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ABSTRACT 

During its first 14 years of operation, the cold (about -60°C) optical blocking filter of the Advanced CCD Imaging 
Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular 
contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, 
and composition have changed. This evolution has motivated further analysis of contamination migration within and 
near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, 
detailed thermal modeling based upon temperature data, and a refined model of the molecular transport. 
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1. INTRODUCTION 

Noted for its arcsecond spectrometric imaging and high-resolution dispersive spectroscopy over the soft-x-ray band, 
the science system of the Chandra X-ray Observatory,1, 2, 3, 4 (Figure 1) comprises the following x-ray components: 

1. High-Resolution Mirror Assembly (HRMA), with 10-m focal length and 0.11 m2 aperture area 
2. Low-Energy Transmission Grating (LETG) and High-Energy Transmission  Grating (HETG), insertable 
3. High-Resolution Camera (HRC, microchannel plate) and Advanced CCD Imaging Spectrometer (ACIS) 

 
Figure 1. Illustration of the Chandra X-ray Observatory, showing the locations of the x-ray optics and the x-ray 
detectors, separated by the graphite-fiber-composite optical bench assembly. 
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The Advanced CCD Imaging Spectrometer5 (Figure 2) is Chandra’s most utilized science instrument. Its focal plane 
comprises a 2�2-CCD imaging array (ACIS-I), arranged for imaging over a 16.9′�16.9′ field, and a 1�6-CCD 
spectroscopy array (ACIS-S), arranged for reading dispersed spectra from Chandra’s objective transmission 
gratings. Each CCD has 1024�1024 24.0-�m-square pixels plus a shielded frame-store region. Two CCDs (both in 
the S array) are back-illuminated (BI) for more sensitive low-energy x-ray response; the remaining eight CCDs are 
front-illuminated (FI). To optimize CCD performance, ACIS employs passive radiative cooling compensated by 
electrical heaters to hold the CCD focal plane at about -120°C and the detector housing at about -60°C. 

 

 
Figure 2. Top view of the engineering unit of Chandra’s Advanced CCD Imaging Spectrometer (ACIS), showing the 
2�2-CCD ACIS-I and the 1�6-CCD ACIS-S focal planes. In the flight unit, aluminized-polyimide optical blocking 
filters OBF-I and OBF-S cover, respectively, the I and the S arrays. The OBFs reside within the “snoot” (with door 
sealed closed until Chandra’s on-orbit check-out), which in turn lies within the ACIS “collimator”. 

As CCDs are sensitive to visible-to-near-infrared light as well as to x radiation, ACIS-I and ACIS-S each utilize a 
double-side aluminized-polyimide optical blocking filter6—OBF-I and OBF-S, respectively—to suppress 
contamination by visible-band photons. Despite being quite thin—Al/Polyimide/Al = 120/200/40 nm (OBF-I), 
100/200/30 nm (OBF-S)—the meshless Luxel™ filters are mechanically robust. A frame attached to the camera top 
holds OBF-I and OBF-S above the respective CCD array. 

The outward face of the OBFs, the camera top, the inner and outer surfaces of the snoot, and the inner surface of the 
collimator bound the ACIS cavity (Figure 2), which connects to the large Telescope cavity.  Near the end of the long 
optical bench opposite ACIS, the Telescope cavity vents to space through spacecraft vents and through the HRMA 
aperture (Figure 1). At about -60°C, the ACIS surfaces are by far the coldest surfaces within Chandra’s optical 
cavity. Based upon the observed attenuation of low-energy x rays7 (§2), these cold surfaces have accumulated a 
layer (� 200 �g cm-2) of an unidentified molecular contaminant over 14 years of operation. Although the 
accumulation of molecular contamination is 30 times pre-flight estimates, the total mass of contaminant is < 1 g. 



After the 2002 finding that molecular contamination on the OBFs was accumulating faster than anticipated, the 
Chandra team performed a detailed study8 of risks, benefits, and efficacy of baking ACIS.   Although pre-flight 
contamination predictions indicated that an on-orbit bake would probably not be needed, the ACIS team retained a 
capability for on-orbit room-temperature bakes.  Indeed, the ACIS team conducted numerous pre-flight bakes, plus 
one on-orbit bake early in the mission—in an (unsuccessful) effort to anneal radiation damage to the FI CCDs.  
Likewise, a thorough investigation by the Chandra team determined that room-temperature bakes present a credible 
risk neither to ACIS nor to the spacecraft.  However, lacking definitive identification of the molecular 
contaminant(s)9, contamination-migration simulations10 indicated that the parameter space for a successful bake was 
small and that the bake might plausibly result in more contamination on the OBFs.  Primarily for this reason, the 
Chandra team postponed indefinitely a decision on baking the ACIS. 

