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We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the
Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of
light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV)
allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary
techniques to constrain the total degree of dispersion observed in the data. Additionally, using a
maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we
constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the “QG energy
scale”(the energy scale that LIV-inducing QG effects become important, EQG) and the coefficients of
the Standard Model Extension. For the subluminal case (where high energy photons propagate more
slowly than lower energy photons) and without taking into account any source-intrinsic dispersion,
our most stringent limits (at 95% CL) are obtained from GRB 090510 and are EQG,1 > 7.6 times the
Planck energy (EPl) and EQG,2 > 1.3×1011 GeV for linear and quadratic leading order LIV-induced
vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S.
by a factor of ∼ 2. Our results disfavor any class of models requiring EQG,1 � EPl.

PACS numbers: 11.30.Cp, 04.60.-m, 98.70.Rz

I. INTRODUCTION

While general relativity and Quantum Field Theory
have each enjoyed impressive success so far, their for-
mulations are currently inconsistent, hence motivating
searches for unification schemes that can collectively be
subsumed under the name of Quantum Gravity (QG)
theories. These theories generally predict the existence
of a natural scale at which the physics of space-time,
as predicted by relativity theory, is expected to break
down, hence requiring modifications or the creation of a
new paradigm to avoid singularity problems. This scale,
referred to as the “Quantum Gravity energy scale”EQG,
is in general expected to be of the order of the Planck
scale [1], EPl ≡

√
(�c5)/G � 1.22×1019 GeV, or in some

cases lower (e.g., for some QG scenarios such as loop
quantum gravity).
Since relativity precludes an invariant length, the in-

troduction of such a constant scale violates Lorentz In-
variance (LI). Thus, tests of LI are strongly motivated
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by the search for a theory of QG. Additional motivations
for testing LI are the need to cut off high-energy (ultra-
violet) divergences in quantum field theory and the need
for a consistent theory of black holes [2, 3].

The idea that LI may be only approximate has been
explored within the context of a wide variety of sug-
gested Planck-scale physics scenarios. These include the
concepts of deformed relativity, loop quantum gravity,
non-commutative geometry, spin foam models, and some
string theory (M theory) models (for reviews see, e.g.,
Refs. [4–6]). These theoretical explorations and their pos-
sible consequences, such as observable modifications in
the energy-momentum dispersion relations for free parti-
cles and photons, have been discussed under the general
heading of “Planck scale phenomenology”.

There is also the motivation of testing LI in order to
extent or limit its domain of applicability to the highest
observable energies. Since the group of pure LI transfor-
mations is unbounded at high energies, one should look
for its breakdown at high energy scales, possibly through
effects of Planck scale physics but perhaps through the
effects of other unknown phenomena. To accomplish such
a program, tests of the kinematics of LI violation (LIV)
within the context of physical interaction dynamics such
as quantum electrodynamics or standard model physics
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(e.g., [7–11]) have been proposed. Fruitful frameworks for
this kind of analysis, useful for testing the effects of LIV
at energies well below the Planck scale, are the Taylor
series expansion originally proposed in the seminal paper
by Amelino-Camelia et al. [12] and the more compre-
hensive Standard Model Extension (SME) parametriza-
tion of Kostelecký and collaborators [13, 14]. These
phenomenological parameterizations can be viewed as
low-energy effective field theories, holding at energies
E � EPl and providing an effective framework to search
for LIV at energies far below the Planck scale.

One manifestation of LIV is the existence of an energy-
dependent “maximum attainable velocity” of a particle
and its effect on the thresholds for various particle inter-
actions, particle decays, and neutrino oscillations [7]. As-
suming that the mass of the photon is zero, its maximum
attainable velocity can be determined by measuring its
velocity at the highest possible observable energy. This
energy is, of necessity, in the gamma-ray range. Since
we know that LI is accurate at accelerator energies, and
even at cosmic-ray energies [15], any deviation of the ve-
locity of a photon from its low energy value, c, must be
very small at these energies. Thus, a sensitive test of LI
requires high-energy photons (i.e., gamma rays) and en-
tails searching for dependencies of the speed of light in

vacuo on the photon energy. The method used in this
study to search for such an energy dependence consists
in comparing the time of flight between photons of differ-
ent energies emitted together by a distant astrophysical
source. As will be shown in the next section, the mag-
nitude of a LIV-induced difference on the time of flight
is predicted to be an increasing function of the photon
energy and the distance of source. Thus, because of the
high-energy extend of their emission (up to tens of GeV),
their large distances (redshifts up to a value of ∼8), and
their rapid (down to ms scale) variabilities, Gamma-Ray
Bursts (GRBs) are very effective probes for searching for
such LIV-induced spectral dispersions [12].

There have been several searches for LIV applying
a variety of analysis techniques on GRB observations.
Some of the pre-Fermi studies are those by Lamon et
al. [16] using INTEGRAL GRBs; by Bolmont et al. [17]
using HETE-2 GRBs; by Ellis et al. [18] using HETE,
BATSE, and Swift GRBs; and by Rodŕıguez-Mart́ınez
et al. using Swift and Konus-Wind observations of
GRB 051221A [19]. The most stringent constraints, how-
ever, have been placed using Fermi observations, mainly
thanks to the unprecedented sensitivity for detecting the
prompt MeV/GeV GRB emission by the Fermi Large
Area Telescope (LAT) [20, 21]. These constraints include
those by the Fermi LAT and Gamma-Ray Burst Moni-
tor (GBM) collaborations using GRBs 080916C [22] and
090510 [23], and by Shao et al. [24] and Nemiroff et al. [25]
using multiple Fermi GRBs. In addition to these GRB-
based studies, there have been some results using TeV ob-
servations of bright Active Galactic Nuclei flares, includ-
ing the MAGIC analysis of the flares of Mrk 501 [26, 27]
and the H.E.S.S. analysis on the exceptional flare of

PKS 2155-304 [28, 29]. It should be noted that the stud-
ies above did not assume any dependence of LIV on the
polarization of the photons, manifesting as birefringence.
In the case that such a dependence exists, constraints on
LIV effects can be produced [10, 30, 31] that are 13 or-
ders of magnitude stronger than the dispersion-only con-
straints placed with time-of-flight considerations (as in
this work). It should be added that there is a class of
theories that allow for photon dispersion without bire-
fringence that can be directly constrained by our results
(e.g., [32]).

The aim of this study is to produce a robust and com-
petitive constraint on the dependence of the velocity of
light in vacuo on its energy. Our analysis is performed
on a selection of Fermi-LAT [21] GRBs with measured
redshifts and bright GeV emission. We first apply three
different analysis techniques to constrain the total degree
of spectral dispersion observed in the data. Then, using
a set of maximally conservative assumptions on the pos-
sible source-intrinsic spectral evolution (which can mas-
querade as LIV dispersion), we produce constraints on
the degree of LIV-induced spectral dispersion. The lat-
ter constraints are weaker than those on the total degree
of dispersion, yet considerably more robust with respect
to the presence of a source-intrinsic effects. Finally, we
convert our constraints to limits on LIV-model-specific
quantities, such as EQG and the coefficients of the SME.

The first method used to constrain the degree of dis-
persion in the data, named“PairView”(PV), is created as
part of this study, and performs a statistical analysis on
all the pairs of photons in the data to find a common
spectral lag. The second method, named “Sharpness-
Maximization Method” (SMM), is a modification of ex-
isting techniques (e.g., DisCan [33]) and is based on the
fact that any spectral dispersion will smear the struc-
ture of the light curve, reducing its sharpness. SMM’s
best estimate is equal to the negative of a trial degree of
dispersion that, when applied to the actual light curve,
restores its assumed-as-initially-maximal sharpness. Fi-
nally, the third method employs an unbinned maximum
likelihood (ML) analysis to compare the data as observed
at energies low enough for the LIV delays to be negligible
to the data at higher energies. The three methods were
tested using an extensive set of simulations and cross-
checks, described in several appendices.

Our constraints apply only to classes of LIV models
that possess the following properties. First, the magni-
tude of the LIV-induced time delay depends either lin-
early or quadratically on the photon energy. Second,
this dependence is deterministic, i.e., the degree of LIV-
induced increase or decrease in the photon propagation
speed does not have a stochastic (or “fuzzy”) nature as
postulated by some of the LI models (see Ref. [34] and
references therein). Finally, the sign of the effect does
not depend on the photon polarization – the velocities
of all photons of the same energy are either increased or

decreased due to LIV by the same exact amount.

In Sec. II we describe the LIV formalism and nota-
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tion used in the paper, in Sec. III we describe the data
sets used for the analysis, in Sec. IV we describe the
three analysis methods and the procedure we used to take
into account possible intrinsic spectral-evolution effects,
in Sec. V we present the results, in Sec. VI we report
and discuss their associated systematic uncertainties and
caveats, and finally in Sec. VII we compare our results to
previous measurements and discuss their physical impli-
cations. We present our Monte Carlo simulations used for
verifying PV and SMM in Appendix A, the calibrations
and verification tests of the ML method in Appendix B,
a direct one-to-one comparison of the results of the three
methods after their application on a common set of simu-
lated data in Appendix C, and cross-checks of the results
in Appendix D.

II. FORMALISM

In QG scenarios, the LIV-induced modifications to the
photon dispersion relation can be described using a series
expansion in the form

E2 � p2c2 ×
[
1−

∞∑
n=1

s±

(
E

EQG

)n
]
, (1)

where c is the constant speed of light (at the limit of
zero photon energy), s± is the “sign of LIV”, a theory-
dependent factor equal to +1 (−1) for a decrease (in-
crease) in photon speed with an increasing photon energy
(also referred to as the “subluminal” and “superluminal”
cases). For E � EQG, the lowest order term in the se-
ries not suppressed by theory is expected to dominate
the sum. In case the n = 1 term is suppressed, some-
thing that can happen if a symmetry law is involved, the
next term n = 2 will dominate. We note that in effective
field theory n = d− 4, where d is the mass dimension of
the dominant operator. Therefore, the n = 1 term arises
from a dimension 5 operator [35]. It has been shown that
odd mass-dimension terms violate CPT [13, 36]. Thus,
if CPT is preserved, then the n = 2 term is expected to
dominate. In this study, we only consider the n = 1 and
n = 2 cases, since the Fermi results are not sensitive to
higher order terms.

Using Eq. 1 and keeping only the lowest-order domi-
nant term, it can be found that the photon propagation
speed uph, given by its group velocity, is

uph(E) =
∂E

∂p
� c×

[
1− s±

n+ 1

2

(
E

EQG

)n]
, (2)

where c ≡ lim
E→0

uph(E). Because of the energy dependence

of uph(E), two photons of different energies Eh > El

emitted by a distant source at the same time and from
the same location will arrive on Earth with a time delay
Δt which depends on their energies. We define the “LIV

parameter”τn as the ratio of this delay over En
h−En

l [37]:

τn ≡ Δt

En
h − En

l

� s±
(1 + n)

2H0

1

En
QG

× κn, (3)

where

κn ≡
z∫

0

(1 + z′)n√
ΩΛ +ΩM(1 + z′)3

dz′ (4)

is a comoving distance that also depends on the order of
LIV (n), z is redshift, H0 is the Hubble constant, and
ΩΛ and ΩM are the cosmological constant and the total
matter density (parameters of the ΛCDM model).
In the SME framework [14], the slight modifications in-

duced by LIV effects are also described by a series expan-
sion with respect to powers of the photon energy. In this
framework, LIV can also be dependent on the direction
of the source. Including only the single term assumed to
dominate the sum, τn is given by:

τn � 1

H0

⎛
⎝∑

jm

0Yjm(n̂)c
(n+4)
(I)jm

⎞
⎠× κn, (5)

where n̂ is the direction of the source, 0Yjm(n̂) are spin-

weighted spherical harmonics, and c
(n+4)
(I)jm are coefficients

of the framework that describe the strength of LIV. In the
SME case of a direction-dependent LIV, we constrain the
sum (enclosed in parentheses) as a whole. For the alter-
native possibility of direction independence, all the terms
in the sum become zero except 0Y00 = Y00 =

√
1/(4π).

In that case, we constrain a single c
(n+4)
(I)00 coefficient.

The coordinates of n̂ are in a Sun-centered celestial
equatorial frame described in Section V of Ref. [14], di-
rectly related to the equatorial coordinates of the source
such that its first coordinate is equal to 90◦−Declination
and the second being equal to the Right Ascension. Fi-

nally, the coefficients c
(n+4)
(I)jm can be either positive or neg-

ative depending on whether LIV-induced dispersion cor-
responds to a decrease or increase in photon speed with
an increasing energy respectively (i.e., the sign of the
SME coefficients plays the role of the s± factor of the
series-expansion framework).
In the important case of a d = 5 modification of the

free photon Lagrangian in effective field theory, Myers
and Pospelov have shown that the only d = 5 (n = 1)
operator that preserves both gauge invariance and rota-
tional symmetry implies vacuum birefringence [35]. In
such a case, and as was mentioned in the Introduction,
significantly stronger constraints can be placed using the
existence of birefringence than with just dispersion (as in
this work). For this reason, in this paper and when work-
ing within the given assumptions of the SME framework,
we proceed assuming that the d = 5 terms are either zero
or dominated by the higher-order terms, and proceed to
constrain the d = 6 terms, which are not expected to
come with birefringence.
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Our aim is to constrain the LIV-related parameters in-
volved in the above two parametrizations: the quantum
gravity energy EQG (for n = {1, 2} and s± = ±1) and
the coefficients of the SME framework (for d = 6 for
both the direction dependent and independent cases) .
To accomplish this, we first constrain the total degree of
spectral dispersion in the data, τn, and then using the
measured distance of the GRB and the cosmological con-
stants, we calculate lower limits on EQG through Eq. 3
and confidence intervals for the SME coefficients using
Eq. 5. We also produce an additional set of constraints
after accounting for GRB-intrinsic spectral evolution ef-
fects (which can masquerade as LIV). In that case, we
first treat τn as being the sum of the GRB-intrinsic dis-
persions τint and the LIV-induced dispersion τLIV, then
we constrain τLIV assuming a model for τint, and finally
constrain EQG and the SME coefficients using the con-
straints on τLIV.
We employ the cosmological parameters determined

using WMAP 7-year data ΩM = 0.272 and ΩΛ =
0.728 [38], and a value of H0 = 73.8± 2.4 kms−1 Mpc−1

as measured by the Hubble Space Telescope [39].

