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ABSTRACT

Variability in the raindrop sized distribution (DSD) has long been recognized as a source

of uncertainty in relationships between radar reflectivity Z and rain rate R. In this study,

we analyze DSD retrievals from two years of data gathered by the Tropical Rainfall Mea-

suring Mission (TRMM) satellite and processed with a combined radar-radiometer retrieval

algorithm over the global oceans equatorward of 35◦. Numerous variables describing prop-

erties of each reflectivity profile, large-scale organization, and the background environment

are examined for relationships to the reflectivity-normalized median drop diameter, ǫDSD.

In general, we find that higher freezing levels and relative humidities are associated with

smaller ǫDSD. Within a given environment, the mesoscale organization of precipitation and

the vertical profile of reflectivity are associated with DSD characteristics. In the tropics,

the smallest ǫDSD values are found in large but shallow convective systems, where warm rain

formation processes are thought to be predominant, whereas larger sizes are found in the

stratiform regions of organized deep convection. In the extratropics, the largest ǫDSD values

are found in the scattered convection that occurs when cold, dry continental air moves over

the much warmer ocean after the passage of a cold front. The geographical distribution of the

retrieved DSDs is consistent with many of the observed regional Z−R relationships found in

the literature as well as discrepancies between the TRMM radar-only and radiometer-only

precipitation products. In particular, mid-latitude and tropical regions near land tend to

have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern

Pacific Intertropical Convergence Zone.
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1. Introduction

The raindrop size distribution (DSD) is a fundamental quantity in radar meteorology and

other remote sensing applications and has been the subject of numerous of studies including

measurements via disdrometer (e.g., Marshall and Palmer (1948), Waldvogel (1974), Tokay

and Short (1996)) and radars (e.g., Williams et al. (1995), Bringi et al. (2003)), parame-

terizations (e.g., Ulbrich (1983), Haddad et al. (1996), Sempere-Torres et al. (1998), Testud

et al. (2001)), and numerical simulations (e.g., List et al. (1987), Brown (1989), Hu and

Srivastava (1995), Prat and Barros (2007)). Various moments of the DSD describe physical

quantities, such as the liquid water content W , rain rate R and median volume diameter D0,

as well as quantities important for microwave remote sensing such as radar reflectivity Z and

specific attenuation k. Relationships between the remotely-sensed and physical quantities

are often sought after, particularly the reflectivity-rain rate (Z − R) relationship, which is

frequently parameterized as the power law Z = aRb. It has been known since the early

days of radar meteorology (Atlas and Chmela 1957) that a single unique Z −R relationship

does not exist and instead, local relationships were often derived over long periods of time in

order to provide radar rainfall estimates that were reasonable on seasonal and yearly scales

at a given location (Battan 1973).

The variability of reported Z − R relationships, both between different locations and

at the same location at different times, provides some information about the microphysical

processes that shape the DSD, although it is difficult to separate effects of drop concentration

and drop size on the coefficients of the Z − R relationship (Steiner et al. 2004). Rosenfeld

and Ulbrich (2003) classified DSDs by dynamics (convective vs. stratiform) and microphysics
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(continental vs. maritime). Stratiform and continental DSDs are characterized by large D0

for a given W , whereas convective and maritime DSDs of the same W have lower D0 (and

thus, lower Z). Although the names “continental” and “maritime” suggest that the proximity

to the ocean is associated with DSD type, these designations do not reveal the mechanism(s)

behind the differences between the two ends of the continuum. In fact, maritime DSDs have

been observed over land (e.g., Fujiwara and Yanase (1968), Carey et al. (2001), Bringi et al.

(2003)) and continental DSDs have been measured in tropical oceanic locations such as the

Florida Keys (Tokay et al. 2003). Therefore, it is useful to review the processes that affect

the DSD to understand why observed DSD characteristics are often, but not always, found

in the expected locations.