During the decade since the bake-out study, the Chandra team continued to monitor the accumulation of molecular 
contamination on the ACIS OBFs through measurements of the increasing attenuation of low-energy x rays (§2). 
The observed evolution (§2.1) of the x-ray absorption depth indicates changes in rate, gradient, and composition of 
the contaminant(s) that are possibly correlated to a 2008 change in the temperature of the ACIS detector housing 
(§2.2). Recognizing that this possible correlation potentially provides additional constraints on the volatility of the 
molecular contaminant(s), we initiated a new contamination-migration study (§3). For this new investigation, we 
developed a more detailed geometric model (§3.1) of the ACIS cavity and utilize onboard temperature 
measurements to generate a higher-fidelity thermal model (§3.2), which we use for updated molecular-transport 
simulations (§3.3). Finally, we briefly summarize (§0) initial results of this new study, which is currently underway. 

2. MOLECULAR CONTAMINATION ON ACIS FILTERS 

As part of its continuing on-orbit calibration program, the Chandra team monitors the net efficiency of the ACIS 
CCDs, thus providing a measurement of the absorption depth of the molecular contamination on the OBFs. In this 
section, we provide an overview of the observed evolution of the contaminant (§2.1) and note a possible correlation 
of changes in the accumulated contamination with a change in the temperature of the ACIS camera body (§2.2) and, 
hence, of the edges of the OBFs. Such a correlation would be important, in that it potentially helps constrain the 
volatility of the accumulated contaminant(s). 

2.1. Observed evolution 

Various ACIS spectrometric and LETG/ACIS-S high-resolution spectroscopic observations measure x-ray 
absorption by contamination accumulated on the ACIS OBFs. Figure 3 displays ACIS-I and ACIS-S spectrometric 
measurements of the evolution over the mission, of the 0.7-keV absorption depth near the center of each OBF (left 
panel) and of the difference in absorption depth between outer and central regions of the OBF (right panel). 

 
Figure 3. Evolution of the 0.7-keV absorption depth due to molecular contamination on the ACIS optical blocking filter 
(OBF). Left panel shows �L, the 0.7-keV absorption depth at the center of the OBF; right panel shows ��L, the 0.7-keV 
absorption depth near the OBF edge minus its value near the OBF center. Black symbols (with progressively larger 
error bars) denote Mn/Fe-L-complex measurements of the ACIS Fe55 external calibration source; red or blue symbols, 
measurements of the Abell 1795 cluster using ACIS-I or ACIS-S, respectively. 



The plots in Figure 3 combine data obtained from measurements of the ACIS Fe55 external calibration source
(obtained when ACIS is in the stowed position) and a series of pointed observations of the (extended) cluster of 
galaxies Abell 1795. As the Fe55 half-life is only 2.7 years, its utility for calibration has diminished substantially. 
Consequently, future spectrometric measurements of the absorption depth will rely primarily on observations of 
cosmic x-ray sources—such as A1795.  

Figure 4 employs observations of A1795 to determine the gradient in the 0.7-keV absorption depth across the (BI) 
CCD S3, for four epochs. This plot shows that the gradient is quite flat over the middle half of the CCD rows but 
steepens toward the top or bottom of the CCD, near the OBF-S frame. As already evidenced in the right panel of 
Figure 3, the steepening of the gradient has become progressively more pronounced with time. 

 
Figure 4. Gradient in the 0.7-keV absorption depth due to molecular contamination on the ACIS-S optical blocking 
filter (OBF-S), for 4 observational epochs. The plot shows ��L, absorption depth as a function of rows from the chip 
edge, minus absorption depth at the center rows for the back-illuminated S3 (centermost CCD of the S array). NB: 
ACIS CCDs have 1024 rows. 

