NOTIONAL RADIATION HARDNESS ASSURANCE (RHA) PLANNING FOR NASA MISSIONS: UPDATED GUIDANCE

Kenneth A. LaBel Jonathan A. Pellish
ken.label@nasa.gov jonathan.pellish@nasa.gov
301-286-9936 301-286-8046
NASA Goddard Space Flight Center (GSFC)
NASA Electronic Parts and Packaging (NEPP) Program
http://nepp.nasa.gov

Unclassified

To be presented by Kenneth A. LaBel at the Hardened Electronics and Radiation Technology (HEART) 2014 Conference, Huntsville, AL, March 17-21, 2014.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>Critical Design Review (CDR)</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off The Shelf (COTS)</td>
</tr>
<tr>
<td>EEE</td>
<td>Electrical, Electronic, and Electromechanical (EEE)</td>
</tr>
<tr>
<td>GCRs</td>
<td>Galactic Cosmic Rays (GCRs)</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratories (JPL)</td>
</tr>
<tr>
<td>NEPP</td>
<td>NASA Electronic Parts and Packaging (NEPP)</td>
</tr>
<tr>
<td>NOVICE</td>
<td>Numerical Optimizations, Visualizations, and Integrations on CAD/CSG Edifices (NOVICE)</td>
</tr>
<tr>
<td>NSREC</td>
<td>Nuclear and Space Radiation Effects Conference (NSREC)</td>
</tr>
<tr>
<td>RHA</td>
<td>Radiation Hardness Assurance (RHA)</td>
</tr>
<tr>
<td>SEE</td>
<td>Single Event Effect (SEE)</td>
</tr>
<tr>
<td>SEECA</td>
<td>Single Event Effects Criticality Analysis (SEECA)</td>
</tr>
<tr>
<td>SEEEs</td>
<td>Single Event Effects (SEE)</td>
</tr>
<tr>
<td>SMEs</td>
<td>Subject Matter Experts (SMEs)</td>
</tr>
</tbody>
</table>
Outline

• Abstract
• History
• Objectives/Limitations
• RHA and Responsibilities
• Revisiting the RHA Steps
• Diatribes on Standards and Validation
• NASA – New Directions and Risk
• Summary
• Acknowledgements
Abstract

- Radiation Hardness Assurance (RHA) is the process of ensuring space system performance in the presence of a space radiation environment.
- Herein, we present an updated NASA methodology for RHA focusing on content, deliverables and timeframes.
History

- In 1998, LaBel et al. presented at the Nuclear and Space Radiation Effects Conference (NSREC), a paper entitled:
 - “Emerging Radiation Hardness Assurance (RHA) issues: A NASA approach for space flight programs”[1].
- In that paper, a multi-step approach was proposed:
 - Define the hazard,
 - Evaluate the hazard,
 - Define requirements,
 - Evaluate device usage,
 - “Engineer” with designers, and,
 - Iterate process as necessary.
- This is the essence of the considerations for an RHA plan.

Objectives/Limitations of this Talk

- Revisit the 1998 approach and update the general philosophy:
 - Provide more codified details focusing on general deliverables and occurrence timeframes.

- Limitations
 - The 1998 paper provided general RHA process guidance, while this paper limits itself to RHA plan development and responsibilities.
 - We note that this method is focused on electrical, electronic, and electromechanical (EEE) parts and their performance in space. Material radiation assurance is deemed out of scope for this discussion.

To be presented by Kenneth A. LaBel at the Hardened Electronics and Radiation Technology (HEART) 2014 Conference, Huntsville, AL, March 17-21, 2014.
RHA and Responsibilities

- RHA includes areas such as ionizing radiation environment modeling, spacecraft shielding analysis, as well as application analysis, radiation effects testing, and radiation performance evaluation of EEE parts.
 - EEE parts are deemed to include integrated circuits, discrete devices, as well as optical devices and systems.

- All spaceflight projects/payloads are required to develop an appropriate RHA plan.

- RHA is deemed to be the responsibility of the cognizant lead radiation engineer assigned to the project/payload.
 - Subject matter experts (SMEs), such as an environment specialist or technologist or test engineer, may provide additional support.

