies in the cavity
then are

νcy ∼ 106
(

M

108M�

)−1/2 (
Lb

LEdd

)1/2

(1 + z)−1Hz.

(15)
Note that due to the large radiation pressure near the

Eddington limit, one expects that any dust will be blown
away from the disk and may accumulate at much larger
radii than our computational domain. This dust is likely
to absorb the optical/UV radiation and re-emit it in the
IR [52, 134].

10. Outflows and jets

In Fig. 22 (q = 0.1 and 1 cases) we plot the ratio
b2/(2ρ0), which equals the terminal Lorentz factor in ax-
isymmetric steady-state jet flows. Close to the BH, val-
ues approaching b2/(2ρ0) ∼ 20 are common, dropping to
b2/(2ρ0) ∼ 10 at larger heights Z (in the funnel). We
observe mildly relativistic outflows in all cases. Our 3D
visualizations of the B-field lines (see Fig. 23) unambigu-
ously show that there are field lines emanating from each
BH horizon and extending into the polar regions. Near
the BHs [r ∼ O(10M)] this leads to a dual jet structure
that at larger radii [r ∼ O(100M)] merges into one com-
mon helical structure. Due to this effect the dual jets
may not be detectable individually. In the context of
force-free simulations around binary black holes, the ex-
istence of individually detectable dual jets was proposed
in [80]. However, in [135] it was shown that while a dual-
jet component is present, it is subdominant with respect
to the predominantly quadrupolar EM emission, thereby
casting tight constraints on the detectability of such dual
jets. Regardless, the “cavity” contains a lot of dense mat-
ter so that the assumption of the force-free limit of ideal
MHD may not be applicable. An MHD calculation can
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FIG. 18. Disk surface density Σ-profile for different mass ratios as a function of cylindrical radius (normalized to the binary
separation d ∼ 10M). Left panel: no-cooling cases. Right panel: cooling cases. Except for the initial profile all other curves
correspond to the relaxed state averaged over the last 10 binary orbital periods. In all these B �= 0 cases the relaxed profile
deviates strongly from the initial one. In the Λ = 0 sequence the density reaches further toward small radii with decreasing q.
In the Λ �= 0 sequence, one can see the pile-up near the inner disk edge, which is strongest for large q.

FIG. 19. Shakura-Sunyaev α profiles for all mass ratios. Left panel: no-cooling cases. Right panel: cooling cases. Profiles have
been averaged over the last 10 binary orbital periods. Cooling cases tend to yield larger values. In all cases the stress increases
inside the cavity.

resolve this question, and our results suggest that for
twin jets to be detectable as individual jets, it may re-
quire either BH spins misaligned with the orbital angular
momentum or tilted accretion disks [70]. Although for ge-
ometrically thin disks binary-disk misalignment may be
unlikely [136], it may be possible for geometrically thick
disks.

VI. CONCLUSIONS

We presented general relativistic magnetohydrody-
namic simulations of magnetized circumbinary accretion

disks onto binary black holes with mass ratios ranging
from 1:1 to 1:10. We model the disks using a Γ-law equa-
tion of state with Γ = 4/3 – appropriate for optically
thick, thermal radiation pressure-dominated fluids. We
focus on a disk near decoupling and perform our compu-
tations for ∼ 10000M (45 binary orbits). We compute
the disk structure after the disk has reached a quasi-
relaxed state. This dynamically quasi-steady state is a re-
sult of binary tidal torques balancing viscous torques aris-
ing from MHD turbulence triggered by the magnetoro-
tational instability (MRI). The tidal and viscous torques
heat the gas, which is expected to radiate and cool. To
bracket this possibility we perform runs without cooling,
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Ṁ

q
=
0

0 1 2 3
0

1 F
F
T
( Ṁ
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FIG. 20. Left panels: Late evolution of mass accretion rate onto the binary (solid, black lines), primary (red, dashed lines),
and secondary (solid-dotted, yellow lines). Right panels: Fourier transform of the accretion rates shown on the left. From top
to bottom we show the q = 1 cooling and no-cooling, q = 0.5 cooling and no-cooling, q = 0.25 cooling and no-cooling, and
q = 0.1 no-cooling cases.
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FIG. 21. Contribution to Lcool from the inner cavity and
outer disk for the q = 1 cooling case. The notation r < R0

means the cooling luminosity integral
∫
V
Λu0

√−gd3x, where
V is the volume within a coordinate sphere of radius R0. Note
that about 30% of the total cooling luminosity arises within
rin,0.

and runs with extremely rapid cooling, adopting an effec-
tive cooling prescription that resembles a leakage scheme.