Returning to Figure 3, inspection of the left panel finds that the 0.7-keV absorption depth �L increased rapidly from 
the start of science operations in late 1999 but that the growth rate steadily subsided until about 2009, when the 
growth rate again increased. The right panel of Figure 3 shows that the edge-to-center gradient ��L of the 0.7-keV 
absorption depth exhibits similar temporal behavior that is even more prominent. 

Using LETG/ACIS-S high-resolution spectroscopy of cosmic x-ray sources, we find that the absorption depths of 
the atomic edges of the contaminant’s constituent elements—carbon C, oxygen O, and fluorine F—also display a 
similar temporal behavior. Figure 5 displays the evolution of the mass column of C, O, and F on OBF-S, as 
determined by fitting the absorption edges of these elements to LETG/ACIS-S high-resolution spectroscopy of 
cosmic x-ray sources. The left panel shows the accumulation of these contaminant elements over the mission since 
the start of 2000 to mid 2013, for the nominal aim point (triangle and “x” symbols) and for calibration observations 
near the bottom edge of OBF-S (symbols enclosed by squares). The temporal behavior exhibited in the figure is 
similar—albeit not identical—to that in Figure 3, for the 0.7-keV absorption depth. The right panel of Figure 3 
shows the accumulation rate of C and of O over the same time span. Although this plot is basically just the time 
derivative of the plot in the left panel, it perhaps illustrates more clearly the temporal evolution: The accumulation 
rate decreases from the beginning of science operations but then starts to increase around 2009. The right panel of 
Figure 5 also suggests a change in the composition of the accumulating molecular contamination: Most evident is 
the apparently very small rate of accumulation of oxygen-bearing contamination during 2004–2008. 



 
Figure 5. Evolution of the mass column of molecular contamination on the ACIS optical blocking filter (OBF), as 
determined from high-resolution spectra obtained using Chandra’s objective transmission gratings. Left panel shows 
the accumulated mass column of carbon (red triangles) and of oxygen and fluorine (blue “x”) at the nominal 
spectroscopy aim point; square-enclosed symbols denote measurements close to the edge of OBF-S. Right panel 
displays the accumulation rate of carbon (upper red line) and of oxygen (lower blue line) near the center of OBF-S. 

The salient features of the observed evolution (Figure 3 and Figure 5) of the molecular contaminant(s) on the ACIS 
OBFs are then these: 

1. The accumulation rate decreased steadily from the start of science operations in late 1999. 
2. The accumulation rate increased again around 2009. 
3. Accumulation is significantly larger near the edges of the OBFs than near their centers. 
4. The composition of the accumulated contamination also may have evolved. 

2.2. Possible relation to temperature changes 

Of the main features of the evolution of the molecular contamination (§2.1), the most curious was the increase in the 
accumulation rate that began about 2009. Recall that accumulation rate equals deposition rate minus vaporization 
rate. As contamination sources eventually deplete, an expected decline in the deposition rate naturally accounts for 
the early decrease in the accumulation rate onto the OBFs. The rise in the accumulation rate starting around 2009 
would require either an increased deposition rate—e.g., a new source—or a decrease in the vaporization rate of 
contamination on the OBFs. The latter explanation—i.e., decreased vaporization rate—naturally occurs if the OBF 
temperatures were lowered. Indeed, the Chandra team in 2008 April turned OFF the ACIS detector-housing heater 
(Figure 6 left panel) in an effort to help maintain the ACIS focal-plane temperature near -120°C (right panel). 

 
Figure 6. Recorded temperatures of the ACIS camera body (left panel) and of its CCD focal plane (right panel). Heaters 
held the camera body at a constant temperature until they were turned OFF in 2008 April, in order to help keep the 
focal-plane temperature near -120°C. 



Turning OFF the ACIS detector-housing heater in 2008 April immediately lowered the temperature (Figure 6 left 
panel) of the ACIS camera top and OBF frames (and, hence, OBF edges) by about 8°C—approximately from -61°C 
to -69°C. As Figure 7 illustrates, an 8°C drop in temperature near -60°C dramatically lowers the vaporization rate—
by a factor of 10–30. Thus, if the vaporization rate of a contaminant were initially comparable to the deposition rate, 
lowering the temperature would lower the vaporization rate and thus increase the accumulation rate.     

 
Figure 7. Temperature dependence of the mass vaporization rate of several simple organic compounds. Note the strong 
dependence upon temperature, which is related to the vaporization enthalpy of the compound11. 