III. THE DATA

We analyze the data from the four Fermi-LAT
GRBs having bright GeV prompt emission and
measured redshifts, namely GRBs 080916C, 090510,
090902B, and 090926A. We analyze events passing the
P7 TRANSIENT V6 selection, optimized to provide in-
creased statistics for signal-limited analyses [40]. Its
main difference from the earlier P6 V3 TRANSIENT se-
lection used to produce previous Fermi constraints on
LIV [22, 23] consists in improvements in the classification
algorithms, which brought an increase in the instrument’s
acceptance mostly below ∼300 MeV1.
We reject events with reconstructed energies less than

30 MeV because of their limited energy and angular re-
construction accuracy. We do not apply a maximum-
energy cut. In the case of GRB 080916C, however, we
removed an 106 GeV event detected during the prompt
emission, since detailed analyses by the LAT collabora-
tion2 showed that it was actually a cosmic-ray event mis-
classified as a photon.
We keep events reconstructed within a circular region

of interest (ROI) centered on the GRB direction and of a
radius large enough to accept 95% of the GRB events ac-
cording to the LAT instrument response functions, i.e., a
radius equal to the 95% containment radius of the LAT
point spread function (PSF). Because the LAT PSF is
a function of the true photon energy and off-axis angle
(the angle between the photon true incoming direction

1 For a detailed list of differences see http://fermi.gsfc.nasa.gov/
ssc/data/analysis/documentation/Pass7 usage.html

2 not published

TABLE I. Distances of Analyzed GRBs

GRB Redshift κ1 κ2

080916C 4.35 ± 0.15 [41] 4.44 13.50
090510 0.903 ± 0.003 [42] 1.03 1.50
090902B 1.822 [43]a 2.07 3.96
090926A 2.1071 ±0.0001 [44] 2.37 4.85

a This GRB had a spectroscopically-measured redshift, which
implies an error at the 10−3 level.

and the LAT boresight), the PSF containment radius is
calculated on a per-photon basis. In this calculation, we
approximate the (unknown) true off-axis angles and en-
ergies with their reconstructed values, something that in-
duces a slight error at low energies. Below∼100MeV, the
LAT angular reconstruction accuracy deteriorates and
the 95% containment radius becomes very large. To limit
the inclusion of background events due to a very large
ROI radius and also reject some of the least accurately
reconstructed events, we limit the ROI radius to be less
than 12◦. The GRB direction used for the ROI’s center
is obtained by follow-up ground-based observations (see
citations in Tab. I) and can be practically assumed to
coincide with the true direction of the GRB.
The above data set are further split and cut depending

on the requirements of each of the three analysis methods
(as described below). Figure 1 shows the light curves and
the event time versus energy scatter plots of the GRBs
in our sample, and Tab. I shows the GRB redshifts and
κ1 and κ2 distances (defined in Eq. 4).

Time Interval Selection

The analyzed time intervals are chosen to correspond
to the period with the highest temporal variability, fo-
cusing on the brightest pulse of each GRB. This choice
is dictated by the fact that GRB emission typically ex-
hibits spectral variability, which can potentially manifest
as a LIV-dispersion effect (see discussion in Sec. VI for
details on GRB spectral variability). By focusing on a
narrow snapshot of the burst’s emission, we aim to ob-
tain constraints that are affected as little as possible by
such GRB-intrinsic effects. Starting from this require-
ment, we select the time intervals to analyze, hereafter
referred to as the “default” time intervals, using a pro-
cedure we devised a priori and applied identically on all
four GRBs.
We start by characterizing the brightest pulse in each

GRB by fitting its time profile with the flexible model
used by Norris et al. [45] to successfully fit more than
400 pulses of bright BATSE bursts:

I(t) =

{
A exp[−(|t− tmax|/σr)

v] t < tmax

A exp[−(|t− tmax|/σd)
v] t ≥ tmax,

‘ (6)

where tmax is the time of the pulse’s maximum intensity
A, v is a parameter that controls the shape of the pulse,
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FIG. 1. Time and energy profiles of the detected events from the four GRBs in our sample. Each column shows an event energy
versus event time scatter plot (top) and a light curve (bottom). The vertical lines denote the time intervals analyzed (solid line
for n = 1 and dashed line for n = 2), the choice of which is described in Sec. IV. If a dashed line is not visible, it approximately
coincides with the solid one.

and σr and σd are the rise and decay time constants.
For v = {1, 2} the equation describes a two-sided expo-
nential or Gaussian function respectively. We use the
best fit parameters (as obtained from a maximum likeli-
hood analysis) to define a “pulse interval”extending from
the time instant that the pulse height rises to 5% of its
amplitude to the time instant that it fells to 15% of its
amplitude. We choose such an asymmetric cut because
of the long falling-side tails of GRB pulses.

We then expand this initial “pulse interval” until no
photons that were generated outside of it (at the source)
could have been detected inside of it (at the Earth) due
to LIV dispersion, and also until no photons that were
generated inside of it (at the source) could have been
detected outside of it (at the Earth) due to LIV disper-
sion. We use conservative values of EQG,1 = 0.5 × EPl

and EQG,2 = 1.5 × 1010 GeV for the maximum degree
of LIV dispersion considered in extending the time inter-
val, values which correspond to roughly one half of the

stringent and robust limits obtained by Fermi [23] and
H.E.S.S. [28, 29]. The interval resulting from this expan-
sion is the one chosen for the analysis (hereafter referred
to as the “default” interval). The main reason for ex-
tending the interval is to avoid constraining the possible
emission time of the highest-energy photons in the initial
“pulse interval” to a degree that would imply an artifi-
cially small level of dispersion.

The choice of time interval for GRB 090510 and n = 1
is demonstrated in Fig. 2. The (default) time intervals
for all GRBs are shown in Fig. 1 with the vertical solid
(n = 1) and dashed lines (n = 2), and are also reported
in Tab. II.
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FIG. 2. Demonstration of the calculation of the default time
interval for GRB 090510 and linear LIV. The data points show
the event rate for energies greater than 30 MeV focusing on its
main pulse, the thick curve shows the fit on the pulse using
Eq. 6, the dashed vertical lines denote the “pulse interval”,
and the solid vertical lines denote the extended time interval
(the default interval) chosen for the analysis.

IV. DATA ANALYSIS

A. PairView and Sharpness-Maximization Methods

Because the way we calculate confidence intervals is
identical between PV and SMM, we first describe how
the best estimate of the LIV parameter is calculated by
each of these two methods, and then proceed to describe
their common confidence-interval calculation procedure.

Best-Estimate Calculation: PairView

The PV method calculates the spectral lags li,j be-
tween all pairs of photons in a data set and uses the dis-
tribution of their values to estimate the LIV parameter.
Specifically, for a data set consisting of N photons with
detection times t1...N and energies E1...N , the method
starts by calculating the N×(N−1)/2 photon-pair spec-
tral lags li,j for each i > j:

li,j ≡
ti − tj

En
i − En

j

(7)

(where n is the order of LIV), and creates a distribution
of their values.
Let us examine how the distribution of li,j values de-

pends on the properties of the data and LIV disper-
sion. For a light curve comprising at emission a single
δ-function pulse and for a dispersion τn, the li,j distri-
bution will consist of a single δ-function peak at a value
of exactly τn. For a light curve comprising (at emission)
a finite-width pulse, the now non-zero time differences
between the emission times of the events behave as noise

inducing a non-zero width to the distribution of li,j . Sim-
ilarly to the previous ideal case however, the li,j distribu-
tion will be peaked at approximately τn. For a realistic
light curve consisting of one or more peaks superimposed
on a smoothly varying emission, the distribution of li,j
will be composed of a signal peak centered at ∼ τn (con-
sisting of li,j values created primarily by events i, j emit-
ted temporally close and with not too similar energies)
and a smoother underlying wide background (consisting
of the rest of the li,j values).
Following the above picture, the estimator τ̂n of τn is

taken as the location of the most prominent peak in the
li,j distribution. This peak becomes taller and narrower,
thus more easily detectable, as the variability time scale
decreases and as the width of the energy range increases.
Searching for the peak using a histogram of the li,j

values would require us to first bin the data, a procedure
that would include choosing a bin width fine enough to
allow for identifying the peak with good sensitivity but
also wide enough to allow for good statistical accuracy
in the bin contents. We decided not to use a histogram
to avoid the subjective choice of bin width. Instead, we
use a kernel density estimate (KDE), as it provides a way
to perform peak finding on unbinned data, and as it is
readily implemented in easy to use tools with the ROOT
TKDE method3. We use a Gaussian kernel for the KDE
and a bandwidth chosen such as to minimize the Mean
Integrated Squared Error calculated between the KDE
and a very finely binned histogram of the photon-pair
lags.

Best-Estimate Calculation: Sharpness-Maximization Method

SMM is based on the fact that the application of any
form of spectral dispersion to the data (e.g., by LIV) will
smear the light curve decreasing its sharpness. Based
on this, SMM tries to identify the degree of dispersion
that when removed from the data (i.e., when the negative
value of it is applied to the data) maximizes its sharp-
ness. This approach is similar to the “Dispersion Cancel-
lation”(DisCan) technique [33], the“Minimal Dispersion”
method [46], and the “Energy Cost Function” method
[26, 46]. The most important difference between these
approaches is the way the sharpness of the light curve is
measured.
We start the application of SMM by analyzing a data

set consisting of photons with detection times ti and en-
ergies Ei to produce a collection of “inversely smeared”
data sets, each corresponding to a trial LIV parameter
τn, by subtracting En

i × τn from the detection times ti.
For each of the resulting data sets, the modified pho-
ton detection times are first sorted to create a new set
t′i, and then the sharpness of its light curve is measured

3 http://root.cern.ch/root/html/TKDE.html
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using t′i and Ei. After this procedure has been applied
on a range of trial LIV parameters, we find the inversely
smeared data set with the sharpest light curve, and select
the trial τn value used to produce it as the best estimate
of τ̂n.
In their analysis of the data from a flare of the blazar

Mrk 501, the MAGIC collaboration [26] quantified the
sharpness of the light curve using an “Energy Cost Func-
tion”, which was essentially the sum of the photon ener-
gies detected in some predefined time interval chosen to
correspond to the most active part of the flare. Scargle et
al. [33] explored a range of different cost functions to mea-
sure the sharpness of the light curve, including Shannon,
Renyi, and Fisher information, variance, total variation,
and self-entropy, finding that the Shannon information
is the most sensitive. In this study, we use a function S
that is similar to the Shannon information and is defined
as:

S(τn) =
N−ρ∑
i=1

log

(
ρ

t′i+ρ − t′i

)
, (8)

where ρ is a configurable parameter of the method.
Different values of ρ will tune the algorithm to evaluate

the sharpness of the light curve focusing on intervals con-
sisting of different numbers of events (i.e., of ρ events) or
equivalently focusing on different time scales. As a result,
the choice of ρ affects the performance of the algorithm in
two ways. For a small value of ρ (up to ∼3), some of the
durations in the denominator of S(τn) can become rela-
tively very small, making some of the 1/(t′i+ρ− t′i) terms
very large. In this case, S(τn) can fluctuate significantly
as a function of the trial lag, decreasing the accuracy with
which the best LIV parameter can be measured. For too
large values of ρ the algorithm essentially tries to mini-
mize the total duration of the analyzed data, focusing on
time scales larger than the variability time scale, ending
up with a diminished sensitivity (in practice the peak of
S becomes flatter). These effects are demonstrated in
Fig. 3.
To choose the value of ρ we first generate a large num-

ber of simulated data sets inspired by the GRB under
study, we then apply the method using a series of dif-
ferent ρ values, and finally we choose the ρ value that
produces the most constraining median upper limit on τn
(for s± = +1). These simulated data sets are constructed
similarly to the procedure described in Appendix A us-
ing a light-curve template produced by a KDE of the
actual light curve, with the same statistics as the data,
a spectrum similar to that in the data, and without any
spectral dispersion applied.
Finally, it should be noted that the method’s descrip-

tion above was for the case of zero source-intrinsic spec-
tral evolution effects since the light curve of the GRB
mission at the source was treated as being maximally
sharp. This picture is equivalent to assuming that there
is an initial (imaginary) maximally-sharp signal that is
first distorted by GRB-intrinsic effects and then by LIV.

In that case, the constraints provided by SMM will be on
the aggregate effect.
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FIG. 3. Curves of SMM’s sharpness measure S(τn) versus
the trial value of the LIV parameter τ1, each produced using
a different ρ value. These curves were generated using the
GRB 090510-inspired data set described in Appendix A after
the application of a dispersion equal to +0.04 s/GeV (value
denoted with the vertical line). The circles denote the maxima
of the curves, the positions of which are used to produce τ̂1.
As can be seen, too small or too large values of ρ correspond
to a reduced accuracy for measuring the position of the peak.