We study how the structure of the accretion flow is al-
tered for the five different mass ratios. We employ several
diagnostics, including the accretion rate and its Fourier
transform, estimates of the electromagnetic luminosity
and the expected characteristic frequencies of the emer-
gent electromagnetic radiation, to compare the cases.

In the equal mass case we find that simulations without
magnetic fields underestimate the accretion rates, and
adopting our cooling prescription, the total luminosity of
the source by two orders of magnitude. This is due to a
substantial increase of the amount of matter in the ”cav-
ity” when magnetic fields are present. We also conclude
that magnetic fields alter the quasi-steady surface den-
sity profile. Turbulent B-fields lead to more shock heat-
ing than the binary tidal torques alone, thereby boosting
cooling luminosities above the values found in unmagne-
tized disks.

The surface density profile of the disk is sensitive to
the mass ratio mainly in the innermost regions. Cooling
leads to a density enhancement near the inner disk edge
(a pile-up) which is strongest in the equal mass case.

We find that for all mass ratios a two-stream accre-
tion pattern is present. These streams are attached to
the horizons, with the density close to the horizons being
among the densest part of the accretion flow. In partic-
ular, for the q = 0.1 case the material overflows into the
inner cavity and (partially) refills the hollow present in
the initial data. During this process a persistent dense
structure forms around the secondary. This behavior sug-
gests that it would be inadequate to ignore the flow inside
the cavity, which only simulations in full GR can treat

correctly.

The average binary accretion rates relative to the sin-
gle, non-spinning BH case range from 50% (q = 0.1) to
24% (q = 0.5) with a general trend that the accretion
rate becomes smaller as q → 1. For q = 0.5 and q = 1,
both BHs accrete at a comparable rate (on average), but
for roughly half a binary period one of the two accretion
streams is significantly stronger than the other, boosting
the accretion rate onto one BH and diminishing that onto
the other. For smaller q the accretion and variability is
increasingly dominated by the primary BH, especially in
the cases with cooling. For the single BH (q = 0) signifi-
cant variability ceases. In general we do not observe ev-
idence for variability exactly at the binary period. Two
exceptional cases in which the binary frequency is de-
tected are the q = 0.5 and 0.25 cooling models.

We find that the variability in the accretion rate is
not reflected in the variability of either the Poynting or
the cooling luminosity. We also find that our cooling
luminosity is always larger than the Poynting luminos-
ity, though careful GRMHD simulations with radiative
transfer are necessary to confirm these findings.

The cavity radiates an amount comparable to the outer
disk. Only the innermost regions reflect the strong vari-
ability seen in Ṁ , but in general the radiation from
the outer disk smears these variabilities out. We ten-
tatively conclude that it will be challenging to distin-
guish between single BH and binary BH AGN sources,
unless other effects such as binary disk misalignment are
present. However, radiative transfer calculations are re-
quired to confirm this result.

We observe nonaxisymmetric structure in the relaxed
disk. A “lump” forms near the inner disk edge and is
strongest when we allow for cooling.

All of our evolutions reveal magnetic field lines ema-
nating from each of the two horizons, forming dual jets
which merge into one helical structure above the polar
regions.