In turning OFF the ACIS detector-housing heater, the Chandra team may have inadvertently performed an 
experiment on OBF contamination. If the more rapid accumulation starting about 2009 indeed resulted from slower 
vaporization of contamination due to lower temperatures, this “experiment” may indicate that at least some of the 
contamination has a volatility in a range that moderate elevation of the temperature could remove it. The fact that 
the mass column near the OBF centers is less than that near the OBF edges also suggests that some of the 
contamination is vaporizing at a rate comparable to the deposition rate. These considerations have engendered 
optimism that partial cleaning of the OBFs may be possible. For this reason, we have begun a new contamination-
migration study (§3) employing a higher-fidelity model of the ACIS cavity 

3. MODELING METHODOLOGY AND RESULTS 

In order to simulate contamination migration aboard the observatory, we first construct a high-fidelity geometric 
model (§3.1)—comprised of a large number of surface elements—of the relevant optical cavity. Given the geometric 
model, we next use thermal properties and boundary conditions to generate a thermal model (§3.2) to determine the 
temperature of each surface element. Given the thermal model, we then use molecular-volatility properties, surface 
temperatures, and other boundary conditions—including external contamination sources and sinks (vents)—to 
model molecular transport (§3.3) within the optical cavity. 

3.1. Geometric model 

For our first Chandra contamination-migration study10, we developed a moderate-fidelity geometric model of the 
entire optical cavity—Telescope cavity (basically, the contents of the optical bench, Figure 1) and ACIS cavity 
(Figure 2), plus a short connecting conduit. In performing the thermal and molecular-transport analyses, we realized 
that the Telescope-cavity geometry was much more detailed than necessary but that the ACIS-cavity geometry 
lacked sufficient detail and resolution to provide a high-fidelity simulation of contamination of the ACIS OBFs. 



Figure 8 displays the geometric model employed in the current study. The external view (left panel) illustrates the 
simplified treatment of the Telescope cavity and of the conduit to the ACIS cavity, which we justifiably reduced to a 
Telescope Closeout and Translation-table Closeout, respectively. These two closeouts comprise a small number of 
relatively large surface elements, onto which we may apply relatively straightforward, coarse-scale boundary 
conditions. In contrast, the internal view (right panel) depicts the more complicated treatment of the ACIS cavity. 
The higher-fidelity ACIS-cavity geometry model not only provides much higher resolution for surfaces of interest 
(especially the OBFs) but also includes potentially important features (such as the frame surrounding and protruding 
slightly above the OBF surfaces). The new ACIS geometry model covers 0.66 m2 comprising 919 nodes—0.50 m2 
comprising 738 nodes within the ACIS cavity—including 121 OBF-I and 203 OBF-S nodes. 

 
Figure 8. Geometric model for the Chandra optical cavity, used for the thermal analysis and for the molecular-transport 
analysis in the current study. The external view (left panel) illustrates the simplified treatment of the geometry outside 
the ACIS cavity; the interior view (right panel) displays the more complex treatment of the geometry within the ACIS 
cavity, especially for the optical blocking filters OBF-I (red square grid) and OBF-S (yellow rectangular grid). 

For the current study, we utilized the software tool Thermal Desktop™ (C&R Technology), which has more 
capability for geometric modeling and analysis than did older tools (e.g., TRASYS) used previously. RADCAD, a 
sub-module of Thermal Desktop, calculates the geometric view factors (Figure 9), which govern the (radiative or 
molecular) transport from each surface element to the remaining surface elements. The vector Aj of surface areas and 
the matrix fjk of view factors totally specify the geometric model for the transport simulations, used for the thermal 
model (§3.2) and for the molecular-transport model (§3.3). 

 
Figure 9. Drawing illustrating the definition of the geometric “view factor”, used in analyses of (radiative or molecular) 
transport amongst surfaces. As the view factor specifies the fraction of the flux from one surface impingent upon a 
second surface, it is an essential geometric attribute in (radiative or molecular) transport analyses. 
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3.2. Thermal model 

In addition to the geometry model, the thermal analysis requires specification of the radiative emissivity 
j for each 
surface element, conductive linkages amongst elements, and the thermal boundary conditions. For this study, instead 
of performing a detailed thermal analysis of the entire spacecraft to predict ACIS temperatures, we employed flight 
telemetry data as boundary conditions for the thermal model. We binned thermal telemetry for 2008 through 2011 
into 1-hour averages and then applied a conductive boundary to the ACIS collimator feet, camera body and focal 
plane. To solve the transient thermal model, we used the Thermal Desktop sub-module SINDA FLUINT to calculate 
the temperature Tj of each element.  