Confidence-Interval Calculation

The PV and SMM methods produce a confidence in-
terval on the best LIV parameter by means of a random-
ization analysis.
We start by producing one hundred thousand random-

ized data sets by shuffling the association between ener-
gies and times of the detected events. Because the total
number of events and the distributions of energies and
times are identical between the actually detected and the
randomized data sets, their statistical power (i.e., their
ability to constrain the dispersion) is similar. However,
because of the randomization, any dispersion potentially
present in the actual data is lost. After the set of ran-
domized data sets is constructed, the best LIV parameter
is measured on each one of them and the measurements
are used to create a (normalized to unity) distribution
fr.
We then define the measurement error on τn (for the

general case of any τn) as E = τ̂n−τn and the probability
distribution function (PDF) of E as PE(ε), where ε is a
random realization of E . We assume that PE has a negli-
gible dependence on τn (at least for the range of values of
τn expected to be present in the data) and approximate:

PE(ε) � PE (ε|τn = 0). (9)

The PDF PE for the case of a zero τn, PE(ε|τn = 0), can
be identified as the normalized distribution fr produced
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using our randomization simulations. Thus,

PE(ε) � fr(ε). (10)

Since E is a quantity with a known PDF and since it
depends on the unknown parameter τn, it can be used as
a pivotal quantity to construct a two-sided Confidence
Interval (CI) of Confidence Level (CL) for τn as:

CL = Pr(q(1−CL)/2 < E < q(1+CL)/2) (11)

= Pr(q(1−CL)/2 < τ̂n − τn < q(1+CL)/2)

= Pr(τ̂n − q(1+CL)/2 < τn < τ̂n − q(1−CL)/2)

= Pr(LL < τn < UL),

where LL = τ̂n − q(1+CL)/2 and UL = τ̂n− q(1−CL)/2 are
the lower and upper limits defining the CI, and q(1−CL)/2

and q(1+CL)/2 are the (1−CL)/2 and (1+CL)/2 quantiles
of fr.
To produce a lower limit on EQG for the subluminal

or the superluminal case, we use eq. 3 substituting τn
with its lower or upper limit, respectively, and solve for
EQG.

B. Likelihood Method

The ML fit procedure used in this work has been de-
veloped and applied by Martinez and Errando [27] to
MAGIC data for the 2005 flare of Mkn 501 and by
Abramowski et al. [29] to H.E.S.S. data for the gigantic
flare of PKS 2155−304 in 2006. This section describes its
key aspects, its underlying assumptions, and the details
of its application to GRB data.
The ML method consists in comparing the arrival time

of each detected photon with a template light curve which
is shifted in time by an amount depending linearly or
quadratically on the event’s energy. For a fixed num-
ber of independent events Nfit with energies and times
{Ei, ti}i=1,Nfit

observed in the energy and time intervals
[Ecut, Emax] and [t1, t2], the unbinned likelihood function
is:

L =

Nfit∏
i=1

P (Ei, ti|τn), (12)

where P is the PDF of observing one event at en-
ergy E and time t, given τn. For an astrophysi-
cal source observed by a gamma-ray telescope, it is
P (Ei, ti|τn) = R(Ei, ti|τn)/Npred, where R is the ex-
pected differential count rate at energy E and time t and

Npred =

∫ Emax

Ecut

∫ t2

t1

R(E, t|τn) dE dt is the total number

of events predicted by the model. For a point-like source
observed by the Fermi-LAT:

R(E, t|τn) =
∫ ∞

0

F (Et, t|τn) Aeff(Et) D(Et, E) dEt,

(13)

where F (Et, t|τn) is the model for the photon flux which
is incident on the LAT at the photon (true) energy Et

and time t, whereas Aeff(Et)
4 and D(Et, E) are the LAT

effective area and energy redistribution functions, respec-
tively. As the energy resolution with the LAT is better
than 15% above 100 MeV [40] we can neglect any energy
mis-reconstruction effects. Assuming no spectral vari-
ability and that the flux spectrum follows a power law
with possible attenuation at the highest energies, then:

F (E, t|τn) = φ0 E−Γ e−E/Ef f(t− τnE
n), (14)

where Γ is the time-independent spectral index, Ef is the
cutoff energy, and the function f(t) is the time profile
of the emission that would be received by the LAT in
case of a null LIV-induced lag τnE

n. We explain further
below how the function f(t) is derived from the data in
practice. Finally, defining the observed spectral profile
as Λ(E) = φ0 E−Γ e−E/Ef Aeff(E), we obtain:

P (E, t|τn) = Λ(E) f(t− τnE
n)/Npred (15)

. Thus, the ML estimator τ̂n of the LIV parameter τn
satisfies:[

N∑
i=1

∂ log f(ti − τnE
n
i )

∂τn
− Nfit

Npred

∂Npred

∂τn

]
τn=τ̂n

= 0.

(16)
For the brightest LAT-detected GRBs, Nfit � 50 typi-
cally (see Tab. II) thus a good estimate of the sensitivity
offered by the estimator τ̂n can be obtained by consid-
ering the ideal case of the large sample limit. In this
regime, τ̂n is unbiased and efficient like any ML estima-
tor. Namely, its variance reaches the Cramér-Rao bound,
e.g., given by Eq. (9.34) page 217 of [47]:

V [τ̂n] =

[
Nfit

∫ Emax

Ecut

∫ t2

t1

1

P

(
∂P

∂τn

)2

dE dt

]−1

. (17)

As the time profile can be measured up to very large times
in case of large photon statistics, one can show that the
standard deviation of τ̂n is simply given by:

σ[τ̂n] =
1√

Nfit〈g2〉〈E2n〉h
, (18)

where 〈g2〉 =

∫ +∞

−∞

f ′(t)2/f(t) dt (= 1/σ2 for a Gaus-

sian time profile of standard deviation σ), 〈Em×n〉h =∫ Emax

Ecut

Em×n Λ(E) dE / Λh and Λh =

∫ Emax

Ecut

Λ(E) dE.

4 The effective area also depends on the direction of the source in
instrument coordinates, a typically continuously varying quan-
tity. We can drop the time dependence by approximating
Aeff (Et, t) with its averaged over the observation value Aeff (Et).
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The above expression for σ[τ̂n] is a good approximation
(within a factor 2 to 3) of the actual standard deviation
of τ̂n, and it gives a useful estimate of the expected sen-
sitivity. However, our final results are based on a proper
derivation of confidence intervals as described further be-
low in this section.
The spectral profile Λ(E) is constant with time since

Γ is assumed to be constant during the considered time
interval (see further discussions on possible spectral evo-
lution effects in Sec. VI). The spectral profile is also in-
dependent of the LIV parameter, and is only used as
a weighting function in the PDF normalization Npred.
For these reasons, we approximate the spectral profile
by a power-law function (with a fixed attenuation when
needed):

Λ(E) ∝ E−γ e−E/Ef . (19)

The spectral index γ is obtained from the fit of the above
function to the time-integrated spectrum S(E) observed
by the LAT:

S(E) =

∫ t2

t1

F (E, t|τn) Aeff(E) dt. (20)

In practice, we define a Ecut ∈ [100, 150]MeV and we
fit the spectrum S(E) above Ecut (see Fig. 7 for an ex-
ample) in order to obtain a fairly good estimate of the
spectral index, namely γ � Γ within errors (see discus-
sion in Sec. VI regarding this approximation). For the
case of GRB 090926A, we use a power-law function that
has an exponential break, in accordance with the findings
of Ackermann et al. [48].
Knowledge of the time profile f(t) is crucial for the ML

analysis. Typically, Ecut divides the LAT data set in two
samples of roughly equal statistics. The ML analysis is
performed using events with energies aboveEcut, whereas
the fit of the light curve C(t) observed by the LAT below
Ecut is used to derive the time profile:

C(t) =
∫ Ecut

Emin

Λ(E) f(t− τnE
n) dE � Λl f [t− τn〈En〉l],

(21)

whereEmin = 30MeV, Λl =

∫ Ecut

Emin

Λ(E) dE and 〈En〉l =∫ Ecut

Emin

En Λ(E) dE / Λl. The Taylor expansion used in

Eq. (21) is justified as LIV-induced lags are effectively
negligible for low-energy events, and it yields the time
profile:

f(t) = C[t+ τn〈En〉l] / Λl � C(t) / Λl. (22)

In practice, we fit the light curve C(t) with a function
comprising up to three Gaussian functions (see for ex-
ample Fig. 6). The fit is performed on events detected
in a time interval somewhat wider than the default time
intervals (defined in the beginning of Sec. IV) to allow

for better statistics and because the calculations need an
estimate of the GRB flux at times that are also external
to the default time intervals.
We then proceed with calculating the likeli-

hood function L for a series of trial values of
the LIV parameter τn, and plotting the curve of
−2Δln(L) = −2 ln [L(τn)/L(τ̂n)] as a function of τn. We
first produce a best estimate of τn, τ̂n, equal to the
location of the minimum of the −2Δln(L) curve. We
also produce a CI on τn for an approximately two-sided
CL (90%, 99%) using the two values of τn around the
global minimum at τ̂n for which the curve reaches a
values of 2.71 and 6.63, respectively5. Hereafter we
refer to these CIs as being obtained “directly from the
data”. In addition, we produce a set of “calibrated” CIs
on τn using Monte Carlo simulations and as described
in Appendix B. The calibrated CIs take into account
intrinsic uncertainties arising from the ML technique
(e.g., due to biases from the finite size of the event sam-
ple or from an imperfect characterization of the GRB’s
light curve), and are, most importantly, constructed to
have proper coverage. Our final constraints on the LIV
parameter and the LIV energy scale are produced using
the calibrated CIs.
As a final note, we would like to stress that the time

shift τn〈En〉l in Eq. (22) has been set to zero following
Refs. [27, 29]. This implies that the time correction of any
event entering the likelihood function is overestimated by
a factor 1/ηn, with ηn = 1 − 〈En〉l/En ∈ [0.5, 1.0] for
E ∈ [0.1, 30]GeV, n = 1 and, e.g., 〈E〉l = 50MeV. In
principle, ignoring this time shift would thus produce an
additional uncertainty τ̂n − τn which is negative on aver-
age. This would also slightly distort the likelihood func-
tion since ηn varies with photon energy, possibly causing
a reduction in sensitivity. In the large sample limit, one
can show that the bias of the estimator takes the form
bn � −τn〈En〉l〈En〉h/〈E2n〉h, namely the fractional bias
bn/τn is negative and decreases with increasing hardness
of the spectrum. In practice, it ranges from ∼0.5% to
∼8% for spectral hardnesses similar to the ones of bursts
we analyzed. In addition, due to the limited photon
statistics available in our analysis and to the relatively
small values of τn likely to be present in the data, the
ratio bn/σ[τ̂n] is also negligible (a few percent at most).
One should, however, keep this effect in mind for future
analyses of much brighter sources and/or in case of sig-
nificant detections of LIV effects.

C. Estimating the Systematic Uncertainty due to
Intrinsic Spectral Evolution

So far we have concentrated on characterizing the sta-
tistical uncertainties of our measurements. However, sys-

5 These two values correspond to the (90%, 99%) CL quantile of
a χ2

1 distribution.
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tematic uncertainties can also be very important and
should be taken into account, if possible. Here, we de-
scribe how we model the dominant systematic uncer-
tainty in our data, namely the intrinsic spectral evolu-
tion observed in GRB prompt-emission light curves. A
detailed discussion of this phenomenon is given in Sec. VI.
For simplicity, in our introduction of LIV formalism

(Sec. II), we implicitly ignored the presence of GRB-
intrinsic effects (which can in general masquerade as a
LIV-induced dispersion), and instead just used the quan-
tity τn to describe the degree of dispersion in the data.
However, τn describes the total degree of dispersion and
is, in general, the sum of the LIV-induced degree of dis-
persion, described by a parameter τLIV, and the GRB-
intrinsic degree of dispersion, described by a parameter
τint, i.e.,

τn = τint + τLIV.