We estimate that the effective optical depth is
τ∗ ∼ O(1)(Lb/LEdd)

9/16(M/108M�)−1/16 through-
out the bulk of the disk, hence the disks we con-
sider are optically thick to absorption. The char-
acteristic effective temperature of our disk models

is Teff ∼ 105 (Lb/LEdd)
1/4 (

M/108M�
)−1/4

K. Ex-
pected frequencies of the thermal radiation are νbb ∼
1015 (Lb/LEdd)

1/4 (
M/108M�

)−1/4
/(1 + z)Hz (opti-

cal/near UV). Therefore, instruments such as LSST,
WFIRST, and PanSTARRS will be ideally suited to
study these sources. In the cavity, we find that τ∗ <
1, hence cyclotron lines may be directly observable
as a nonthermal component of the spectrum. Typi-
cal cyclotron frequencies in the cavity then are νcy ∼
106

(
M/108M�

)−1/2
(Lb/LEdd)

1/2
(1 + z)−1Hz, which

fall in the radio spectrum. Although considerable cau-
tion must be applied to these estimates, as we do not
account for mircophysics and radiative transfer in our
simulations, they may serve as useful guides to subse-
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FIG. 22. Contours of b2/2ρ0, (log color scale) in a meridional slice, and fluid velocity (arrows) at t ∼ 10000M . Left panel:
q = 1 cooling case. Right panel: q = 0.1 cooling case.

quent, more detailed investigations and to astronomical
instruments that may be able to observe the scenarios we
are simulating.
In upcoming work we plan to evolve the models pre-

sented here through inspiral, merger, and the post-
merger phases. We expect afterglow emission [37, 40]
similar to [76]. The latter phase will model the process
by which the disk material viscously diffuses into the cav-
ity following merger, leading to a brightening of the disk
[40, 41]. In the future we plan to include more realistic
cooling and radiative transfer and use higher resolution
for a more accurate modeling of these sources. It will be
crucial to determine in this context the level of variability
in the luminosity, and the EM spectrum of the source.
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Appendix A: Numerical stability of cooling schemes
in low density regions

The evolution equation for the specific thermal energy
without magnetic fields, but including radiation with an
effective emissivity Λ = dU/dτ as measured by an ob-
server comoving with the fluid, is given by [117]

dεth
dτ

=
Pth

ρ20

dρ0
dτ

− 1

ρ0
Λ, (A1)

where εth ≡ ε − ε0, and where ε is the total specific
energy and ε0 the total specific energy of the fluid ele-
ment calculated with the EOS at t = 0, i.e., P = K0ρ

Γ
0 ,

ε0 = P/ρ0(Γ− 1). We thus account for cooling by speci-
fying Λ.

1. Cooling prescriptions

Two effective emissivities that have been adopted in
the literature are:

Λ1 =
ρ0εth
τc

, (A2)

where τc is the cooling time scale, and
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FIG. 23. Volume rendering of rest-mass density normalized to its initial maximum value (color coding) and magnetic field lines
for the q = 1 cooling (medium resolution) case. White field lines emanate from the BH apparent horizons. Incipient jets are
launched from these systems.
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Λ2 =
ρ0ε

τc

(
ΔS

S0
+

∣∣∣∣ΔS

S0

∣∣∣∣
)
, (A3)

where S ≡ K = P/ρΓ0 and S0 is both the initial (un-
shocked) and target value. We introduced (A2) in [117],
and (A3) was introduced in [72, 124]. While these two
schemes achieve similar properties, i.e., drive K back to
its initial value, they have fundamentally different nu-
merical stability properties. Here we explain why this is
so.

First, let us recast our cooling emissivity Λ1 in a form
that is similar to Λ2 to show that our cooling prescription
also drives K to K0. The pressure is given by

P = ρ0ε(Γ− 1) (A4)

and similarly for the initial pressure

P0 = ρ0ε0(Γ− 1). (A5)

The difference between the two is

ΔP = ρ0(ε− ε0)(Γ− 1) = ρ0εth(Γ− 1) = P0
εth
ε0

. (A6)

But,

ΔP

P0
=

(K −K0)ρ
Γ
0

K0ρΓ0
=

ΔK

K0
=

ΔS

S0
. (A7)

Combining Eqs. (A6), (A7), and (A2) yields

Λ1 =
ρ0ε0
τc

ΔS

S0
. (A8)

The emissivity Λ2 for ΔS > 0, i.e., the only case when
the emissivity is not 0, becomes

Λ2 =
2ρ0ε

τc

ΔS

S0
. (A9)