To be presented by Kenneth A. LaBel at the Hardened Electronics and Radiation Technology (HEART) 2014 Conference, Huntsville, AL, March 17-21, 2014.
Define the Hazard

- Space radiation environment exposure (external to the spacecraft):
 - Deliverable: Mission Space Radiation Environment Exposure – to be completed during Mission Phase A (concept and technology development).
 - Included information (protons, electrons, galactic cosmic rays (GCRs), solar particle events):
 - Lifetime exposures (e.g., mission fluence),
 - Nominal exposures (e.g., average flux or fluence), and
 - Worst case event exposures or appropriate statistical models (e.g., solar event, worst case pass through South Atlantic Anomaly (SAA)).
 - Use of industry or NASA standard models as appropriate for the mission profile.
 - Study must be developed for specific mission orbital parameters and timeline.
 - If the spacecraft/payload contains a radioactive source, such as those used for power/propulsion, additional analysis for the induced environment shall be performed.
Evaluate the Hazard

- Transport of space radiation environment (internal to the spacecraft):
 - Initially performed at a high level (i.e., simple dose-depth analysis), but may require a more detailed analysis of spacecraft geometry.
 - Deliverable: Mission Space Radiation Analysis – to be completed no later than Mission Phase B (preliminary design), but recommended to start earlier.
 - Use of industry standard modeling tools such as NOVICE [2].
- Iterative analyses may be performed based on updated spacecraft designs or if additional information is received.
 - Updates may also occur in later Mission Phases based on design changes (final design, integration and test, and operations).

To be presented by Kenneth A. LaBel at the Hardened Electronics and Radiation Technology (HEART) 2014 Conference, Huntsville, AL, March 17-21, 2014.
Define Requirements

- Requirements definition and specifications
 - Deliverable: Mission Space Radiation Requirements and Specifications – to be completed during Mission Phase A (concept and technology development, but may be updated during later phases).
 - This may include a mix of top-down requirements such as system availability as well as EEE parts specific requirement levels such as a radiation tolerance minimum requirement.
 - An example reference of a single event effects (SEE) specification may be viewed at “Single Event Effects (SEEs) Specification Approach” [3].
 - We note that radiation requirements and specification are often integrated into larger function documents such as systems requirements.

Evaluate Device Usage and “Engineer” with Designers

- EEE parts list and electrical design review – to be performed during Mission Phases B-C (preliminary – final design).
 - Completion by Mission Critical Design Review (CDR):
 - Some missions may require earlier deadlines depending on risk tolerance and completion of as-designed parts lists.
 - This includes reviewing areas such as:
 - Radiation tolerance/susceptibility including SEE rate predictions,
 - Mitigation approaches,
 - Risk identification and application analysis,
 - This may include a single event effects criticality analysis (SEECA). [4]
 - Test requirements, test recommendations, test performance, and risk recommendations, and,
 - Design recommendations (when applicable).

- Deliverable: Database of EEE components with radiation test data, analysis, and mitigation information. Test recommendations (and results/reports) are included.

Iterate Process as Necessary

- Iteration of above analyses as designs/component selections change.
- This may occur for various reasons:
 - Movement of boxes/systems on a spacecraft
 - Failure of a EEE part during testing (radiation or otherwise)
 - Procurement delays (i.e., EEE part coming in too late)
 - Requirements “creep” – new or improved functionality now desired,
 - Descope or requirements change, and so on.

To be presented by Kenneth A. LaBel at the Hardened Electronics and Radiation Technology (HEART) 2014 Conference, Huntsville, AL, March 17-21, 2014.
New Step: Evaluation of System Performance Post-launch

- While not “new,” this was not in the original 1998 paper for tracking system performance in-flight.

- Useful for:
 - Validating system performance such as error rates,
 - Developing lessons learned that can be utilized by other missions, and,
 - Preparation for anomaly resolution.

 - In an ideal world, sufficient housekeeping (thermal, power, etc…) and environment/position/time-tagging information is planned to aid any in resolving any anomalies that occur.
 - A key is to ensure that the documentation of EEE parts and system radiation performance expectations in-flight is documented (i.e., ability to recover test data easily, system validation test reports, etc…).
The Overall RHA Process

Flight Program RHA Managed via Lead Radiation Engineer

Environment Definition

Environment in the presence of the spacecraft

Component Mechanical Modeling – 3D ray trace, Monte Carlo, NOVICE, etc.