Our methods do not differentiate between the different
sources of dispersion. Instead, they directly measure and
constraint their sum τn. We can either ignore any intrin-
sic effects (i.e., assume τint � 0) and proceed directly to
constrain LIV using the obtained CI on τn or we can first
assume a model for τint, proceed to constrain τLIV, and
finally constrain LIV using the CI on τLIV. The second
approach is more appropriate for constraining LIV, since
its results are more robust with respect to the presence
of GRB-intrinsic effects6.
In principle, one could try to model τint using some

knowledge of the physical processes generating the de-
tected GRB emission or possibly using phenomenological
models constructed from large sets of MeV/GeV observa-
tions of GRBs. Unfortunately, because of the scarcity of
GRB observations at LAT energies, neither approach has
reached a mature enough stage to produce trustworthy
and robust predictions of GRB spectral lags (at such en-
ergies). Thus, any attempts to model τint would, at this
point, likely end up producing unreliable constraints on
LIV. However, a more robust and conservative approach
can be adopted, as follows.
Since we do not have a model for τint that reliably

predicts GRB-intrinsic lags, we instead choose to model it
in a way that produces the most reasonably conservative
constraints on τLIV.
One of the main considerations behind modeling τint

is the reasonable assumption that our measurements of
τn are dominated by GRB intrinsic effects or in other
words that our constraints on τn also apply to τint. We
start with the fact that we already have obtained a coarse
measurement of the possible magnitude of τint, provided
by our constraints on τn. Specifically, we know that the

6 Since the majority of previously published LIV constraints have
not taken into account GRB-intrinsic effects, limits of the first
approach are still useful for comparing experimental results
across different studies.

value of τint (for a particular observation) is not likely
larger than the width of the allowed range of τn, as de-
scribed by its CIs7. Thus, we start with the working
assumption that the width of the possible range of τint is
equal to the possible range of τn (as inferred by our CIs
on it).
Second, we assume that the τint has a zero value on

average. This is a reasonable assumption given that we
analyze in this study only cases where there is no clear
detection of a spectral lag signal (i.e., τn is consistent
with zero within the uncertainty of its measured value).
Moreover, this also avoids the need for introducing by
hand a preferred sign for 〈τint〉.
In principle, there are infinite choices for a particular

shape of τint given our constraint for its width and (zero)
mean value. We choose the one that produces the least
stringent (the most conservative) overall constraints on
τLIV, by modeling τint so that it reproduces the allowed
range of possibilities of τn. For example, if our mea-
surements imply that the data are compatible with (i.e.,
they cannot exclude) a positive τn, then we appropri-
ately adjust τint to match (explain) this possibility. This
approach leads to confidence intervals on τLIV that have
the largest possible width. Other choices for modeling
τint can produce intervals more stringent either at their
lower or their upper edge, but they cannot produce more
stringent overall (i.e., when considering both their edges)
constraints. The implementation of our model for τint,
defined as Pτint(τ̃int) with τ̃int being a random realiza-
tion of τint, depends on the particular method PV/SMM
versus ML, and is described separately below.
For constructing CIs on τLIV with PV and SMM, we

use a similar approach as in Eq. 11. However, instead of
using as a pivotal quantity E = τ̂n − τn, we now use

E ′ = τ̂n − τLIV

= τ̂n − τn + τint

= E + τint. (23)

If we define the PDF of E ′ as PE′(ε′), where ε′ is a random
realization of E ′, and if q′(1−CL)/2 and q′(1+CL)/2 are its

(1− CL)/2 and (1 + CL)/2 quantiles, then starting from
CL = Pr(q′(1−CL)/2 < E ′ < q′(1+CL)/2), we derive a CI on

τLIV of confidence level CL:

CL = Pr(LL′ < τLIV < UL′) (24)

= Pr(τ̂n − q′(1+CL)/2 < τLIV < τ̂n − q′(1−CL)/2).

Similarly to the CI on τn which depends on the quan-
tiles of PE (approximated by fr), the CI on τLIV depends

7 The alternative case of a large τint being approximately canceled
by an oppositely large τLIV seems extremely unlikely since it
would require the improbable coincidence of LIV actually exist-
ing, that the sign of the dispersion due to LIV being opposite of
the sign of the dispersion due to intrinsic effects, and that the
magnitudes of the two effects be comparable for each of the four
GRBs (a “conspiracy of Nature”).
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on the quantiles of PE′ . Assuming that the two compo-
nents of E ′ (E and τint) are independent, PE′ is given by
the convolution of their PDFs:

PE′(ε′) =

∫ ∞

−∞

fr(ε
′ − τ̃int)Pτint(τ̃int)dτ̃int. (25)

Up to now, we have described a general way to pro-
duce CIs on τLIV, independent of the particular choice of
Pτint . We mentioned above that we would like to choose
a model for τint such that it matches any part of the pa-
rameter space for τn not excluded by the data. From the
expression of the lower and upper limits for τn (Eq. 11)
we observe that a large (say) positive tail in the fr distri-
bution implies that our observations are compatible with
(they cannot exclude) a symmetrically negative part of
the parameter space of τn, and vice versa. Based on this
observation, we choose to model Pτint(τ̃int) as fr(−τ̃int).
With this choice, Eq. 25 becomes:

PE′(ε′) =

∫ ∞

−∞

fr(ε
′ − τ̃int)fr(−τ̃int)dτ̃int = PAC(ε

′),

(26)
where PAC(ε

′) is defined as the autocorrelation func-
tion of fr with argument ε′. As an autocorrelation
function, PE′(ε′) is an even function with maximum at
zero. Because of this symmetry, its (1 + CL)/2 and
(1 − CL)/2 quantiles, q′(1+CL)/2 and q′(1−CL)/2, respec-

tively, are equal. Thus, the confidence interval in Eq. 24
is symmetric around the observed value τ̂n. Finally, since
〈τint〉 was chosen to be zero, in addition to τ̂n being our
best estimate for τn, it is also our best estimate for τLIV.
A demonstration of the application of this method for
GRB 090510, PairView, and n = 1 is shown in Sec. V, in
Fig. 12.
The confidence interval on τLIV is wider than the one

calculated on τn by a degree that depends on the width
and shape of the possible variations in τint (and thus of
fr). In the simple case of fr following a Gaussian dis-
tribution, then the width would increase by a factor of√
2. In our case, the function fr does not always follow

a Gaussian, hence the increase is not in general equal to√
2.
For the case of the ML method, we follow the same

main idea (i.e., assume a Pτint following our observational
uncertainty on τn and produce confidence intervals on
τLIV) but apply it a different way. In this case, we run a
second set of calibration simulations, in which the likeli-
hood function is modified to include a not-necessarily-
zero delay due to GRB-intrinsic effects. Specifically,
Eq. 14 becomes:

F ′(E, t|τLIV; τ̃int) =
φ0 E−Γ e−E/Eff(t− τLIVE

n − τ̃intE
n). (27)

In each iteration of the simulation, we sample a differ-
ent random value τ̃int from the assumed Pτint PDF and
proceed normally to produce a distribution of lower and
upper limits on τLIV, the means of which will define our

confidence interval on τLIV. The Pτint distribution is cho-
sen in a similar way to the PV/SMM case using the distri-
butions of τ̂n produced during the first set of calibration
simulations. The properties of the generated confidence
intervals produced with this approach are the same as
those constructed by the PV/SMM methods.
We would like to add a point on the meaning of the

distribution Pτint . In general, the properties of the emis-
sion from a given GRB depend on two factors: the ini-
tial properties describing the GRB’s generating system
(e.g., mass, rotation speed, environment, redshift, etc.)
and the randomness involved in the physical processes
involved in producing the emission. We can imagine the
τint quantity as a constant unknown parameter (a “true
parameter”) that describes the range of possibilities for
both factors mentioned above, thus Pτint can be consid-
ered as its Bayesian prior. We can alternatively imagine
the existence of some true parameter τint,0 = 〈τint〉 (cho-
sen to be zero) that depends solely on the progenitor
properties, and that, during a GRB explosion, a random
realization τ̃int is produced depending on the τint,0 of that
particular GRB system. In this case, we can imagine Pτint

as a frequentist description of the range of possible τ̃int
values occurring among an infinite number of GRBs, all
initiated by the same initial conditions (i.e., having the
same τint,0). Based on the above, Pτint can be consid-
ered as a Bayesian prior or alternatively as a frequentist
statement of the possible values of τ̃int across infinite rep-
etitions of a GRB – the particular choice, however, does
not matter.
As a final note we should mention that our approach

assumes that the experimental results allow the possibil-
ity of τn being zero. With some additional assumptions,
however, this approach can be generalized to include the
case of a detection of a non-zero τn. For example, we
could make the assumption that a detected non-zero to-
tal dispersion is merely result of GRB-intrinsic effects,
allow for 〈τint〉 to take a non-zero value (with τ̂n being
the most conservative choice), and produce a final con-
fidence interval on a residual τLIV (that would still be
consistent with a zero τLIV).

8. It can be said that this
method allows us to quantify the degree to which GRB-
intrinsic effects reduce our ability to detect a residual
LIV-induced dispersion.

V. RESULTS

The configuration of our methods is shown in Tab. II,
in which we report the range (relative to the GBM trigger

8 If a non-zero dispersion is detected, it would also be interesting to
test the alternative possibility that this dispersion might indicate
a non-zero value of τLIV, rather than be fully attributed to τint
as assumed in our method. Since most GRB properties vary
weakly throughout the burst prompt emission, we may expect
τint to also do so. In such a case, varying the time interval could
change the measured value of τint , while not affecting τLIV.
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time) of the analyzed data samples (common to all the
methods), the value of SMM’s smoothing parameter ρ,
the numbers of events used with PV and SMM N100, and
some quantities relevant to the ML method, namely the
fitted index γ of the observed spectrum S(E), the number
of events in the two parts of the data used for fitting
the light-curve template Ntemplate and for calculating the
likelihood Nfit, and the energy separating these two parts
of the data Ecut.
It is known that the spectra of LAT-detected GRBs

typically comprise two spectral components: a Band (two
smoothly connected power laws [49]) plus a power law
function. These components do not necessarily have the
exact same light curves and their spectra do not evolve
in an identical fashion. As a result, an analysis of a data
set consisting of events from both of these components
might exhibit GRB-intrinsic spectral evolution that may
be erroneously interpreted as LIV. This can be an im-
portant systematic uncertainty, and is discussed further
in Sec. VI. To reduce the influence of this effect, we per-
formed the PV and SMM analyses on a data set starting
from 100 MeV (instead of 30 MeV), a choice made a

priori to reduce the contamination from the Band spec-
tral component910. Because of the greater demand for
statistics of the ML method, we did not apply such a
minimum-energy cut for this method, and instead we
used the events from Ecut down to 30 MeV for the light-
curve template construction. As a result, any differences
in the temporal properties of the two spectral compo-
nents might have affected the ML method more than the
other two methods. However, the magnitudes of any such
uncertainties are limited by the typically small contribu-
tion of the Band component to the analyzed data and are
likely smaller than the statistical errors.
We produce constraints for two confidence levels: a

90% two-sided (or equivalently 95% one-sided) CL and a
99% two-sided (or equivalently 99.5% one-sided) CL. In
the following, the “one-sided” or “two-sided”designations
of the CLs may be omitted for brevity.
An example plot used for choosing SMM’s ρ parame-

ter, here for the case of GRB 090510 and n = 1, is shown
in Fig. 4. For this case, we chose the value of ρ=50, cor-
responding to the minimum of the curve. The flatness
of the curve around the minimum implies a weak depen-
dence of the method’s sensitivity on ρ (in the vicinity of
the minimum).
Figure 5 demonstrates the application of the PV and

SMM methods on GRB 090510 for n = 1. The top pan-
els show how the best estimate of the LIV parameter is

9 The spectrum of GRB 080916C comprises just one spectral com-
ponent (Band). Thus, even though we did not need to reject the
30–100 MeV events for that GRB, we still applied this cut for
consistency between the four analyzed data sets.

10 The particular value of 100 MeV is also the minimum energy typ-
ically used in LAT science analyses, since the LAT reconstruction
accuracy starts to deteriorate below this energy.
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FIG. 4. The median of the distribution of 99% CL upper
limits (generated from simulated data sets inspired by the
detected light curve) versus ρ. The error bars show the 1σ
statistical uncertainty (arising from the finite number of sim-
ulated data sets). This distribution is used for choosing the
value of SMM’s ρ parameter for the GRB 090510 n = 1 ap-
plication.

measured, specifically from the location of the maximum
of the KDE of the photon-pair lag distribution for PV
(left column) and from the location of the maximum of
the sharpness measure S for SMM (right column). The
bottom panels show the distributions fr of the best LIV
parameters in the randomized data sets, used for con-
structing the CIs. Their asymmetry and features (in-
versely) follow the shape of the analyzed light curves.
The mean value of fr can be used as an estimate of the
bias of τ̂n. Except for GRB 090510, the magnitude of the
bias is considerably smaller than the variance of fr (i.e.,
up to ∼ 10% of the variance); for GRB 090510, it in-
creases up to 50% of the variance. The absolute value of
the median of fr is for all cases smaller than ∼ 10% of the
variance. We correct τ̂n for biases by subtracting from
it the mean value of the fr distribution. The verifica-
tion simulations of PV/SMM (described in Appendix A)
show that the coverage of the produced CIs is approxi-
mately proper even for asymmetric or non-zero-mean fr
distributions, such as the ones shown.

The light-curve template for GRB 090510 used by the
ML method is shown in Fig. 6. Any statistical errors
involved in the generation of the light-curve templates
are properly included in the calibrated CIs of the ML
method, as described in Appendix B.

We show the spectral fit of the observed events from
GRB 080916C in Fig. 7, which is used to calculate the
spectral index γ used by the ML method. The drop in
the spectrum at low energies is caused by the sharp de-
crease of the LAT effective area at those energies. In all
cases, we choose Ecut to be larger than the energy that
this instrumental cutoff becomes important. This ensures
that the spectral index γ of the observed events is a good
approximation of the index Γ of the incoming GRB flux
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TABLE II. Configuration Details

GRB Time Range (s) ρ N100 γ Ntemplate Nfit Ecut (MeV)
All Methods SMM PV & SMM Likelihood

n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 n = {1, 2} n = {1, 2} n = 1 n = 2 n = {1, 2}
080916C 3.53–7.89 3.53–7.80 50 30 59 59 2.2 82 59 59 100
090510 -0.01–3.11 -0.01–4.82 50 70 157 168 1.5 148 118 125 150
090902B 5.79–14.22 5.79–14.21 80 80 111 111 1.9 57 87 87 150
090926A 8.92–10.77 9.3–10.76 25 30 60 58 2.2 a 53 48 47 120

a The spectral model for this GRB also includes an exponential cutoff with pre-set e-folding energy Ef=0.4GeV in accordance with
Ackermann et al. [48].
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FIG. 5. Plots demonstrating the application of PV (left column) and SMM (right column) on GRB 090510 for n = 1. Top left:
distribution of photon-pair lags (histogram), KDE of the distribution (thick curve), location of the KDE’s maximum used as
τ̂n by PV (vertical dashed line). Top right: sharpness measure S versus trial LIV parameter τn (histogram), location of the
curve’s maximum used as τ̂n by SMM (vertical dashed line). Bottom row: distributions fr of the best estimates of the LIV
parameter of the randomized data sets (histograms), 5% and 95% quantiles (dashed lines), 0.5% and 99.5% quantiles (dotted
lines), and average value (central solid line).