Thus, the two prescriptions Eqs. (A8) and (A9) are
similar and both drive the gas to constant initial entropy
S0. But the two prescriptions are not the same. Another
way to see this is to write Λ2 in a form that resembles
Λ1. Using Eqs. (A6), (A7), we can write (A9) as

Λ2 =
2ρ0εth
τc

ε

ε0
. (A10)

As we will see below, it is the factor ε/ε0 by which Λ2

differs from Λ1 that leads to the completely different nu-
merical stability properties of these two cooling schemes.
2. Numerical properties of cooling prescriptions

Insert our cooling prescription in Eq. (A1) and drop
the first term on the right-hand-side (RHS) of Eq. (A1),
i.e, assume that no adiabatic compression or expansion
takes place. Then we obtain

dεth
dτ

= −εth
τc

, (A11)

i.e., exponential cooling of the excess thermal energy with
cooling time scale τc. For an explicit numerical scheme
to be Courant stable we must set the maximum timestep
Δt � τc. To see this we can we use a simple Euler explicit
integration scheme to write Eq. (A11) in finite difference
form as

εn+1
th − εnth

Δτ
= −εnth

τc
. (A12)

Then the amplification factor is given by

f ≡ εn+1
th

εnth
= 1− Δτ

τc
. (A13)

For numerical stability the magnitude of the amplifica-
tion factor must be less than 1

|f | < 1 ⇒
∣∣∣∣1− Δτ

τc

∣∣∣∣ < 1 ⇒ Δτ < 2τc. (A14)

By contrast, inserting Λ2 [Eq. (A10)] in Eq. (A1) and
dropping the first term on the RHS of Eq. (A1) yields

dεth
dτ

= −2
εth
τc

ε

ε0
, (A15)

hence the effective cooling time scale is now

τeff =
1

2

ε0
ε
τc. (A16)

We now require Δt < τeff for numerical stability. How-
ever, low density regions can become strongly shock
heated, in which case ε0 � ε, implying τeff � τc. As
a result, a violation of the Courant stability condition
can quickly occur that will terminate the computations,
if Δt < τc is used as the stability condition. This is
a disadvantage of the Λ2 prescription, as it means that
one must impose a density cutoff for the simulations to
be stable and retain relatively large timesteps. This is
something we do not need to require with our cooling
emissivity Λ1, as the fixed cooling time scale τc is, at the
same time, the effective cooling time scale. The difference
is important as we want to probe low density regimes in
the disk without artificial cutoffs.



27

[1] M. Begelman, R. Blandford, and M. Rees, Nature 287,
307 (1980)

[2] P. Ivanov, J. Papaloizou, and A. Polnarev(1998),
arXiv:astro-ph/9812198 [astro-ph]

[3] Z. Haiman, B. Kocsis, and K. Menou, Astrophys.J. 700,
1952 (2009), arXiv:0904.1383 [astro-ph.CO]

[4] R. R. Rafikov(2012), arXiv:1205.5017 [astro-ph.GA]
[5] P. J. Armitage and P. Natarajan, Astrophys.J. 567, L9

(2002), arXiv:astro-ph/0201318 [astro-ph]
[6] P. J. Armitage and P. Natarajan, Astrophys.J. 634, 921

(2005), arXiv:astro-ph/0508493 [astro-ph]
[7] M. Milosavljevic and D. Merritt, Astrophys.J. 563, 34

(2001), arXiv:astro-ph/0103350 [astro-ph]
[8] M. Milosavljevic and D. Merritt, AIP Conf.Proc. 686,

201 (2003), arXiv:astro-ph/0212270 [astro-ph]
[9] D. Merritt and M. Milosavljevic, Living Rev.Rel. 8, 8

(2005), arXiv:astro-ph/0410364 [astro-ph]
[10] F. Khan and K. Holley-Bockelmann(2013),

arXiv:1302.1871 [astro-ph.GA]
[11] M. Dotti, A. Sesana, and R. Decarli, Adv.Astron. 2012,

940568 (2012), arXiv:1111.0664 [astro-ph.CO]
[12] B. F. Schutz, Nature 323, 310 (1986)
[13] D. E. Holz and S. A. Hughes, Astrophys.J. 629, 15

(2005), arXiv:astro-ph/0504616 [astro-ph]
[14] S. Nissanke, D. E. Holz, N. Dalal, S. A. Hughes, J. L.