The formation of rain is typically classified microphysically as either a warm or cold

process. Warm rain formation involves the growth of cloud droplets via collision to a critical

size where fall speed is enhanced, allowing the rapid collection of additional drops as the

fall speed of the growing raindrop increases with its mass. Eventually, the largest drops

break up due to hydrodynamic instability. Various models (List et al. (1987), Hu and

Srivastava (1995)) have shown the collision-coalescence and breakup processes to result in

an equilibrium shape to the DSD regardless of overall concentration which acts as a scaling

factor. This has been observed in tropical convection ((Atlas and Ulbrich 2000),(Uijlenhoet

et al. 2003)), which has the requisite rainfall rates and above-freezing column depth to

achieve equilibrium. Cold rain formation occurs with the melting of frozen hydrometeors

such as snow, graupel, or hail. These frozen particles are larger than the cloud droplets out

of which warm rain forms and melt into correspondingly larger rain drops. As these fall,

they too are subject to breakup which will reduce their size, although the extent to which
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this occurs depends on the depth of the above-freezing layer and the initial DSD.

Cloud dynamics influences the relative importance of warm and cold processes via updraft

strength and vertical structure. Convective rain can contain a mixture of warm and cold

microphysics; cold microphysics becomes more important with stronger updrafts and cloud

tops that reach above the freezing level. Stratiform rain can occur due to large-scale ascent or

in convective outflow anvils. In either case, updrafts are weaker and limited to a shallower

layer than in convection, and stratiform rain usually forms via cold processes. Besides

formation and internal processes, external processes such as evaporation and size sorting can

also influence the DSD. Evaporation preferentially acts on small drops, thereby increasing

D0 when rain falls into a subsaturated layer. The influence of size sorting by wind shear

and turbulence on the DSD depends on the particular situation and may act to increase or

decrease the median drop size.

Considering all of the above processes, one would expect DSDs with smaller drops for a

given Z to fall from clouds where warm rain processes are predominant and in environments

with deep, humid above-freezing layers. Meanwhile, larger drops would be expected in drier

locations with a preference for deeper convection and/or more stratiform rain. Although

these expectations qualitatively match observed DSDs, the relative influence of environ-

mental and dynamical effects is not well known. Understanding their role could aid in

understanding the effects of aerosol loading on precipitation. Studies have suggested both

suppression (Rosenfeld 2000) and enhancement (van den Heever et al. 2006) of rainfall with

increasing aerosol burden, depending on the aerosol properties and interaction between cloud

microphysics and dynamics (Givati and Rosenfeld 2005). These are also expected to affect

the DSD via changing the relative importance of warm and cold rain formation processes.
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Improved understanding of the relative importance of environmental, dynamical, and

microphysical effects on the rain DSD can also benefit global satellite-based estimates of

rainfall, which all rely on DSD assumptions in retrieval algorithms. Microwave radiometer-

derived estimates, available on a number of satellite platforms, are physically tied to the

emission signal (over oceans), which is roughly proportional to column-integrated W . The

relationship between W and R is not as variable as the Z−R relationship (R is approximately

proportional to the 3.67th moment of the DSD, whereas Z is to the 6th and W is to the

3rd), but uncertainties in this relationship can still cause errors of as much as 10% (Wilheit

et al. 2007) in R. Spaceborne radar-based estimates from the TRMM (Kummerow et al.

1998) precipitation radar (PR) rely on a set of default Z − R relationships (Iguchi et al.

2000) that are modified to match the attenuation inferred by the apparent decrease in the

surface reflection in heavy rain (Meneghini et al. 2000). Given the noise inherent in rain-free

estimates of the surface cross section, this method is only reliable in rain rates exceeding

approximately 10 mm hr −1, and, in lighter rain, the default Z-R relationship must be

assumed. Rain estimates from CloudSat (Stephens et al. 2002), which uses a higher frequency

(94 GHz) that is subject to far greater attenuation than the TRMM PR, use the surface

reference technique exclusively, disregarding the reflectivity information (Haynes et al. 2009),

although a DSD is still implied in the k − R relationship.