In order to establish radiative boundary conditions at the Telescope Closeout (Figure 8 left panel), we modeled 
temperatures within the Telescope cavity. For the detailed thermal history at 1-hour resolution, we set the radiative 
sink at the Telescope Closeout to +12°C when ACIS was in the observing position or to a telemetered boundary 
temperature when ACIS was stowed. We ran the thermal model for the years 2008—during which the ACIS 
detector-housing heater was turned from ON to OFF—and 2011, obtaining temperature histories for ACIS-cavity 
surface elements. 

Figure 10 compares the temperature distribution over the ACIS instrument with the detector-housing heater ON (left 
panel) in early 2008 to that with the detector-housing heater OFF (right panel) in late 2008. As the ACIS camera 
body, OBF frames, and snoot are aluminum and tightly linked conductively, these structures are nearly isothermal at 
the camera-body temperature recorded onboard (Figure 6), which is a boundary condition to the thermal model. 
Consequently, the temperature of the OBF frames is well-determined—namely, nearly equal to the recorded 
temperature of the ACIS camera body—essentially independent of the detailed thermal model developed here. 

 
Figure 10. Temperature distribution over the ACIS instrument, for the detector-housing heater ON (left panel, early 
2008) or for it OFF (right panel, late 2008). With the heater ON, the temperature of the camera body and OBF frames is 
about -61°C; with the heater OFF, about -69°C (Figure 6). 

Unlike the conductively coupled surrounding surfaces, the OBF surfaces are mainly radiatively coupled. Figure 11 
compares the temperature distribution over the OBFs with the detector-housing heater ON (left panel) in early 2008 
to that with the detector-housing heater OFF (right panel) in late 2008. The thermal model displayed here sets the 
emissivity of the OBFs to 
 = 0.05, the same as pristine aluminized polyimide. The emissivity of the contaminated 
OBFs is likely to be substantially higher and to increase with thickness of the contaminant (at least initially).  

To estimate the importance of this effect, we performed a preliminary sensitivity study of the dependence of OBF 
temperature upon OBF emissivity for a case with the ACIS detector-housing heater OFF. The maximum OBF 
temperature is indeed sensitive to the assumed emissivity: -55.8°C, -46.5°C, -41.7°C, or -42.3°C for 
OBF = 0.05, 
0.10, 0.20, and 0.40, respectively. As discussed earlier (§2.2, Figure 7), temperature differences of this size 
significantly alter the mass vaporization rate of a molecular contaminant. 
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Figure 11. Temperature distribution over the ACIS camera top, including the optical blocking filters (OBF), for the 
detector-housing heater ON (left panel, early 2008) or for the heater OFF (right panel, late 2008). With the heater ON, 
the temperature near the center of OBF-I about -55°C; with the heater OFF, about -58°C. These thermal calculations 
assume that the emissivity of the OBFs is 
 = 0.05, the same as pristine aluminum foil. 

3.3. Molecular-transport model 

The calculation of molecular transport is quite similar to the calculation of radiative transport in the thermal model 
(§3.2). Here we employ essentially the same methodology as we used in our previous study of contamination 
migration10. 

The molecular-transport model requires as input the area Aj, view factor fjk, and temperature Tj for each surface 
element j: The geometry model (§3.1) calculates Aj and fjk: the thermal model (§3.2), Tj. The transport equation 
calculates the evolution of the mass column �j of the contaminant on each surface element j, where the accumulation 
rate onto surface j is simply the deposition rate due to vaporization from all other surfaces k onto j (and to external 
sources), minus the vaporization rate from surface j: 
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where � �jv T��  is the mass vaporization rate as a function of the temperature jT  (e.g., Figure 7) on surface element j 

and the unit step distribution � �j��  enforces the physical condition that the mass column must remain non-
negative. As boundary conditions on the exchange of material between the ACIS cavity and the Telescope cavity, 
we treat the Telescope Closeout as a source and sink for material in the ACIS cavity. 