Sievers, et al.(2013), arXiv:1307.2638 [astro-ph.CO]
[15] P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy,

E. Berti, et al.(2012), arXiv:1201.3621 [astro-ph.CO]
[16] G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer,

M. Bailes, et al., Class.Quant.Grav. 27, 084013 (2010),
arXiv:0911.5206 [astro-ph.SR]

[17] T. Tanaka, Z. Haiman, and K. Menou(2011),
arXiv:1107.2937 [astro-ph.CO]

[18] A. Sesana(2012), arXiv:1211.5375 [astro-ph.CO]
[19] P. A. Abell et al. (LSST Science Collaborations, LSST

Project)(2009), arXiv:0912.0201 [astro-ph.IM]
[20] J. Green, P. Schechter, C. Baltay, R. Bean, D. Bennett,

et al.(2012), arXiv:1208.4012 [astro-ph.IM]
[21] N. Kaiser, H. Aussel, H. Boesgaard, K. Chambers, J. N.

Heasley, et al., Proc.SPIE Int.Soc.Opt.Eng. 4836, 154
(2002)

[22] C. Rodriguez, G. B. Taylor, R. Zavala, A. Peck, L. Pol-
lack, et al., Astrophys.J. 646, 49 (2006), arXiv:astro-
ph/0604042 [astro-ph]

[23] A. Sillanpaa, S. Haarala, M. J. Valtonen, B. Sundelius,
and G. G. Byrd, Astrophys. J. 325, 628 (Feb. 1988)

[24] H. J. Lehto and M. J. Valtonen, Astrophys. J. 460, 207
(Mar. 1996)

[25] M. Valtonen and S. Ciprini(2011), arXiv:1112.1162
[astro-ph.HE]

[26] T. L. Tanaka(2013), arXiv:1303.6279 [astro-ph.CO]
[27] T. A. Boroson and T. R. Lauer(2009), arXiv:0901.3779

[astro-ph.GA]
[28] R. Chornock, J. S. Bloom, S. B. Cenko, J. M. Silver-

man, A. V. Filippenko, M. D. Hicks, K. J. Lawrence,
P. Chang, J. M. Comerford, M. R. George, M. Mod-
jaz, J. S. Oishi, E. Quataert, and L. E. Strubbe, The
Astronomer’s Telegram 1955, 1 (Mar. 2009)

[29] R. Decarli, M. Dotti, M. Fumagalli, P. Tsalmantza,
C. Montuori, et al.(2013), arXiv:1305.4941 [astro-
ph.CO]

[30] M. Eracleous, T. A. Boroson, J. P. Halpern, and
J. Liu(2011), arXiv:1106.2952 [astro-ph.CO]

[31] J. Roland, S. Britzen, A. Caproni, C. Fromm, C. Glück,
et al.(2013), arXiv:1307.3700 [astro-ph.HE]

[32] S. Komossa, Adv.Astron. 2012, 364973 (2012),
arXiv:1202.1977 [astro-ph.CO]

[33] G. E. Romero, L. Chajet, Z. Abraham, and J. H. Fan,
Astron. and Astrophys. 360, 57 (Aug. 2000)

[34] N. Roos, J. S. Kaastra, and C. A. Hummel, Astrophys.
J. 409, 130 (May 1993)

[35] H. Sudou, S. Iguchi, Y. Murata, and Y. Taniguchi, Sci-
ence 300, 1263 (2003), arXiv:astro-ph/0306103 [astro-
ph]

[36] B. McKernan, K. Ford, B. Kocsis, and Z. Haiman(2013),
arXiv:1303.7206 [astro-ph.HE]

[37] M. Milosavljevic and E. Phinney, Astrophys.J. 622, L93
(2005), arXiv:astro-ph/0410343 [astro-ph]

[38] B. Kocsis, Z. Haiman, and K. Menou, Astrophys.J. 684,
870 (2008), arXiv:0712.1144 [astro-ph]

[39] Z. Haiman, B. Kocsis, K. Menou, Z. Lippai, and Z. Frei,
Class.Quant.Grav. 26, 094032 (2009), arXiv:0811.1920
[astro-ph]