(within statistical errors). It allows us to considerably
simplify the ML analysis by not having to deconvolve the
instrument’s acceptance from the observed data or hav-
ing to include the instrument’s response in the likelihood
function.

Finally, Fig. 8 demonstrates the application of the ML
method, showing all the -2Δln(L) curves. We use the
locations of the minima and the shapes of these curves
to produce the best estimates and the (obtained directly
from the data) CIs on τn, respectively. These curves
are not exactly parabolic (and/or a transformation to a

parabolic shape is not always possible). Therefore, any
CIs produced based solely on their shape do not have
an exactly proper coverage. The calibrated ML CIs (de-
scribed in Appendix B) have by construction proper cov-
erage, and are the ones used to constrain the quantities
of the LIV models.
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Constraints on the Total Degree of Dispersion, τn

Table III reports our constraints on the total degree of
dispersion, τn, and Fig. 9 shows our CIs on τn plotted
versus the distance κn. According to LIV models (i.e.,
Eq. 3), the magnitude of the observed dispersion due to
LIV is proportional to κn. Thus, a positive correlation
of τn and κn may imply a non-zero LIV effect. In our
case and as can be seen from Fig. 9, no such correlation
is evident. Additionally, all of our 99% CIs are compati-
ble with a zero τn. Both features show that a LIV effect,
if any, is dominated in this analysis by statistical and
systematic (likely arising from GRB-intrinsic effects) un-
certainties. Finally, we note that the results of the three
methods (for the same GRB) are in good agreement to
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column: GRB 090510. Right column: GRBs 080916C (full
line), 090902B (dotted line) and 090926A (dashed double-
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each other (i.e., they have considerable overlap), evidence
in support of the validity of each method.
Table IV presents lower limits on EQG calculated using

our constraints on τn. The 95% lower limits are also
plotted versus the redshift in Fig. 10. These limits do not
take into account any GRB-intrinsic spectral evolution.
Thus, while they are maximally constraining, they may
not be as robust with regards to the presence of such
intrinsic systematic uncertainties.
Indeed, as we observed from, e.g., Fig. 10, some of our

90% CL CIs are offset to a degree that their edges (i.e.,
limits) are very close to zero (e.g., GRB 090926A). For
those CIs, the corresponding limits on EQG are constrain-
ing to a suspicious degree, given the considerably larger
width of their CIs. It would be more acceptable if any
very constraining limits were associated with correspond-
ingly narrow CIs, contrary to what happens with some
of the GRBs in our study. This feature required further
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TABLE III. Our measurements on the LIV parameter τn describing the total degree of dispersion in the data. The limits are
for a two-sided 99% CL.

GRB Name PairView SMM Likelihood (from actual data) Likelihood (Calibrated)a

(Lower Limit, Best Value, Upper Limit) (sGeV−1) n = 1
080916C -0.46 0.69 1.9 -0.49 0.79 2.3 -0.75 0.1 0.72 -0.85 – 0.77
090510 (×103) -73 -14 27 -74 -12 30 -25 1 6 -9.8 – 8.6
090902B -0.36 0.17 0.53 -0.25 0.21 0.62 -0.25 0.25 0.55 -0.63 – 0.96
090926A -0.45 -0.17 0.15 -0.66 -0.2 0.23 -0.45 -0.18 0.02 -0.56 – 0.18

(Lower Limit, Best Value, Upper Limit) (sGeV−2) n = 2
080916C -0.18 0.45 1.1 -0.0031 0.88 2 -0.9 0.12 1.1 -0.83 – 0.8
090510 (×103) -3.9 -0.63 0.88 -4.1 -0.68 0.85 -2.5 -0.1 0.3 -0.32 – 0.23
090902B (×103) -26 17 48 -18 24 60 -60 10 45 -120 – 110
090926A -0.18 -0.021 0.13 -0.12 -0.06 0.012 -0.38 -0.06 0.11 -0.44 – 0.14

a These are the ML CIs used for subsequently constraining LIV.

TABLE IV. Lower Limits on EQG for linear (n=1) and quadratic (n=2) LIV for the subluminal (s±=+1) and superluminal
(s±=-1) cases. The CL values are one-sided. These limits were produced using the total degree of dispersion in the data, τn.

GRB Name PairView SMM Likelihooda

n=1, s±=+1 (EPl units)
95% 99.5% 95% 99.5% 95% 99.5%

080916C 0.11 0.081 0.09 0.067 0.22 0.2
090510 7.6 1.3 5.9 1.2 5.2 4.2
090902B 0.17 0.13 0.15 0.11 0.12 0.074
090926A – 0.55 8 0.35 1.2 0.45

n=1, s±=-1 (EPl units)
95% 99.5% 95% 99.5% 95% 99.5%

080916C 18 0.33 5.4 0.31 0.2 0.18
090510 0.56 0.48 0.57 0.48 11 3.6
090902B 0.38 0.2 0.86 0.28 0.37 0.11
090926A 0.24 0.18 0.2 0.12 0.17 0.15

n=2, s±=+1 (1010 GeV units)
95% 99.5% 95% 99.5% 95% 99.5%

080916C 0.31 0.28 0.24 0.21 0.35 0.33
090510 6.7 3.3 13 3.3 8.6 6.4
090902B 0.8 0.72 0.73 0.64 0.64 0.49
090926A 0.67 0.48 9.1 1.6 0.48 0.47

n=2, s±=-1 (1010 GeV units)
95% 99.5% 95% 99.5% 95% 99.5%

080916C – 0.69 – 5.2 0.34 0.32
090510 1.9 1.5 1.9 1.5 9.4 5.4
090902B 1.6 0.97 3.5 1.2 0.64 0.46
090926A 0.51 0.42 0.51 0.5 0.31 0.26

a Calculated using the calibrated limits.

scrutiny, hence, we examined our data and results in de-
tail, and concluded that the CIs are offset likely because
of GRB-intrinsic spectral evolution effects.

For the case of GRB 090926A, the 90% CL CIs
on τ1 from our three methods, and the CIs on τ2
from SMM for both CLs are either not consistent
with zero or considerably offset towards negative val-
ues (something which produces spuriously stringent up-
per limits on τn). For example, the n = 1 CIs (not

shown in the tables) are (-0.33, -0.17, -0.0010) s/GeV11

for PV, (-0.41, -0.20, 0.010) s/GeV for SMM, and
(-0.25, -0.18, -0.13) s/GeV for ML (from data). As a re-
sult, the 95% CL lower limits on EQG,1 for the sublumi-
nal case (s±=+1) are either suspiciously strong (SMM)
or they could not be calculated at all (PV). The top
left panel of Fig. 11 shows the E>100 MeV events from
GRB 090926A processed by PV and SMM. As can be
seen, the highest-energy photon in the data has an energy

11 (lower limit, best estimate, upper limit)
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FIG. 9. Our CIs on the total degree of dispersion in the data τn, obtained without taking into account any source-intrinsic
effects, for linear (left panel) and quadratic (right panel) LIV. Each triplet of intervals corresponds to one GRB and shows, left
to right, the results of PV, SMM, and ML (calibrated). The PV and ML points are drawn offset for visualization purposes. We
present results for two CLs: a 90% (two-sided) CL denoted by the lines, and a 99% (two-sided) CL denoted by the external
pairs of points.

of ∼3 GeV and is detected ∼0.5 s before the main pulse.
Our three methods predict that this event was most likely
initially emitted in coincidence with the main pulse, and
that it had been subsequently advanced by LIV to be de-
tected before it. This case, shown in the top right panel
of Fig. 11, implies a τ̂1 �-0.5 s/3 GeV=-0.17 s/GeV, in
accordance with the measured values. In the simulations
performed for PV and SMM, such relatively small values
were rare. Specifically, they occurred in a fraction of the
iterations approximately equal to the ratio of the number
of photons detected at least as early as the 3 GeV pho-
ton (4) over the total number of photons (58 for n = 1),
i.e. only 5-6%. This resulted in our 95% (one-sided) CL
upper limits on τ1 being negative or too small.
The physical reason for these too negative CIs and

τ̂1 values may be GRB-intrinsic spectral evolution ef-
fects, likely associated with the presence of spectral cut-
off Ef �0.4 GeV during the main bright pulse [48]. If
this cutoff did not exist, more GeV photons might have
been detected during this bright pulse, while if the cutoff
also existed right before this pulse, the 3 GeV photon
might have not been detected. Both cases would corre-
spond to a τ̂1 closer to zero, and weaker, though, less
spurious constraints. We conclude that our results from
GRB 090926A are likely affected by a GRB-intrinsic spec-
tral evolution, artificially strengthening (weakening) our
limits on EQG produced using τn for the subluminal (su-
perluminal) case.
Contrary to the case of GRB 090926A, for which the

results hint towards negative τ1 values, the results from
GRB 080916C hint towards positive values. This either
does not allow us to calculate lower limits on EQG for the
superluminal case (PV and SMM for n = 2; 95% CL) or
produces spuriously constraining results (PV and SMM
for n = 1 at 95% CL, and SMM n = 2 at 99.5% CL).

A likely physical explanation for this positive lag is
the progressive hardening of the prompt-emission spec-
trum of GRB 080916C at LAT energies. According to
broadband time-resolved spectroscopic studies [22], that
spectrum can be adequately described by a Band func-
tion, the high-energy component of which, β, is initially
very soft at a value of −2.63± 0.12 during [0.004–3.58] s,
hardens considerably to a value of −2.21 ± 0.03 during
[3.58–7.68] s, after which it stays constant (within statis-
tics) to a value of −2.16 ± 0.03 up to at least 15.87 s.
Based on this pattern, some soft-to-hard spectral evolu-
tion is expected at least for the beginning of our analyzed
intervals ([3.53–7.89] s for n = 1 and [3.53–7.80] s for
n = 2). Similarly to the GRB 090926A case, we conclude
that our GRB 080916C constraints on EQG (produced
using τn) might also be affected by GRB spectral evolu-
tion, artificially strengthening our superluminal-case lim-
its and weakening our subluminal-case limits for PV and
SMM.

Finally, we notice that both of the calibrated ML lower
limits on τn for GRB 090510 are considerably more con-
straining by about an order of magnitude than those from
PV/SMM. We feel that this difference can be explained
by the reduced sensitivity of the PV/SMM methods for
constraining lower limits of the LIV parameter in the
presence of long tails of the emission after the main peak,
a feature of our chosen data set from GRB 090510. This
effect was demonstrated in the one-to-one comparisons
of the three methods described in Appendix C and illus-
trated in the left panel of Fig. 20. Therefore, we attribute
it to differences between the methods’ sensitivities.
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FIG. 10. Our 95% (one-sided) CL lower limits on EQG,1 (left) and EQG,2 (right) LIV versus the redshift for s± = +1 (top;
subluminal case) and s± = −1 (bottom; superluminal case). Similarly to Fig. 9, each triplet of markers corresponds to one
GRB and shows limits calculated using the constraints on τn (i.e., without taking into account any source-intrinsic effects).
The horizontal bars correspond to the averaged over the three methods lower limits on EQG produced using the constraints
on τLIV (i.e., after accounting for GRB-intrinsic effects). On the left-hand plots we denote with the horizontal line the limit
obtained by Fermi on GRB 090510 (DisCan; 95% limit obtained from paper’s Supplementary Information) [23]. On the top
right plot we also denote the “high confidence” and “very high confidence” limits obtained by Fermi on GRB 090510 [23] and
the 95% CL limit from H.E.S.S. study on PKS 2155-304 [29].

Constraints Using the LIV-Induced Degree of
Dispersion, τLIV

The spuriously strong limits mentioned above imply
that our sensitivity actually reaches the level of GRB-
intrinsic effects. This motivated us to produce an addi-
tional set of constraints, this time on τLIV, taking into
account intrinsic effects and according to the methodol-
ogy in Sec. IVC. As an illustration of this method, Fig. 12
shows the intermediate plots involved the calculation of
the CI on τLIV for GRB 090510, PairView, and n = 1.

For simplicity we do not report our CIs on τLIV. In-
stead, we just report the final limits on the LIV-model
quantities, after averaging over the three methods. Ta-
bles V and VI show our new 95% CL limits on EQG

and on the SME coefficients, respectively. Our lower lim-

its on EQG are also illustrated with the horizontal bars
in Fig. 10, along with those produced without correct-
ing for intrinsic effects (from τn; shown with the mark-
ers). As can be seen, the limits produced using τLIV are
considerably weaker than those produced using τn. The
biggest difference is for the cases of GRBs 090926A and
080916C, which had some spuriously strong limits that
we attributed above to source-intrinsic effects.

VI. SYSTEMATIC UNCERTAINTIES

In this section, we discuss several systematic effects po-
tentially influencing our results, namely those originating
from the source and those having instrumental origins.
Any dispersion induced by non-GRB standard physical
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TABLE V. Our 95% CL lower limits on EQG, averaged over the three methods and calculated using the CIs on τLIV (i.e., taking
into account GRB-intrinsic effects).

GRB Name n = 1 (EPl) n = 2 (1010 GeV)
s± = +1 s± = −1 s± = +1 s± = −1

080916C 0.11 0.32 0.28 0.56
090510 1.8 3.2 4.0 3.0
090902B 0.11 0.32 0.58 1.1
090926A 0.72 0.15 0.78 0.41

TABLE VI. Our 95% CL limits on the SME coefficients, averaged over the three methods and calculated using the CIs on τLIV

(i.e., taking into account GRB-intrinsic effects).