The rate of vaporization—evaporation or sublimation, as appropriate to the phase of the deposited species—is 
simply related to the vapor pressure � �TPv  through 
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with R the ideal gas constant and M the molar mass of the contaminant. To determine the temperature dependence of 
the vapor pressure and mass vaporization rate, we apply the Clausius-Clapeyron relation to obtain  � �TPv  or  � �Tv��   
at temperature T as a function of its value at a reference temperature To:  
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where the vaporization (evaporation or sublimation, as appropriate) enthalpy Hv�  governs the temperature 
sensitivity. Figure 7 uses the above equations to plot the vaporization rate � �Tv��  for several simple organic 
compounds, using tabulated values for � ��TPv  and Hv� . 

We have just begun running contamination-migration simulations using the new models described above. Figure 12 
exhibits results of exploratory contamination-migration simulations, under identical thermal conditions, for a 
contaminant of relatively low volatility (left panel) and for one of relatively moderate volatility (right panel). For 
relatively low volatility (left panel), the accumulation is deposition-dominated and peaked near the OBF’s center, 
due to shadowing effects in the deposition. For relatively moderate volatility (right panel), the evaporation rate on 
the warmer parts of the OBF is comparable to the deposition rate, resulting in less accumulation near the (warmer) 
center of the respective OBF than near its (cooler) edge. For relatively high volatility (not shown), evaporation 
dominates deposition and the OBF would clean, starting from the (warmer) center out to the (cooler) frame. 

 

 
Figure 12. Distribution of mass column of accumulated molecular contamination on the ACIS OBFs, based upon 
molecular-transport simulations for a contaminant with relatively low volatility (left panel) and for one with a relatively 
moderate volatility (right panel). These molecular-transport calculations use OBF temperatures determined assuming 
that the emissivity of the OBFs is 
 = 0.05, the same as pristine aluminum foil. 

The fact that the observed distribution of contamination on the ACIS OBFs (§2.1, Figure 4) more closely resembles 
Figure 12 right panel than the left panel indicates that the volatility of the contaminant is such that evaporation is 
competitive with deposition over at least the warmer areas of the OBFs. This has engendered some optimism that it 
may be possible to develop a heating procedure to promote cleaning of the OBFs. Thus, we anticipate using 
contamination-migration simulations to assess various scenarios for cleaning the OBFs. 
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4. SUMMARY 

Although we are optimistic about potentially cleaning the OBFs (at least partially), we recognize that there are 
significant uncertainties in the modeling. We are comfortable with the fidelity and accuracy of the geometric model 
(§3.1) and with most of the thermal model (§3.2), which is largely conductively coupled and utilizes actual onboard 
temperature measurements. Unfortunately, by far the greatest uncertainty in the thermal modeling is the temperature 
distribution on the contaminated OBFs. As the OBFs are predominantly radiatively coupled, their temperature 
distribution is sensitive to the emissivity 
 of their surfaces (§3.2), which in turn depends upon the thickness and 
properties of the contaminant(s) on its surfaces.  

For the exploratory simulations here (Figure 12), we used a thermal model with the emissivity of the ACIS OBFs set 
to 
 = 0.05—i.e., the emissivity of the pristine filter. The emissivity of the contaminated OBF surface is likely to be 
significantly larger and non-uniform due to non-uniformity of the accumulated contamination across the OBF. 
Uncertainty in the distribution of 
 across the OBFs produces uncertainty in the temperature distribution, which 
results in uncertainty in the vaporization rate and, thus, in the accumulation rate of the contaminant(s). 
Consequently, physically accurate modeling of the accumulation of contaminant(s) on the OBF surface will require 
more complicated, iterative thermal and molecular-transport simulations. 

It is interesting to note that the coupling between emissivity, temperature, and contaminant mass column (or 
thickness) is possibly quasi-self-regulating for contaminant(s) with relatively moderate volatilities—i.e. comparable 
vaporization and deposition rates. As the contaminant accumulates, the emissivity increases, thus raising the 
temperature and the vaporization rate, which in turn reduces the accumulation rate. 

The other major uncertainty in the modeling is that we have not identified the species of the molecular 
contaminant(s). With prior knowledge of neither the deposition rate nor the vaporization properties of the 
contaminant(s), we shall need to explore a large volume of parameter space. Hopefully, comparing simulation 
results with the observed evolution of the mass column will sufficiently constrain the properties of the 
contaminant(s) to provide confidence simulations of possible cleaning scenarios. 
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