[40] T. Tanaka and K. Menou, Astrophys.J. 714, 404 (2010),
arXiv:0912.2054 [astro-ph.CO]

[41] S. L. Shapiro, Phys.Rev. D81, 024019 (2010),
arXiv:0912.2345 [astro-ph.HE]

[42] Y. T. Liu and S. L. Shapiro, Phys.Rev. D82, 123011
(2010), arXiv:1011.0002 [astro-ph.HE]

[43] S. L. Shapiro, Phys.Rev. D87, 103009 (2013),
arXiv:1304.6090 [astro-ph.HE]

[44] H. Bondi and F. Hoyle, Mon. Not. R. Astron. Soc. 104,
273 (1944)

[45] H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952)
[46] L. I. Petrich, S. L. Shapiro, R. F. Stark, and S. A.

Teukolsky, Astrophys. J. 336, 313 (Jan. 1989)
[47] B. D. Farris, Y. T. Liu, and S. L. Shapiro, Phys.Rev.

D81, 084008 (2010), arXiv:0912.2096 [astro-ph.HE]
[48] O. Zanotti, C. Roedig, L. Rezzolla, and L. Del Zanna,

Mon.Not.Roy.Astron.Soc. 417, 2899 (2011),
arXiv:1105.5615 [astro-ph.HE]

[49] B. Giacomazzo, J. G. Baker, M. C. Miller, C. S.
Reynolds, and J. R. van Meter, Astrophys.J. 752, L15
(2012), arXiv:1203.6108 [astro-ph.HE]

[50] M. A. Abramowicz and P. C. Fragile, Living Reviews
in Relativity 16 (2013), doi:“bibinfo doi 10.12942/lrr-
2013-1, http://www.livingreviews.org/lrr-2013-1

[51] N. I. Shakura and R. A. Sunyaev, Astron. and Astro-
phys. 24, 337 (1973)

[52] I. D. Novikov and K. S. Thorne, in
Black Holes (Les Astres Occlus) (1973) pp. 343–450

[53] M. A. Abramowicz, B. Czerny, J. P. Lasota, and
E. Szuszkiewicz, Astrophys. J. 332, 646 (Sep. 1988)

[54] S. Ichimaru, Astrophys. J. 214, 840 (Jun. 1977)
[55] R. D. Blandford and M. C. Begelman,

Mon.Not.Roy.Astron.Soc. 303, L1 (1999), arXiv:astro-
ph/9809083 [astro-ph]

[56] I. Igumenshchev, M. Abramowicz, and
I. Novikov(1997), arXiv:astro-ph/9709156 [astro-ph]

[57] A. A. Esin, J. E. McClintock, and R. Narayan, Astro-
phys.J. 489, 865 (1997), arXiv:astro-ph/9705237 [astro-
ph]



28

[58] R. Narayan(1996), arXiv:astro-ph/9611113 [astro-ph]
[59] P. Artymowicz and S. H. Lubow, Astrophys.J. 421, 651

(1994)
[60] B. Kocsis, Z. Haiman, and A. Loeb,

Mon.Not.Roy.Astron.Soc. 427, 2680 (2012),
arXiv:1205.5268 [astro-ph.HE]

[61] B. Kocsis, Z. Haiman, and A. Loeb,
Mon.Not.Roy.Astron.Soc. 427, 2660 (2012),
arXiv:1205.4714 [astro-ph.EP]

[62] P. Artymowicz and S. H. Lubow, Astrophys.J. 467, L77
(1996)

[63] A. I. MacFadyen and M. Milosavljevic, Astrophys.J.
672, 83 (2008), arXiv:astro-ph/0607467 [astro-ph]

[64] D. J. D’Orazio, Z. Haiman, and A. MacFadyen(2012),
arXiv:1210.0536 [astro-ph.GA]

[65] B. D. Farris, P. Duffell, A. I. MacFadyen, and
Z. Haiman(2013), arXiv:1310.0492 [astro-ph.HE]

[66] M. Dotti, M. Colpi, F. Haardt, and L. Mayer,
Mon.Not.Roy.Astron.Soc. 379, 956 (2007), arXiv:astro-
ph/0612505 [astro-ph]