Model Source Quantity Lower Limit (10−20 GeV−2) Upper Limit (10−20 GeV−2)

Vacuum 080916C
∑

jm 0Yjm(145◦, 120◦)c
(6)
(I)jm -8.7 20

090510
∑

jm 0Yjm(117◦, 334◦)c
(6)
(I)jm -0.31 0.16

090902B
∑

jm 0Yjm(63◦, 265◦)c
(6)
(I)jm -3.4 5.2

090926A
∑

jm 0Yjm(156◦, 353◦)c
(6)

(I)jm
-11 5.2

Vacuum isotropic 080916C c
(6)
(I)00 -31 70

090510 c
(6)
(I)00 -1.1 0.57

090902B c
(6)
(I)00 -12 18

090926A c
(6)

(I)00
-37 19

processes is expected to be negligible compared to the
dispersion produced by LIV [50].

Systematic Uncertainties from GRB-Intrinsic Effects

GRB-intrinsic effects that can cause systematic uncer-
tainties in our results fall into two main categories:

• the presence of multiple spectral components in the
data not evolving with temporal coincidence, and

• spectral evolution during the course of the burst or
during each individual pulse.

A full physical modeling of the emission processes occur-
ring in the GRBs considered here is beyond the scope of
this paper. Instead, we utilize published time-resolved
spectral analyses to estimate the influence of any ob-
served spectral evolution on our results. In the ini-
tial Fermi papers on the GRBs analyzed in this study
[22, 48, 51, 52], the prompt-emission spectra were fitted
in relatively coarse time bins from keV to GeV energies
with the combination of the empirical Band function with
a high-energy power law. It was found that typically the
Band component peaks at �MeV energies whereas the
power-law component becomes dominant at LAT ener-
gies (i.e., above ∼100 MeV).
In the case of GRB080916C, the spectrum was well

fitted by a Band function only, while the significance of
the existence of an additional power-law component was
found to be small. Some soft-to-hard spectral evolution

could be present in the beginning of our analyzed in-
tervals, as was discussed in the previous section. The
broadband keV–GeV spectrum of the other three bursts
is best represented by a combination of both spectral
components:

• in GRB 090510, the high-energy power law starts
from the onset of the main emission in the LAT (at
∼0.5 s post-trigger) and dominates the Band com-
ponent at energies above ∼100MeV after ∼0.7 s
post-trigger.

• In GRB 090902B, the high-energy power law is de-
tected from the trigger time, and completely dom-
inates the Band component in the LAT energy
range. The spectral hardness of the emission in
the LAT energy range is relatively constant during
the time interval analyzed in this study.

• In GRB 090926A, the high-energy power-law starts
at the time of the bright pulse observed at ∼10 s
post-trigger and persists until ∼22 s. Our analyzed
time interval corresponds to the main bright pulse,
during which the power law component dominates
the emission in the LAT energy range, while ex-
hibiting a high-energy spectral break with a cutoff
energy Ef ∼0.4 GeV.

Since the two spectral components may be possibly
originating from different physical regions of the burst
and/or may be generated by physical processes evolving
in different time scales, one might not necessarily expect
them to be detected with exact temporal coincidence.
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FIG. 11. SMM’s results for GRB 090926A and n = 1.
Top left: photons detected in the default time interval, top
right: SMM’s maximally-sharp version of these events. The
curves/lines in the top row act as guides to the eye for the
effects of a dispersion equal to the best measured value of τ̂1=-
0.17 s/GeV (left figure) and zero (right figure). The bottom
figures are of the same type as the figures in the right column
of Fig. 5.

This might lead to spurious signals originating from in-
trinsic effects rather than LIV. There is only one case
(GRB 090510) for which the LAT data during the ana-
lyzed time intervals cannot be sufficiently approximated
to contain a single spectral component, discussed in de-
tail below.

Using the spectral fits published in Ref. [51], we esti-
mate that about half of the LAT-detected events from
GRB 090510 below ∼100-200MeV can be attributed to
the Band component during the main episode observed
around ∼0.8 s post-trigger (comprising the bulk of the
events in our analyzed time interval). This non-negligible
fraction can potentially affect the ML method, which
essentially compares the time profiles between the low
(below ∼100–150 MeV) and high energy emissions in
the LAT. On the other hand, its effect on the PV and
SMM methods is weaker because these methods ana-
lyze a subset of the data produced with a higher-energy
cut (E>100 MeV), for which only �15% of the events
are estimated to be associated with the Band compo-
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FIG. 12. Demonstration of the generation of CIs on τLIV for
GRB 090510, PairView, and n = 1. The thin curve shows the
normalized distribution fr used to approximate PE(ε) (the
same distribution is also shown with different binning in the
bottom left panel of Fig. 5), the thick curve shows the auto-
correlation function PE′(ε′) calculated using Eq. 26, and the
dashed lines show its 5% and 95% quantiles used for con-
structing the 90% CL CI on τLIV.

nent. Fortunately, evidence from cross checks performed
in this work and from previously published results show
that this effect has likely a negligible influence on our
results. Specifically, a cross-correlation analysis between
the time profiles of the keV–MeV emission (dominated
by the Band component) and of the >100MeV emission
(dominated by the power-law component) of GRB090510
from 0.6 to 0.9 s [51] did not show any evidence of a time
lag between the two spectral components. Furthermore,
as shown in Appendix D, the PV and SMM CIs pro-
duced using the data above 30 MeV are in good agree-
ment with the results produced with the default cut of
E > 100 MeV. We conclude that the inclusion of events
related to the Band component for GRB 090510 did not
cause any significant distortions in any of our analyses.

Another potential source of systematic uncertainties
is the spectral evolution detected with high significance
in most LAT GRBs. One of its manifestations is the
E>100 MeV emission detected by the LAT having a sys-
tematically delayed onset with respect to the keV/MeV
emission detected by the GBM [20]. Even though this
spectral evolution can manifest as LIV, it happens so
rapidly that typically only a very small fraction of the
emission is detected during this transition. Furthermore,
after the emission in the LAT is established, it usu-
ally continues with a relatively stable degree of spectral
hardness, at least according to the coarsely binned time-
resolved spectral analyses mentioned above.

For example, for the case of GRB 090510, cross-
correlation analyses between the GBM-detected
keV/MeV and LAT-detected E>100 MeV emissions re-
vealed that the onset of the E>100 MeV emission trailed
the onset of the keV/MeV emission by ∼0.2–0.3 s [51].
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This offset implies the existence of a delay between
the LAT data below and above 100 MeV, something
that can potentially affect our results. However, the
number of events detected during the onset of the LAT
emission (∼0.5–0.75 s) is negligible. Specifically, only
∼8% of the events above 30 MeV and within the default
n = 1 interval were detected during the onset of the
LAT emission. Furthermore, and as mentioned above,
once the GRB 090510 emission is establishes in the LAT
energy range, its spectral hardness remains relatively
stable. We conclude that spectral evolution during the
course of the emission of GRB 090510 affects only a very
small fraction of the analyzed events. Thus, it is not
expected to have a considerable influence on our results.
GRB090926A is a peculiar case, as a strong spectral

variability has been observed even after the onset of the
high-energy emission in the LAT [48]. From the trigger
time and until ∼10 s, the high-energy power-law compo-
nent is not detectable and the emission is well described
by a single Band component. At ∼10 s, a bright pulse
appears (comprising the bulk of the events in our ana-
lyzed time interval), during which the power-law compo-
nent becomes very bright dominating the emission and
exhibiting a spectral cutoff at high energies. After the
bright pulse, the two components become comparable in
flux, while the cutoff of the power-law component ap-
pears to be increasing in energy. Clearly, the results of
a LIV analysis on an interval wide enough to include
all these spectral-evolution effects would be strongly af-
fected by them. By focusing only on a narrow snapshot
of the GRB 090926A’s emission (i.e., the main bright
pulse), during which the GRB spectrum is assumed not
to vary too much12, we considerably reduced our expo-
sure to such effects.
At shorter time scales, the spectral hardness of GRB

pulses is known to be correlated to their intensity and flu-
ence at keV–MeV energies [55]. Due to the difficulty of
measuring the GRB spectrum on a pulse-per-pulse basis
with the limited photon statistics available to the LAT,
there has been no evidence that this correlation extends
to higher energies. However, the light curves of the GRBs
analyzed in this study exhibit sharp peaks and fast vari-
ability, thus the presence of any spectro-temporal cor-
relations at high energies might, in principle, affect our
results. This incomplete knowledge of GRB properties
at high energies constitutes an intrinsic limitation of our
model (e.g., it is unclear if the factorization in Eq. (14)
holds at LAT energies at short time scales) and repre-
sents a major source of systematic uncertainty in any
GRB-based study of LIV.

12 It should, however, be noted that even though an increase of
the cutoff energy within the pulse could not be significantly de-
tected due to the limited LAT statistics at GeV energies, an
interpretation of this cutoff as arising from internal-opacity ef-
fects does predict an associated evolution during the course of
the spike [53, 54].

Systematic Uncertainties from Instrumental Effects

The probability of the LAT detecting an event of some
energy depends on many factors, including the off-axis
angle of the photon, with the probability being approx-
imately inversely dependent on the off-axis angle. As a
result, a constant-spectrum source observed at progres-
sively larger (smaller) off-axis angles will correspond to
a data set of a progressively harder (softer) average re-
constructed energy. Such a data set may erroneously
appear as containing a non-zero degree of spectral evolu-
tion. Fortunately, this effect is negligible for our obser-
vations since for the time scales under consideration the
off-axis angles of the GRBs were almost constant.
The energy-reconstruction accuracy of the LAT de-

pends primarily on the true energies of the events. For
the analyzed data set, about 90% of photons with energy
greater than 1GeV are predicted to have a reconstructed
energy within ± ∼20% of their true energy [40], which
can be used to produce a rough estimate of the error
on the produced limits on EQG of up to 20% (90% CL).
To verify this rough estimate we generated a collection
of data sets derived from GRB 090510 by smearing the
detected energies according to the energy dispersion func-
tion of the instrument. For simplicity, during the produc-
tion of the data sets we assumed that the detected energy
was the true one. The 90% and 99% CL upper and lower
limits varied by a factor of ∼10% (n = 1) and ∼15%
(n = 2) (1σ), in agreement with the rough estimate.
The effective area of the LAT, corresponding to the

P7 TRANSIENT V6 selection used in this work, is typ-
ically an increasing function of the energy up to ∼
100 GeV. It starts from a zero value at few MeV and
increases with increasing energy at a rate that is initially
rapid but then gradually flattens above ∼ 100 MeV. In
the ML analysis, we have ignored the dependence of the
effective area on the energy and approximated the spec-
trum of incoming events with the spectrum of detected
events (i.e., γ � Γ). Because of this dependence, the
spectrum of detected events appears slightly harder (less
steep) than the spectrum of incoming events. This could
affect the results of the ML analysis, depending on how
sensitive it is on using an exactly correct spectral index.
However, we have verified that the difference between the
two spectral indices is always smaller than the statistical
error of our measured spectral index, i.e., |γ − Γ| < σΓ.
Thus, any systematic uncertainties by this approximation
are dominated by the statistical uncertainty of determin-
ing the true source spectrum.
The effects from background contamination are ex-

pected to be negligible, since the background rate for our
data selection is very low, of the order of 0.1 (10−3) Hz
above 0.1 (1) GeV.
The errors on the redshifts have a negligible effect on

the lower limits on EQG. A 1σ change in the redshift of
GRB 080916C causes a relative change of about 10−2 on
the final limits. For the other GRBs in our sample, the
relative change is also negligible, at the level of 10−3 or
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smaller. The errors on the cosmological parameters give
an error of ∼3%.

VII. DISCUSSION/CONCLUSION

We derive strong upper limits on the total degree of
dispersion, τn, in the data of four LAT-detected GRBs.
We use three statistical methods, one of which (PV) was
developed as part of this study. The previously pub-
lished most stringent limits on τn (at 95% CL; sub-
luminal case) have been obtained for n = 1 by the
Fermi GBM and LAT collaborations using GRB 090510
(EQG,1 >3.5EPl; DisCan; Supplementary Information of
Ref. [23])13 and for n = 2 by H.E.S.S. using the bright
flares of PKS 2155-304 (EQG,2 >6.4×1010GeV; ML [29]).
Our results from GRB 090510, namely EQG,1 >7.6EPl

(PV) and EQG,2 >1.3×1011GeV (SMM), improve these
constraints by a factor of ∼2. 14

In the above comparisons we do not consider other
more constraining limits that were either produced in a
very model-dependent manner or are of a moderate sta-
tistical significance. Specifically, Chang et al. [56] tried to
take into account intrinsic GRB time delays by estimat-
ing them using the magnetic-jet GRB-emission model.
However, our knowledge of GRB physics is not complete
enough to be able to predict such intrinsic lags with suf-
ficient certainty. Thus, even though such an approach
proceeds in the right direction, it is highly sensitive to
the particular choice and configuration of the employed
model. Nemiroff et al. [25] took an innovative approach
with which they zoomed in on the micro-structure of the
burst’s emission above 1 GeV to produce very stringent
constraints that were based, however, on observables of
low statistical significance.15

To investigate why our GRB 090510 results are more
constraining than the previous Fermi analysis of the
same GRB, we applied the PV method to the same ex-
act data used in the original Fermi publication. We used
identical energy, time, and event selection cuts (as re-
ported for the DisCan method), and obtained again more

13 That work also reported lower limits on EQG,1 as high as 10 EPl.
These limits, however, were not associated with a well quantified
confidence level, but rather with a degree of confidence (“very
high” to “medium”). Thus, they cannot be directly compared to
the exact-CL limits produced in this work.

