Sentinel 3 Science Products: A US Contribution

Eric Vermote\(^{(1)}\) and Chris Justice\(^{(2)}\)

\(^{(1)}\)NASA GSFC Code 619
Eric.f.vermote@nasa.gov

\(^{(2)}\)University of Maryland, Department of Geographical Sciences

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
A Land Climate Data Record

Multi instrument/Multi sensor Science Quality Data Records used to quantify trends and changes

Emphasis on data consistency – characterization rather than degrading/smoothing the data

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
Land Climate Data Record (Approach)

Needs to address geolocation, calibration, atmospheric/BRDF correction issues.

CALIBRATION

Degradation in channel 1
(from Ocean observations)

ATMOSPHERIC CORRECTION

Channel 1/Channel 2 ratio
(from Clouds observations)

BRDF CORRECTION

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
MODIS used as a reference for past and future land data record (example NDVI)

Evaluation over AERONET (2003)
0.007 < Precision < 0.017

Independent evaluation of the precision
Over 2000-2004 CMG daily time series

Precision = 0.016

Precision = 0.013

Precision = 0.01
MODIS product and validation methodology used to evaluate other surface reflectance product: example LANDSAT TM/ETM+

- **WELD (D. Roy)** 120 acquisitions over 23 AERONET sites (CONUS)

- **GFCC: Comparison with MODIS SR products**
 - GLS 2000 demonstration
 - GLS 2005 (TM and ETM+)
WELD/LEDAPS results (Red-band3)

LEDAPS

WELD uses MODIS aerosol

Top of the atmosphere

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
MODIS Reflectance time series

- Reflectance time series show high-frequency variability
- The “noise” is partly due to directional effects.
- Selection of specific geometries decreases temporal coverage
- Can we correct for the directional effect and retain the original temporal resolution?

Françoise-Marie Bréon, LSCE
Analytical model and correction

Linear models:

\[
\rho (\theta_s, \theta_v, \phi) = k_0 + k_1 F_1(\theta_s, \theta_v, \phi) + k_2 F_2(\theta_s, \theta_v, \phi)
\]

Several choices for \(F_1 \) and \(F_2 \):

- \(F_1 \): Model surface effects (soil roughness)
- \(F_2 \): Model volume effects (R.T. within canopy)

\[
\rho (\theta_s, \theta_v, \phi) = k_0(t) \left[1 + \frac{k_1}{k_0} F_1(\theta_s, \theta_v, \phi) + \frac{k_2}{k_0} F_2(\theta_s, \theta_v, \phi) \right] = k_0(t) \left[1 + R F_1(\theta_s, \theta_v, \phi) + V F_2(\theta_s, \theta_v, \phi) \right]
\]

Correction:

\[
\rho^{\text{cor}} = \rho(\theta_s, \theta_v, \phi) \left[1 + R F_1(45,0,0) + V F_2(45,0,0) \right] \left[1 + R F_1(\theta_s, \theta_v, \phi) + V F_2(\theta_s, \theta_v, \phi) \right]
\]

Maignan et al., Rem. Sens. Env., 2004
Which is the “best” model?

- Look for the parameters for a best fit (invert the model)
- Compute error of fit
- Among the 6 tested models, RossLiHS allows the best fit
- Clear improvement when using Hot Spot correction

Maignan et al., Rem. Sens. Env., 2004
BRDF model inversion

\[R = \alpha_R + \lambda_R n_i \]

\[\Delta \rho_i = \frac{\rho_{i+1} - \rho_i}{\sqrt{t_{i+1} - t_i}} \]

\[\Delta F_1^i = \frac{\Delta F_{1}^{i+1} \rho_i - \Delta F_{1}^{i} \rho_{i+1}}{\sqrt{t_{i+1} - t_i}} \]

\[\Delta F_2^i = \frac{\Delta F_{2}^{i+1} \rho_i - \Delta F_{2}^{i} \rho_{i+1}}{\sqrt{t_{i+1} - t_i}} \]

- \(R \) and \(V \) are linear function of the NDVI
- We look at the difference between successive measurements
- Notations used here for an easy inversion of the model parameters

- Matrix writing:

\[
\begin{bmatrix}
\sum(n_i \Delta F_1^i)^2 & \sum n_i (\Delta F_1^i)^2 & \sum \Delta F_1^i \Delta F_2^i & \sum n_i \Delta F_1^i \Delta F_2^i \\
\sum n_i (\Delta F_1^i)^2 & \sum(n_i \Delta F_1^i)^2 & \sum n_i \Delta F_1^i \Delta F_2^i & \sum n_i^2 \Delta F_1^i \Delta F_2^i \\
\sum \Delta F_1^i \Delta F_2^i & \sum n_i \Delta F_1^i \Delta F_2^i & \sum (\Delta F_2^i)^2 & \sum n_i (\Delta F_2^i)^2 \\
\sum n_i \Delta F_1^i \Delta F_2^i & \sum n_i^2 \Delta F_1^i \Delta F_2^i & \sum n_i (\Delta F_2^i)^2 & \sum(n_i \Delta F_2^i)^2 \\
\end{bmatrix}
\begin{bmatrix}
\alpha_v \\
\lambda_v \\
\alpha_R \\
\lambda_R \\
\end{bmatrix}
= \begin{bmatrix}
\sum \Delta \rho_i \Delta F_1^i \\
\sum n_i \Delta \rho_i \Delta F_1^i \\
\sum \Delta \rho_i \Delta F_1^i \\
\sum n_i \Delta \rho_i \Delta F_1^i \\
\end{bmatrix}
\]
Data location