[67] J. Cuadra, P. Armitage, R. Alexander, and M. Begel-
man(2008), arXiv:0809.0311 [astro-ph]

[68] C. Roedig, M. Dotti, A. Sesana, J. Cuadra, and
M. Colpi(2011), arXiv:1104.3868 [astro-ph.CO]

[69] C. Roedig, A. Sesana, M. Dotti, J. Cuadra, P. Amaro-
Seoane, et al.(2012), arXiv:1202.6063 [astro-ph.CO]

[70] K. Hayasaki, H. Saito, and S. Mineshige(2012),
arXiv:1211.5137 [astro-ph.GA]

[71] J.-M. Shi, J. H. Krolik, S. H. Lubow, and J. F. Hawley,
Astrophys.J. 749, 118 (2012), arXiv:1110.4866 [astro-
ph.HE]

[72] S. C. Noble, B. C. Mundim, H. Nakano, J. H. Kro-
lik, M. Campanelli, et al., Astrophys.J. 755, 51 (2012),
arXiv:1204.1073 [astro-ph.HE]

[73] T. Bode, R. Haas, T. Bogdanovic, P. Laguna,
and D. Shoemaker, Astrophys.J. 715, 1117 (2010),
arXiv:0912.0087 [gr-qc]

[74] T. Bogdanovic, T. Bode, R. Haas, P. Laguna, and
D. Shoemaker, Class.Quant.Grav. 28, 094020 (2011),
arXiv:1010.2496 [astro-ph.CO]

[75] T. Bode, T. Bogdanovic, R. Haas, J. Healy, P. Laguna,
et al., Astrophys.J. 744, 45 (2012), arXiv:1101.4684 [gr-
qc]

[76] B. D. Farris, R. Gold, V. Paschalidis, Z. B. Etienne,
and S. L. Shapiro, Phys.Rev.Lett. 109, 221102 (2012),
arXiv:1207.3354 [astro-ph.HE]

[77] P. Mosta, C. Palenzuela, L. Rezzolla, L. Lehner,
S. Yoshida, et al., Phys.Rev. D81, 064017 (2010),
arXiv:0912.2330 [gr-qc]

[78] D. Neilsen, L. Lehner, C. Palenzuela, E. W.
Hirschmann, S. L. Liebling, et al., Proc.Nat.Acad.Sci.
108, 12641 (2011), arXiv:1012.5661 [astro-ph.HE]

[79] C. Palenzuela, T. Garrett, L. Lehner, and S. L. Liebling,
Phys.Rev. D82, 044045 (2010), arXiv:1007.1198 [gr-qc]

[80] C. Palenzuela, L. Lehner, and S. L. Liebling, Science
329, 927 (2010), arXiv:1005.1067 [astro-ph.HE]

[81] L. R. Corrales, Z. Haiman, and A. MacFadyen(2009),
arXiv:0910.0014 [astro-ph.HE]

[82] E. M. Rossi, G. Lodato, P. Armitage, J. Pringle, and
A. King(2009), arXiv:0910.0002 [astro-ph.HE]

[83] M. Anderson, L. Lehner, M. Megevand, and D. Neilsen,
Phys.Rev. D81, 044004 (2010), arXiv:0910.4969 [astro-
ph.HE]

[84] M. Megevand, M. Anderson, J. Frank, E. W.

Hirschmann, L. Lehner, et al., Phys.Rev. D80, 024012
(2009), arXiv:0905.3390 [astro-ph.HE]

[85] M. Ponce, J. A. Faber, and J. Lombardi, James C.,
Astrophys.J. 745, 71 (2012), arXiv:1107.1711 [astro-
ph.CO]

[86] L. A. Gergely and P. L. Biermann, Astrophys.J. 697,
1621 (2009), arXiv:0704.1968 [astro-ph]

[87] A. Sesana, M. Volonteri, and F. Haardt,
Mon.Not.Roy.Astron.Soc. 377, 1711 (2007),
arXiv:astro-ph/0701556 [astro-ph]