14 At the 99% level, we improve on the Fermi limitsEQG,1 >1.2 EPl

(DisCan) by a factor of ∼ 4.
15 They identified two pairs and one triplet of E>1 GeV photons in

a 0.17 s interval of GRB 090510, with each photon being detected
within ∼1 ms of each other. The triplet, which contained the
31 GeV photon, was used to place a stringent constraint. They
calculated a probability of ∼3 σ for such a bunching of photons
to arise by chance from a uniform emission in time. However,
this significance is overestimated since it doesn’t account for the
number of trials taken. Moreover, it does not reflect the con-
fidence of their limit, since it strongly relies on associating the
emission time of the 31 GeV photon with a tentative ms “pulse”.

constraining results than the original Fermi publication
by a factor of ∼2–4 (depending on the CL). Addition-
ally, we repeated our PV and SMM analyses using the
configuration determined in this paper (i.e., time inter-
val, energy range, ρ) but using the P6 V3 TRANSIENT
event selection of the previous Fermi work. The result-
ing constraints were again of equal or higher strength (see
Appendix D). These results show that the methods em-
ployed in this work are more sensitive than the previous
Fermi analyses.

Our measurements are compatible with a zero degree
of total dispersion in all the analyzed GRBs (at 99% CL).
However, among these results, there are some spuriously
strong limits on the total degree of dispersion, which we
interpret as a product of GRB-intrinsic spectral-evolution
effects.

Using a maximally conservative set of assumptions
to account for GRB-intrinsic effects, we constrain any
residual dispersion in the data attributed solely to LIV,
τLIV. The resulting CIs on τLIV are less stringent than
those on τn, albeit more robust with respect to the pres-
ence of GRB-intrinsic effects, and thus, more appro-
priate for constraining LIV. Our assumptions describe
the worst-case scenario for GRB-intrinsic effects, and, as
such, correspond to a maximum overall decrease in sen-
sitivity. Our best constraints in the linear/subluminal
case at 95% CL are EQG,1 �2 EPl for GRB 090510 and
EQG,1 �0.1 EPl for the other three GRBs. We obtain re-
sults of similar strength in the linear/superluminal case.

As a final note we would like to mention that we con-
sidered combining the results from the four GRBs to
produce a single result that would be more constrain-
ing and/or less affected by any GRB-intrinsic spectral-
evolution effects (hoping that they might average out).
However, we noticed that our GRB 090510 measurement
is overall considerably more constraining than the other
three cases. Thus, a combined result would not be very
different from that of GRB 090510. Additionally, we do
not expect that the intrinsic spectral-evolution effects for
short GRBs (i.e., GRB 090510) are similar to those in
long GRBs (other three cases). Thus, a combined analy-
sis aimed at producing more robust results would have to
be performed on short and long GRBs separately. Also,
because our sample contains only a small number of long
GRBs, we do not expect the average of their intrinsic
effects to be an accurate representation of the typical
long-GRB intrinsic evolution. Therefore, a combined re-
sult obtained using the three long GRBs, would still be
considerably less robust compared to each of the maxi-
mally conservative CIs on τLIV we produced here. e con-
clude that there are no sufficient sensitivity or robustness
benefits that a combined analysis of this limited data set
can bring.

There are many theoretical indications that Lorentz
invariance may well break down at energies approaching
the Planck scale. They come from the need to cut off
the UV divergences in quantum field theory and black
hole entropy calculations [57], from various quantum
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gravity scenarios such as in loop quantum gravity [58],
some string theory and M-theory scenarios, and non-
commutative geometry models. There is one way to pre-
scribe Lorentz invariance; there are many ways to violate
Lorentz invariance. Kinematic tests of Lorentz invari-
ance violation in QED depend on the possibility that
the Lorentz violating terms can be different for electrons
and photons [8]. It becomes even more complicated when
hadronic interactions are considered. Many of these other
tests, while quite sensitive, depend on the differences be-
tween the individual maximum attainable velocities of
various particle species [7]. In the context of effective
field theories [35], birefringence tests have already pro-
duced very strong constraints on LIV [10, 31]. Photo-
hadronic interactions have also provided some powerful
constraints [9].
One particular model inspired by string theory con-

cepts presents the prospect that only photons would ex-
hibit an energy-dependent velocity [32]. This model en-
visions a universe filled with a gas of point-like D-branes
that only interact with photons. It predicts that vacuum
has an energy-dependent index of refraction that causes
only a retardation. Since all photons are retarded, there
is no associated vacuum birefringence effect, even though
the degree of retardation has a first order dependence on
the photon energy. The absence of an associated bire-
fringence and the low-order (n = 1) dependence of the
predicted delay on the photon energy, render our results
particularly unique for testing such a model 16. Indeed,
our constraints obtained using the total degree of disper-
sion, τn, reiterate and support the previously-published
results from Fermi [23], strongly disfavoring by almost
an order of magnitude this model, and, in general, any
class of models requiring EQG,1 � EPl. Our maximally-
conservative set of constraints obtained using τLIV also
support the above statement.
More GRB observations at high energies will allow

us to improve GRB models and produce robust predic-
tions on GRB-intrinsic delays (i.e., on Pτint), which will
lead to more constraining CIs on τLIV. Additionally,
a larger collection of CIs on τn can be used for disen-
tangling LIV-induced delays, which have a predicted de-
pendence on the redshift, from the source-frame value17

of GRB-intrinsic delays, which can be assumed to not

16 It has been argued that the D-brane model in Ref. [32] would
suppress pair production interactions of ultrahigh energy (UHE)
photons with cosmic microwave background photons, resulting
in a flux of UHE photons in conflict with observations [59]. This
would appear to be an independent argument against it. How-
ever, in Ref. [60], it was argued that because electrons are not
affected by the D-brane medium and because the pair produc-
tion interaction involves an internal electron at the tree level, the
resulting LIV effect in pair production is suppressed. Thus, this
model is not ruled out by constraints on the UHE photon flux.

17 The degree of intrinsic dispersion at the source is smaller than the
observed degree of (intrinsic) dispersion at the Earth by a factor
of (1 + z)n+1 due to the relativistic expansion of the universe
causing time dilation and redshift.

have a redshift dependence or at least to have a differ-
ent dependence than τLIV (see for example the approach
in Refs. [16–18]). Future simultaneous observations of
GRBs at MeV/GeV energies with Fermi-LAT and at
GeV energies with HAWC [61] will have considerably in-
creased statistics at GeV energies and a lever arm that
extends to an even higher energy than this work, prop-
erties that can provide uniquely constraining results.
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Appendix A: PV and SMM Verification Tests

We thoroughly tested the PV and SMM methods using
a large number of simulated data sets to check for biases
on the best estimates of the LIV parameter, to verify the
proper coverage of the produced CIs, and to examine the
robustness of the techniques (e.g., to find which proper-
ties of the data could alter the validity and accuracy of
the results).
We performed the verification tests on a variety of col-

lections of data sets, with each collection corresponding
to a different light-curve and spectrum template, and to a
different LIV parameter. The data sets of some collection
represented the possible outcomes of the observation of
the same exact source by a large number of identical de-
tectors. By comparing the fraction of produced CIs that
included the true value of the LIV parameter to their
CL, we verified the coverage of these CIs. By repeating
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this exercise on a diverse collection of data sets (pro-
duced with, e.g., different statistics, number of pulses,
light-curve asymmetry, pulse shape, spectral properties,
degree of dispersion), we verified the robustness of the
techniques.
Our verification tests were performed on collections

comprising ten thousand simulated data sets, with each
of these sets being constructed in two steps: first its pho-
ton energy–time pairs were randomly sampled from the
light-curve and spectral template of the particular col-
lection, and then a common degree of dispersion was ap-
plied.
We used two kinds of functional templates for the

light curve. We started with simple synthetic templates
composed of superpositions of Gaussian pulses of differ-
ent widths, amplitudes, and means, and continued with
templates inspired from the actually-observed GRB light
curves. As an example, we show in Fig. 13 two of the
light-curve templates used in our simulation. Both were
inspired by actual detections, namely GRBs 090902B
(top panel) and 090510 (bottom panel), representative
cases of a long and short GRB, respectively. We obtained
the light-curve templates using kernel density estimation
(shown with the curve) of the actual light curves (his-
tograms).
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FIG. 13. Two of the light-curve templates used in our ver-
ification tests, one inspired by GRB 090902B (top) and one
by GRB 090510 (bottom). The histograms are the GRB light
curves (as actually detected), and the thick curves are our
templates (produced by a KDE of the histograms).

In all tested configurations, the energy spectrum of the
non-dispersed data sets followed a power law, and ex-
tended from 100 MeV to 40 GeV. For the GRB-based
data sets we used an identical number of events as in the
actual observations, and for the synthetic ones we simu-
lated a range that was similar to that typically observed.
We chose the maximum range of tested LIV parameters

so that the simulated degree of dispersion did not distort
the tested data too much. This way, we avoided the un-
realistic possibility of having the highest-energy photons
be disjoint and external from the bulk of the emission.

To accomplish this, the magnitude of the tested LIV pa-
rameter was not considerably larger than about the light-
curve half-width divided by the highest simulated energy
raised to the n power.

We did not include any energy and temporal re-
construction instrumental effects (i.e., it was assumed
that all photons were detected with the same energy-
independent and constant-in-time efficiency). A full sim-
ulation including the LAT response to the GRB signal
would also model any effects from a time-dependent effec-
tive area and of any inaccuracies in the event-energy re-
construction. The dependence of the results on both fac-
tors is expected to be very small, as discussed in Sec. VI.

As a demonstration of the verification process we
present some of the diagnostic plots produced using the
GRB 090510 light-curve template shown in the bottom
panel of Fig. 13 and a zero LIV parameter.
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FIG. 14. Top: 99% CL CIs produced by the application
of PV on the GRB 090510-inspired simulated data set for
τ1=0 s/GeV. The black dots denote the best estimates of the
LIV parameter. Bottom: distributions of the lower (left) and
upper limits (right) of these confidence intervals. The two
external vertical lines denote the medians of the two distri-
butions, and the middle vertical line denotes the mean of the
best estimates.

One of the first steps after a collection of data sets was
constructed was to examine its distribution of associated
confidence intervals. The top panel of Fig. 14 shows a
stack of the confidence intervals produced by PV, and the
bottom panel shows the distributions of lower and upper
limits corresponding to these confidence intervals. The
two external vertical lines in the latter figure denote the
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distribution medians, and the middle vertical line shows
the mean of the best estimates. By comparing the mean
of the best estimates to the actual LIV parameter we
checked for the presence of biases in the best estimates.

Figure 15 shows two calibration plots produced by our
simulations. These plots show the average best estimate
and upper/lower limits on the LIV parameter for differ-
ent injected values of τn. As can be seen, the methods
properly measure the injected value with negligible bias.
Furthermore, their sensitivity does not have a consider-
able dependence on the injected degree of dispersion.
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FIG. 15. Calibration plots demonstrating some of the simu-
lation results from the GRB 090902B- and 0900510-inspired
data sets, top and bottom respectively. Each pair of intervals
corresponds to a different value of the true (injected) LIV pa-
rameter τ1, and shows the results from PV (left interval) and
SMM (right interval). The markers show the means of the
best estimates, and the edges of the intervals correspond to
the means of the upper and lower 99% CL limits on τ1.

As mentioned in Sec. IVA, the distribution fr is used
as an approximation of the PDF of the measurement er-
ror of E , PE . Since E is a random variable (taking differ-
ent values ε across the simulated data sets), the quantity
C(ε) =

∫ ε

0
PE(ε̃)dε̃ is also a random variable. C(ε) be-

haves similarly to a p-value, hence, C ∼ U(0, 1). We use
the theoretical expectation of the uniformity of the PDF
of C, to verify whether the distribution fr (produced us-
ing our randomization simulations described in Sec. IVA)
is a good approximation of PE , an approximation that is
a cornerstone of our CI-construction procedure. If this is
indeed valid, then the empirical distribution, PCemp

, of

the quantity Cemp(εi) =
∫ εi
0 fr,i(ε̃)dε̃, where εi and fr,i

are the realizations of E and fr in the i-th simulated data
set, should also be distributed as a U(0, 1).

Figure 16 shows a normalized version of PCemp
pro-

duced using the GRB 090510 inspired simulated data
sets, PV, and τ1 = 0 s/GeV. As can be seen, the empiri-
cal distribution is indeed uniform, supporting the validity
of our approximation fr ∼ PE .

PCemp
is also used for verifying the coverage of the

Cemp
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FIG. 16. Normalized empirical distribution PCemp (his-
togram) obtained from the application of PV on the
GRB 090510-inspired data set for tau1 = 0 s/GeV super-
imposed on its theoretical expectation (uniform distribution,
shown with the horizontal line). The fact that the empiri-
cal distribution follows a uniform distribution supports the
validity of the assumptions behind our CI construction.

produced CIs, for any CL.18. Since the quantiles of the
fr distribution are used for constructing our CIs, any
erroneous distortions of fr (and equivalently any devia-
tions of PCemp

from uniformity) will be associated with
an improper coverage of the CIs. For example, if the
CIs were erroneously under-covering, then PCemp

would
acquire a V shape. On the other hand, if the CIs were
erroneously wide (over covering), then PCemp

would ac-
quire a Λ shape. By verifying the uniformity of PCemp

across its full range of values, we effectively tested the
proper coverage of the CIs across the whole range of CLs
(to the degree that the available statistics permitted).
Using the verification tests mentioned above, we also

found that

• the sensitivities of both methods depend on the
asymmetry on the light curve. Specifically, the
longer the tail in the rising or falling side of the light
curve is, the smaller the sensitivity of setting an up-
per or lower limit on τn, respectively, becomes. The
coverage, however, remains proper even for highly
asymmetric light curves (e.g., like the one shown in
the bottom panel of Fig. 13).