In order to improve understanding of DSD formation processes, their geographic distribu-

tion, and how they may affect global satellite rainfall estimates, a combined radar-radiometer

algorithm, previously developed by the author (Munchak and Kummerow (2011); hereafter

MK11), is utilized. A brief description of the algorithm and its sensitivity to underlying

assumptions is examined in section 2. While a satellite retrieval cannot provide as detailed
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and precise DSD information as in-situ data from field campaigns, they can be used to put

the data from these campaigns into the global context. To achieve this objective, we analyze

the output of this algorithm as applied to two years of Tropical Rainfall Measuring Mission

(TRMM) data. In section 3, we describe a database containing the retrieval results as well as

ancillary variables that represent the rainfall formation processes described previously. Their

influence upon the DSD is analyzed in section 4. In section 5, the geographical patterns of

all factors that are associated with the rain DSD are examined and it is shown that these

patterns are largely consistent with the TMI/PR bias patterns in Berg et al. (2006) and the

DSD map of Kozu et al. (2009). Conclusions are presented in section 6.

2. Algorithm Description

Although the full details of the combined algorithm used to retrieve the DSD properties

are given by MK11, a brief summary of the relevant output parameters and their sensitivity

to internal assumptions is provided here. The core of the algorithm is a radar profiling

algorithm that operates similarly to the standard TRMM rain profiling algorithm (2A25;

Iguchi et al. (2000, 2009)). A gamma distribution is assumed for the rain DSD: N(D) =

N0D
µe−ΛD, with an intercept parameter (N0), shape parameter (µ), and slope parameter (Λ),

which is related to the median volume diameter D0 via relation Λ = (3.67 + µ)/D0 (Ulbrich

1983). This formulation implies a power-law relationship between Z and D0 of the form

D0 = aZb. In MK11, initial values for a and b are set by rain type indicated by the TRMM

rain-classification algorithm (2A23), which identifies profiles as stratiform, convective, or

other based on bright band detection, horizontal homogeneity, and maximum reflectivity
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(Awaka et al. 2007). The coefficient a is modified by a multiplicative factor ǫDSD in order to

match estimates of the path-integrated attenuation (PIA) provided by the surface reference

technique (SRT; Meneghini et al. (2000)), as well as the microwave brightness temperatures

(Tbs) at 10, 19, and 37 GHz. Values of ǫDSD less (greater) than 1 represent mean drop sizes

that are smaller (larger) than the default relationship, containing more (less) liquid water at

the same reflectivity. Table 1 provides Z − R coefficients for selected values of ǫDSD to aid

in the interpretation and application of results presented in this study.

In addition to adjusting the rain DSD, the combined algorithm also adjusts the ice particle

size distribution (PSD) with an analogous factor ǫICE in order to match the scattering signal

observed at 85 GHz. Values of ǫICE less (greater) than 1 imply more (less) scattering than

the default Z − PSD relationship implies. However, the physical interpretation of ǫICE is

somehat ambiguous since this change in scattering could be a result of changes in ice density,

morphology, or supercooled cloud water amount as well as changes in the PSD.

A cloud water adjustment is also made in order to match the microwave Tbs while

being consistent with rain rates estimated by ground-based polarimetric radars. A default

cloud water profile containing approximately 3% (stratiform) or 7% (convective) of the rain

water content is assumed, and the integrated cloud liquid water path (cLWP) is modified by

the multiplicative factor ǫCLW. Since cloud water and rain water have similar radiometric

signatures, the relative sensitivity of adjustments to ǫCLW and ǫDSD was constrained with

ground validation data in MK11, but nevertheless remains a source of uncertainty in the

combined algorithm.

The retrieval itself is done in the optimal estimation framework, minimizing a cost func-

tion (1) consisting of the departure of the modeled PIA and brightness temperatures f(x)
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from their observed values y, normalized by their covariances Sy, and the departure of the

state vector x consisting of ǫDSD, ǫICE, and ǫCLW from their default values xa, normalized by

their covariances Sx. This process is carried out over large scenes consisting of as many as

a thousand radar pixels (more computational details are given in MK11).

Φ = (y − f(x))TS−1
y (y − f(x)) + (x − xa)

TS−1
a (x − xa) (1)

In this work, a slight departure is made from the default coefficients a and b and cloud

water profiles given by MK11. In that work, different default vales of these coefficients for

stratiform and convective rain were selected to replicate the Z-R coefficients used by the

2A25 algorithm. Here, no a priori convective/stratiform separation is made because one of

the goals of this work is to determine the extent to which DSD is correlated with observables

related to these dynamics. Since the optimal estimation method used by the combined

algorithm retains some of the a priori relationships, depending on the information content

in the SRT PIA and Tbs, meaningful comparisons between convective and stratiform DSDs

can not be made. Thus, a single weighted average (85% stratiform, 15% convective, which

represents their proportion in the version 6 TRMM products) of the coefficients and cloud

water profiles is used as the default for this study.