[88] A. Sesana, C. Roedig, M. Reynolds, and M. Dotti(2011),
arXiv:1107.2927 [astro-ph.CO]

[89] S. A. Balbus and J. F. Hawley, Astrophys.J. 376, 214
(1991)

[90] S. A. Balbus and J. F. Hawley, Rev.Mod.Phys. 70, 1
(1998)

[91] H. P. Pfeiffer and J. York, James W., Phys.Rev. D67,
044022 (2003), arXiv:gr-qc/0207095 [gr-qc]

[92] G. B. Cook and H. P. Pfeiffer, Phys.Rev. D70, 104016
(2004), arXiv:gr-qc/0407078 [gr-qc]

[93] M. Caudill, G. B. Cook, J. D. Grigsby, and H. P. Pfeiffer,
Phys.Rev. D74, 064011 (2006), arXiv:gr-qc/0605053
[gr-qc]

[94] T. W. Baumgarte and S. L. Shapiro,
Solving Einstein’s Equations on the Computer (Cam-
bridge University Press, 2010)

[95] B. D. Farris, Y. T. Liu, and S. L. Shapiro, Phys.Rev.
D84, 024024 (2011), arXiv:1105.2821 [astro-ph.HE]

[96] T. M. Heckman, G. Kauffmann, J. Brinchmann,
S. Charlot, C. Tremonti, et al., Astrophys.J. 613, 109
(2004), arXiv:astro-ph/0406218 [astro-ph]

[97] Y. Shen and B. C. Kelly, Astrophys.J. 746, 169 (2012),
arXiv:1107.4372 [astro-ph.CO]

[98] B. C. Kelly and Y. Shen, Astrophys.J. 764, 45 (2013),
arXiv:1209.0477 [astro-ph.CO]

[99] J. A. Kollmeier, C. A. Onken, C. S. Kochanek,
A. Gould, D. H. Weinberg, et al., Astrophys.J. 648,
128 (2006), arXiv:astro-ph/0508657 [astro-ph]

[100] E. Lusso, A. Comastri, B. Simmons, M. Mignoli,
G. Zamorani, et al.(2012), arXiv:1206.2642 [astro-
ph.CO]

[101] A. Schulze and L. Wisotzki(2010), arXiv:1004.2671
[astro-ph.CO]

[102] D. J. Mortlock, S. J. Warren, B. P. Venemans, M. Pa-
tel, P. C. Hewett, et al., Nature 474, 616 (2011),
arXiv:1106.6088 [astro-ph.CO]

[103] J. Goodman, Mon.Not.Roy.Astron.Soc. 339, 937
(2003), arXiv:astro-ph/0201001 [astro-ph]

[104] C. Roedig and A. Sesana, J.Phys.Conf.Ser. 363, 012035
(2012), arXiv:1111.3742 [astro-ph.CO]

[105] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A.
Teukolsky, Comput.Phys.Commun. 152, 253 (2003),
arXiv:gr-qc/0202096 [gr-qc]

[106] http://www.black-holes.org/SpEC.html
[107] A. H. Mroue, M. A. Scheel, B. Szilagyi, H. P. Pfeiffer,

M. Boyle, et al.(2013), arXiv:1304.6077 [gr-qc]
[108] S. K. Chakrabarti, Astrophys. J. 288, 1 (Jan. 1985)
[109] J.-P. De Villiers, J. F. Hawley, and J. H. Krolik(2003),

arXiv:astro-ph/0307260 [astro-ph]
[110] Z. B. Etienne, Y. T. Liu, V. Paschalidis, and

S. L. Shapiro, Phys.Rev. D85, 064029 (2012),
arXiv:1112.0568 [astro-ph.HE]

[111] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C.
Stephens, Phys.Rev. D72, 024028 (2005), arXiv:astro-



29

ph/0503420 [astro-ph]
[112] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys.Rev.

D82, 084031 (2010), arXiv:1007.2848 [astro-ph.HE]
[113] Z. B. Etienne, V. Paschalidis, Y. T. Liu, and

S. L. Shapiro, Phys.Rev. D85, 024013 (2012),
arXiv:1110.4633 [astro-ph.HE]

[114] T. Goodale, G. Allen, G. Lanfermann,
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