• Miscoverage and bias can increase and sensitivity
can decrease if the light curve includes separated
bright pulses, due most likely to some form of in-
terference between the individual pulses. This sys-
tematic uncertainty becomes more prominent with
the SMM method and when using large values of
the ρ parameter. Our default data selection always
includes a single bright pulse, so this problem does
not affect our results.

• Bias and miscoverage is larger for strongly spec-
trally distorted light curves, i.e., those produced

18 We also performed the simple test of counting the fraction of
CIs of a collection of data sets that included the true (injected)
value of the LIV parameter to verify that the fraction was, as
expected, equal to their CL, for two different values of CL: 90%
and 99%
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with a LIV parameter large enough that the
highest-energy component is temporally disjoint
from the bulk of the emission. The actual data did
not appear to be spectrally distorted to the degree
required for this systematic uncertainty to appear.

• Tests performed on synthetic light curves compris-
ing several pulses of a different spectral index (so as
to simulate a GRB-intrinsic spectral evolution) re-
vealed that this evolution is typically picked up by
our methods as a non-zero LIV parameter. some-
thing that reflects perhaps the most important ir-
reducible uncertainty in our results. It is, however,
fortunate that the additional GRB-intrinsic spec-
tral evolution did not always dominate the simu-
lation results, and that while there may be some
non-zero bias, the miscoverage of the CIs was typ-
ically not severe.

Appendix B: Maximum Likelihood Method Tests
and Calibrations

Verification Tests

We verified the ML method using Monte Carlo simu-
lations, in a similar fashion to the PV/SMM methods,
as described in the previous appendix. We performed
tests on simple synthetic data sets as well as on data sets
closely resembling the four GRBs in our sample. One of
the main tests was the construction of calibration curves,
in which we verified whether an injected LIV parameter
was properly measured by the method with a reasonable
degree of statistical accuracy.

As an illustration of these tests, we show in Fig. 17
a calibration plot demonstrating the simulation results
from a GRB 0900510-inspired data set. The markers and
the intervals show the average best estimates and 99% CL
CIs on τ1, respectively. These averages were calculated
across the different simulated realizations of the GRB
emission. Our tests did not reveal any significant biases
or other systematics.
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FIG. 17. A calibration plot obtained by the ML method on an
GRB 090510-inspired data set. The markers show the means
of the best estimates of τ1 and the intervals correspond to the
mean upper and lower 99% CL limits on τ1.

Calibrated Confidence Intervals

We construct calibrated CIs on τn by first generating
several thousand simulated data sets having the same
exact statistics as the actual data but with event energies
and times randomly sampled from the fitted spectral and
light-curve templates (e.g., such as from the templates
shown in Figs. 7 and 6, respectively). We then apply
the ML method to each one of them, using the same
configuration as its application on the actual data, and
calculate a CI and a best estimate on τn for each one
of them. After all of the data sets have been processed,
we calculate the average of the produced low and upper
limits. Since we do not apply any spectral dispersion
to the simulated data sets, we shift the mean low and
upper limit values by the value of τ̂n as measured from
the actually detected data set, to finally produce a single
calibrated CI.19

The CIs are constructed using a pair of thresholds on
−2Δln(L) common to all the simulated data sets, and
chosen to ensure the proper coverage of the produced CIs.
Specifically, these thresholds are chosen so that exactly
a fraction (1 − CL)/2 of the simulated lower limits and
a fraction (1 + CL)/2 of the simulated upper limits are
greater or smaller, respectively, than the value of τn in
the simulated data sets (equal by construction to zero).
The calibration procedure includes the re-fitting of a

light-curve template for each simulated sample. Thus,
the produced CIs properly include the systematic uncer-
tainties arising from the light-curve template generation
procedure. On the other hand, for computational sim-
plicity, we do not refit a spectral template, and instead
use the one obtained from the actual data. Thus, the cal-
ibrated CIs do not include uncertainties from the spectral
fit. These are, however, negligible, since, as we have seen
from toy Monte Carlo simulations and from the calcu-
lations described in Sec. IVB, the final results depend
weakly on the spectral index, contrary to their stronger
dependence on the light-curve template.
To illustrate the method, we show some intermediate

results from its GRB 090510 application. Figure 18 shows
the distributions of low and upper limits obtained from
the simulated data sets. The mean values of these distri-
butions are offset by τ̂n to produce our single calibrated
upper and lower limits (i.e., those shown in the last col-
umn of Tab. III). From the mean of the simulated best
estimates of the LIV parameter (see, e.g., Fig. 19) we esti-
mated the bias of τ̂n. In all cases, the bias was negligible

19 In this last step and for simplicity, we make the assumption that
the sensitivity of the method has a small dependence on τn, at
least for the small possible values τn is expected to have (given
past observations). Thus, we effectively assume that our sim-
ulating a zero-LIV-parameter data set and then offsetting the
mean upper and lower limits is equivalent to simulating a τ̂n
LIV-parameter data set and constructing a calibrated CI directly
from the mean lower and upper limits.
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with respect to the root mean square of the simulated
best estimates.
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FIG. 18. Distributions of the lower and upper 99% CL limits
for n = 1 (left pad) and n = 2 (right pad) for GRB 090510.
The vertical lines denote the means of the distributions, used
for constructing the calibrated CIs.
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FIG. 19. Distributions of the best LIV parameters obtained
from each simulated data set for n = 1 (left) and n = 2 (right)
for GRB 090510. Since there was no spectral dispersion ap-
plied to the simulated data, these curves should peak near
zero.

Appendix C: Comparison of the Methods

We compared the three methods by applying them to
the same collection of simulated data sets to verify their
validity and to help us explain any discrepancies observed
in their application on the actual data. The simulated
data of this test were produced using the GRB 090510-
inspired light-curve template shown in Fig. 13 of Ap-
pendix A and no extra applied dispersion (τn was zero
by construction).

For the ML method we used CIs calculated directly
from the data (instead of from calibration simulations).
However, we adjusted the two threshold values of -
2Δln(L) used to produce its lower and upper limits, to
ensure a proper coverage (evaluated across the simulated
data set).
The first and third panel of Fig. 20 show the obtained

distributions of lower and upper limits, respectively. As
can be seen, the sensitivities of the three methods are
very similar. In the first panel, we also see that the ML
method is slightly more sensitive when producing lower
limits. We used this finding to explain in Sec. V why the
ML method produced more constraining limits than the
other two methods on τ1 and GRB 090510.
The histograms of the best estimates of the LIV param-

eter (middle panel of Fig. 20) peak, as expected, near the
true value of the LIV parameter, set equal to zero. The
PV and SMM best-lag distributions peak at slightly more
negative values than the approximately zero position of
the ML method’s distribution. This can be attributed
to the increased asymmetry of the PV and SMM distri-
butions (skewness ∼0.75) compared to the asymmetry
of the likelihood distribution (skewness ∼0.39), which
moves the mode to lower values than the mean or the
median. However, for considerations regarding the bias
of the best estimates, the important fact is that both
the median and the mean of these distributions are neg-
ligible compared to their root mean square. Thus, the
effect of any biases on the coverage of the produced CIs
is expected to be negligible (as has been verified by the
dedicated simulation tests).
The 2D histograms in Fig. 21 provide a deeper view of

how our methods compare. For the majority of the sim-
ulated data sets, there is a close correspondence between
their results. The PV and SMM results are the most
similar, implying that these two methods probe the data
in a similar fashion. The existence of differences between
the methods’ results highlights their complementarity.
Finally, we note that more than 99% of the exam-

ined triplets of 90% CL CIs (one per simulated data set)
are overlapping. This fraction is even larger (more than
99.9%), if CIs of a higher CL (99%) are examined (not
shown here). This large fraction of overlapping CIs shows
that the troubling possibility of the three methods not
allowing a common part of the parameter space is ex-
tremely unlikely.

Appendix D: Analysis Cross-Checks

We examined how the 99% CIs on τn vary with respect
to changes in the configuration of our methods and the
data selection, to cross-check the validity and robustness
of the results, and to gain insight on the behavior of our
methods. Specifically:

• we repeated the analysis excluding the highest-
energy photon in the data, since it is expected to
provide the most information about LIV dispersion.
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FIG. 20. Histograms of the 95% (one-sided) CL lower limits (left panel), best estimates (middle panel), and upper limits (right
panel) of the LIV parameter τ1 produced by PV (black), SMM (red), and ML (blue) on simulated data sets.
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FIG. 21. One to one comparisons of the 95% (one-sided) CL lower and upper limits (left and right columns respectively) and
of the best estimates (middle column) on the LIV parameter τ1 produced by our three methods on simulated data sets: ML vs
SMM (top row), ML vs PV (middle row), SMM vs PV (bottom row).

• We applied our methods on an extended time in-
terval extending from the GRB trigger up to the
time that the temporal variability has considerably
subsided. The time intervals, selected with visual
inspection, are 0–20 s for GRB 080916C, -0.01–10 s
for GRB 090510, 0–60 s for GRB 090902B, and 0–

40 s for GRB 090926A. The extended time intervals
allow for maximal statistics, but at the same time
potentially include a large degree of GRB-intrinsic
spectral evolution that can, however, masquerade
as LIV dispersion.
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• we repeated the PV and SMM analyses using data
produced using an earlier version of LAT’s event
selection, P6 V3 TRANSIENT [21], also used by
Fermi to constrain LIV [22, 23].

• Finally, we repeated the PV and SMM analy-
ses starting from 30 MeV instead of their default
100 MeV. While this change corresponds to in-
creased statistics, it comes, however, with a larger
contamination from the Band spectral component,
which can increase the GRB-intrinsic systematic
uncertainties.

For the case of ML, we do not expect the calibrated
CIs to vary in a considerably different way than the CIs
obtained directly from the data, during the tests men-
tioned above. Thus, for simplicity, we only present ML
results obtained directly from the data.
The test results are shown in Fig. 22. In all cases,

the CIs produced by different methods (and for the same
test) are in agreement with each other (i.e., they have
some overlap). Their widths and centers do change some-
what across tests, something expected considering the
different statistics and degrees of GRB-intrinsic spectral
evolution in the different data sets.
The removal of the highest-energy event, as expected,

widened the produced CIs. The magnitude of the in-
crease in their widths is a probe for the degree with which
our methods draw information from the single highest-
energy event and also for the systematic uncertainty as-
sociated with the possibility of that event being back-
ground. Because of the very low background contami-
nation in our data sets, the highest-energy photons are
typically securely associated to the GRB (see, e.g., the
Supplementary Information of Ref. [23] regarding the as-
sociation of the 31 GeV photon to GRB 090510). Thus,
we do not consider the option of removing the highest-
energy photon to increase the robustness of the results
warranted.
The changes brought by the use of the extended time

interval did not correspond to a specific pattern. They
were likely caused by the inclusion of emission of en-
ergy considerably higher than that included in the de-
fault time interval or the inclusion of significantly more
GRB-intrinsic spectral evolution (likely in the case of
GRB 090926A). Perhaps the most significant change hap-
pened with GRB 080916C and n = 2 on the PV and
SMM results. For this case, the extended interval in-
cluded at 13 GeV photon detected ∼16.54 s post-trigger,
which had an almost a decade in energy higher than that
of the rest of the photons. As such, it dominated the
PV/SMM estimation procedures with the edges of the
confidence intervals on τ2 roughly corresponding to the
time difference between its detection time and the edge of
the analyzed interval divided by the square of its energy.
The case of GRB 090926A is likely affected by both the
inclusion of a very energetic event (∼7 times higher en-
ergy than the rest of the events) and the strong spectral
evolution observed throughout this burst’s emission. We

observe that the choice of time interval can significantly
affect the final results, and conclude that an a priori and
carefully chosen selection for the time interval, as in this
work, is important for the validity of the results.
Repeating the analysis with the P6 V3 TRANSIENT

data set did not bring any considerable changes to the
produced CIs, supporting the case that the improved lim-
its produced in this work, when compared to past Fermi

analyses of GRB 090510 [23], are a result of more sensi-
tive analysis techniques rather than of a more constrain-
ing data set.
Finally, repeating the PV/SMM analyses starting from

a lower minimum energy (30 MeV) did change the results
significantly, implying that the systematic effects induced
by the presence of two spectral components in the data
are limited.
We also repeated the ML analysis for GRBs 080916C

and 090510 after performing some configurational
changes affecting the light curve parametrization, such
as using asymmetric (instead of symmetric) Gaussian
pulses, a larger number of Gaussian pulses, different bin
widths for the histogram used in producing the template
(e.g., such as the one shown in Fig. 6), or different Ecut

values to split the data. The CIs varied up to a factor of
∼2 with respect to CIs obtained with the default config-
uration.
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FIG. 22. Comparison between the 99% CL CIs on τn ob-
tained with the default configuration (horizontal dashed lines)
to those obtained with modified configurations or data sets
(vertical error bars). There are three groups of results in
each figure, each corresponding to a different method: PV,
SMM, ML (from left to right). The ML method CIs shown
were produced directly from the data, instead using calibra-
tion simulations.
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