To test the sensitivity of the retrieved value of D0 to the default assumptions, one month

(January 2001) of data was processed twice assuming stratiform and convective D0−Z coef-

ficients and cloud/ice profiles. The root-mean-square (rms) difference between the retrieved

D0 is compared to the rms difference between the retrievals and default values as a function

of two information content metrics, the A and Sx diagonal values (Rodgers 2000) in Figures
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1a and 1b, respectively. Assuming linearity of the Jacobian K and no error in the forward

model used in the retrieval, A represents the fractional weight of the observations in the

retrieved value of D0 (the remainder coming from the a priori assumption):

A = SxK
TS−1

y K. (2)

Likewise, the retrieval covariance matrix Sx, defined by

S
x

= (KTSyK + S−1
a )−1, (3)

can be compared to the a priori covariance matrix Sa (defined in MK11) to evaluate the

information content of the observations. L’Ecuyer et al. (2006) note that Sx and Sa both

define areas in the retrieval parameter space. The amount by which the observations reduce

the space represented by Sx from that represented by Sa is another measure of the information

present in the retrieval.

For both metrics, as the information content increases, the rms difference between the

retrieved values of D0 under different DSD assumptions decreases. At the same time, the rms

difference between the retrieved and default (a priori) values of D0 increases. Where these

values cross each other can be thought of as the point where the observations and default

assumptions equally contribute to the retrieved value of D0. This occurs near an A diagonal

value of 0.007 and SaS
−1
x value of 0.015. Under the definitions of these statistics, these

thresholds may seem rather low, but because of the two-dimensional, multi-parameter nature

of the retrieval, the off-diagonal elements of A and Sx, which represent covariances with other

parameters (particularly ǫCLW) and spatial covariances (due to the large radiometer fields-

of-view relative to the radar footprint), are large. Thus, the retrieved D0 values in the
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absence of high-resolution radar path-integration-attenuation estimates can only strictly be

considered representative over the radiometer FOV, which is 18 by 30 km at 19 GHz, the

channel most sensitive to rain, and under the cloud water-rain water partitioning described

in MK11.

For the analyses in sections 4 and 5, we choose A as the information content metric to

determine thresholds subsets of data where the retrieved DSD can be considered robust. This

is not to discard Sx, but simply recognizes their redundancy which is clear in Figure 1 and in

their definitions (2 and 3). At the point of crossover with respect to A, the rms uncertainty

in the retrieved value of D0 is about 0.15 mm, and 60% of the retrieved profiles exceed

this threshold. This further decreases asymptotically to around 0.05 mm at an A diagonal

value of 0.07, but only 20% of profiles obtain this higher threshold. These asymptotic values

appear to represent the upper limit to which D0 can be retrieved using the method of MK11.

3. Profile Database

Two years of TRMM data were processed with the MK11 algorithm, one representing the

pre-orbit-boost period (August 1999-July 2000) and one representing the post-boost period

(January-December 2006). In order to speed computations and avoid biases associated with

ground clutter (Shimizu et al. 2009), only the central 25 PR angle bins were processed. Due to

uncertainties in surface emissivities (a necessary component of the combined algorithm) over

land, only over-ocean retrievals were considered in this analysis. These two years provided

65,782,705 precipitation profiles geographically distributed as shown in Figure 2a. The

distribution of profiles in the database is a function of both the frequency of occurrence
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of rain and TRMM’s orbital geometry. The latter enhances the number of profiles in the

mid-latitudes, which the central PR swath samples more often than the equator due to more

frequent orbit overlaps.