- MODIS data are distributed as “tiles” (10° of lat.)
- To limit data volume, we focus on a single tile
- Select a tile over Eastern Australia for (i) variety of surface cover, (ii) number of clear observations, (iii) low aerosol load
BRDF parameters: R and V

- Analyzed the BRDF parameters distributed in the official MODIS products
- Parameters show very unrealistic temporal variations.
- Our method shows more realistic results
Quantification of time series noise

- For each triplet of observations, one can estimate middle one from the earlier and later:
 \[\rho_i^* = \frac{(t_i - t_{i-1})\rho_{i+1} + (t_{i+1} - t_i)\rho_{i-1}}{t_{i+1} - t_{i-1}} \]

One can then compute a “noise” from the quadratic sum of the difference between the measurement and their interpolated counterpart:

\[\sigma^2(\rho) = \frac{\sum_{i=2}^{N-1} \frac{1}{t_{i+1} - t_{i-1}} (\rho_i^* - \rho_i)^2}{\sum_{i=2}^{N-1} \frac{1}{t_{i+1} - t_{i-1}}} \]

We use this definition in the following to quantify the time series quality
Impact of spatial scale

- The noise of the corrected time series is much larger than that we obtained earlier using CMG (Climate Modeling Grid : 5 km) lower resolution data.

- We show here a comparison of the noise obtained at the full resolution against that obtained when aggregating 5x5 pixels.
Noise vs Spatial heterogeneity

- There is a very strong correlation between the spatial heterogeneity (quantified here as the 3x3 standard deviation) and the noise on the corrected time series.

- Clearly, the spatial heterogeneity affects the quality of the time series and there is an easy explanation for that.
Impact of spatial scale

- The “noise” of the time series decreases when the spatial aggregation increases. There seems to be an optimal scale at 2 km (4x4 pixels)
Conclusions (1/2)

- Directional effects on the Earth reflectances are large (factor of 2 to 4 depending on wavelength)

- There are simple analytical models (3 parameters) that reproduce accurately the observed signatures

- The reflectance is modelled as the product of a normalized reflectance, that may vary rapidly, and a BRDF model (2 parameters) that varies more slowly.

- The two model parameters can be parameterized as a linear function of the NDVI.

- We have developed a method to estimate easily these parameters from the reflectance time series

- Corrected time series are much smoother than their original counterpart, and can be used to extract fine signal
Conclusions (2/2)

- The official MODIS BRDF parameters are unreliable
- The time series at the full (500 m) resolution appear noisier than at lower resolution
- Spatial heterogeneity of the reflectance is the driving factor for this additional noise
- We suggest an optimal resolution of 2 km for the use of MODIS data time series
Use of BRDF correction for product cross-comparison

Comparison of aggregated FORMOSAT-2 reflectance and MODIS reflectance. No BRDF correction. Density function from light grey (minimum) to black (maximum); white = no data.

Comparison of aggregated FORMOSAT-2 reflectance and BRDF corrected MODIS reflectance. Corrections were performed with Vermote al. (2009) method using for each day of acquisition, the angular configuration of FORMOSAT-2 data.
Cross-Calibration of NOAA 16 AVHRR

Calibration of NOAA16 AVHRR over a desert site using MODIS data

E.F. Vermote, N.Z. Saleous

Department of Geography and NASA GSFC Code 614.3, United States
Received 24 February 2006; revised 16 June 2006; accepted 27 June 2006

The coefficients were consistent within less than 1%
Use of BRDF corrected reflectance for cloud mask evaluation of AVHRR Time Series

CLAVR (Pathfinder II) cloud mask

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
Use of BRDF corrected reflectance for cloud mask evaluation of AVHRR Time Series

AVHRR Time series LTDR V3.0 cloud mask

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
Using Direct comparison with MODIS Aqua for validation

Comparison of MODIS Aqua and NOAA16 AVHRR data, A (Red), B (NIR), C (NDVI) are observed over AERONET sites for 2003-2004, D (Red), E (NIR), F (NDVI) are simulated using a vegetation model that account for spectral difference between MODIS and AVHRR bands. G shows over the AERONET sites MODIS NDVI versus corrected AVHRR NDVI computed from spectrally adjusted AVHRR surface reflectance.
One of the VIIRS First light images generated by UMD/NOAA

Land Product Validation and Evolution Workshop, Frascati, Italy, January 28-30, 2014
Use of BRDF correction (VIIRS)

VIIRS SR product Aqua SR product

A ~50km x 50km site in Australia
VIIRS calibration is being monitored on a continuous basis (selected daily obs)
Conclusions

- Surface reflectance algorithm is mature and pathway toward validation and automated QA is clearly identified.
- Algorithm is generic and tied to documented validated radiative transfer code enabling easier inter-comparison and fusion of products from different sensors (MODIS, VIIRS, AVHRR, LDCM, Landsat, Sentinel 2 …)