External Environment

Project Requirements and Specifications

Technology Hardness

Design Margins

Box/system Level

Parts List Screening

Radiation Characterizations, Instrument Calibration, and Performance Predictions

Mitigation Approaches and Design Reliability

In-Flight Evaluation

Technology Performance

Anomaly Resolution

Lessons Learned

Iteration over project development cycle

Cradle to Grave!
Mitigation of radiation effects for EEE parts occurs at various levels ranging from:
- Hardening a transistor design to
- Adding voting logic to
- Modifying system operations.

What is not well codified is what entails sufficient (and statistically significant) validation of the mitigation option(s) used.
- Consider system/board level fault-tolerance “validation” schemes such as:
 - Fault injection – May not adequately simulate the radiation effect, or,
 - Circuit modeling – There’s an old saying that “no one believes the model, but the modeler”.
- These techniques may be adequate, but...

Bottom line: detailed consideration of adequacy of validation must be considered.
Diatribe 2:
Use of Standards and Guidelines

- Using standards and guidelines is desired whenever possible.
 - This includes radiation testing (e.g., MIL-STD-883 Method 1019), environment models, predictive tools, and so forth.
 - It is important to note that new technologies often are “beyond” the guidance that currently exists in standards and guidelines and alternate considerations for test/analysis should be undertaken.
 - A relevant example would be SEE test requirements as presented by LaBel at HEART in 2008 [5].

NASA: New Directions

• NASA has a wide variety of mission types
 – National assets to inexpensive CubeSats
• As such, mission criticality/requirements
definition varies for EEE parts utilization
 – Higher reliability (Level 1 and 2) [6] to commercial off the
 shelf (COTS) used terrestrially.
• The following terms apply to the next chart
 – “Optional” – implies that you might get away without
 this, but there’s risk involved
 – “Suggested” – implies that it is good idea to do this
 – “Recommended” – implies that this really should be
 done
 – Where just the item is listed (like “full upscreening for
 COTS”) – this should be done to meet the criticality and
 environment/lifetime concerns

Notional Risk Starting Point

<table>
<thead>
<tr>
<th>Environment/Lifetime</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>COTS upscreening/testing optional; do no harm (to others)</td>
<td>COTS upscreening/testing recommended; fault-tolerance suggested; do no harm (to others)</td>
<td>Rad hard suggested. COTS upscreening/testing recommended; fault tolerance recommended</td>
</tr>
<tr>
<td>Medium</td>
<td>COTS upscreening/testing recommended; fault-tolerance suggested</td>
<td>COTS upscreening/testing recommended; fault-tolerance recommended</td>
<td>Level 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.</td>
</tr>
<tr>
<td>High</td>
<td>Level 1 or 2 suggested. COTS upscreening/testing recommended. Fault tolerant designs for COTS.</td>
<td>Level 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS.</td>
<td>Level 1 or 2, rad hard recommended. Full upscreening for COTS. Fault tolerant designs for COTS.</td>
</tr>
</tbody>
</table>

To be presented by Kenneth A. LaBel at the Hardened Electronics and Radiation Technology (HEART) 2014 Conference, Huntsville, AL, March 17-21, 2014.
Summary

• In this presentation, we have provided an update on the NASA approach to RHA for EEE parts.

• We have attempted to provide a semblance of deliverables expected and when within the space system mission phase they should be considered.

• New discussions focused on
 – Ensuring proper validation of system radiation tolerance, and,
 – A caveat on only utilizing “standards/guidelines” for RHA performance.

• Lastly, a brief discussion of NASA’s emergent philosophy regarding EEE parts usage.
Acknowledgements

• Sponsor: the NASA Electronic Parts and Packaging (NEPP) Program

• Grateful thanks for their aid in the technical thoughts that went into this revision:
 – Michael Sampson and Michael Xapsos, NASA GSFC, and,
 – Insoo Jun and Steven McClure, NASA Jet Propulsion Laboratories (JPL)

• Thanks to Martha O’Bryan, ASRC Federal Space and Defense, Inc. for her presentation support