The fraction of profiles within each 1◦ grid cell that exceed the A > 0.007 and A > 0.07

thresholds established in section 2 are shown in Figures 2b and 2c, respectively. The profiles

exceeding each information content threshold are not evenly distributed, with relatively

few of these profiles in the already sparsely-precipitating subsidence regions west of the

subtropical continents. Since the method of MK11 relies upon the 10, 19, and 37 GHz

channels on TMI along with the radar PIA to adjust ǫDSD, unequal distribution of profiles

with high information content reflects unequal distribution of the ability of the algorithm to

make use of these measurements. The TMI observations are only used when rain coverage

within the radiometer FOV exceeds 50%; thus isolated profiles are not adjusted. The PIA

is only used when it exceeds the natural variability (noise) in the surface reflectivity cross-

section from which it is derived; this variability is usually 2-3 dB (Meneghini et al. 2000).

The PIA is strongly related to the rain liquid water path (LWP), thus shallow and light

rain DSDs cannot be retrieved with it, and in fact this is one of the primary weaknesses of

single-frequency radar rain profiling algorithms such as 2A25. To illustrate the differences

between the general population of profiles and those that exceed each information content

threshold, the distribution of each population is shown as a function of precipitation feature

size and PIA in Figures 3a and 3b, respectively. These differences are an important caveat

to be kept in mind in the ensuing analyses.

In order to determine the effect of variables related to the background environment,

storm structure, and microphysics on the retrieved DSD, each profile was associated with
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the variables listed in Table 2. Many of these variables come from products derived from

various instruments on board the TRMM satellite, ensuring coincidence in time and space.

The combined algorithm, in addition to providing the retrieval parameters (ǫDSD,ǫICE, and

ǫCLW) and their associated information content metrics, calculates the attenuation-corrected

reflectivity profile. Vertical reflectivity structure has been related to the DSD in a number

of studies (L’Ecuyer et al. 2004). For example, the difference in reflectivity above and below

the freezing level has been related to updraft strength and the relative importance of cold

and warm rain formation (Shige et al. 2008), and Xu et al. (2008) identified a warm rain

signature where reflectivity increases towards the surface below the melting level1. Thus,

reflectivities at levels relevent to these relationships are included in the database to test

them with respect the the MK11-derived DSD. The strength of the bright band is used to

determine the density of the melting particles as described in MK11 and Zawadzki et al.

(2005).

A number of variables are derived from PR products 2A23 (rain characteristics) and

2A25 (rain profile). These include the storm echo top, precipitation feature size (number

of contiguous raining pixels), local time, and local standard deviation (within 25 km) of

near-surface rain rate and reflectivity. In order to classify the dynamic environment, several

parameters used by Elsaesser et al. (2010) to classify tropical convection are also included

in the database. These are the number of profiles with echo tops less than 5 km, between 5

km and 9 km, and greater than 9 km within a 1◦ box2 surrounding each profile. The same

1In our database, this is defined as the near-surface reflectivity minus the lowest valid reflectivity within

1 km below the melting level.
2A 25×25 PR pixel box, approximately 100 km on each side.
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echo top classes are again used for convective profiles only. The 1◦ average convective rain

rate and convective rain fraction are also used in this classification scheme.

Background parameters total precipitable water (TPW) and sea surface temperature

(SST) were derived from TMI data using the methods of Elsaesser and Kummerow (2008)

and Gentemann et al. (2004), respectively. Note that these represent the nearest value out-

side of the raining area. Column relative humidity was calculated by dividing the retrieved

TPW by the saturated TPW derived from a temperature profile consistent with the SST

and freezing level. Additional meteorological parameters augmenting those available from

TRMM observations were taken from the Modern Era Retrospective-Analysis For Research

And Applications (MERRA; Bosilovich (2008)) in order to further identify meteorological

regimes that might be associated with the DSD. These include temperatures and geopo-

tential heights at selected pressure levels (850mb, 700mb, and 500mb), the 850-500mb and

850-300mb wind shear magnitude, the surface-850mb lapse rate, 700mb vertical velocity,

boundary layer height3 and relative humidity below the freezing level and in the boundary

layer. As with any reanalysis data, these variables should be considered representative of the

synoptic environment, and moisture/vertical velocity values in particular may be in error

near convective rain.

A number of variables related to cloud microphysics are included. The 12 µm channel

on the TRMM Visible and Infrared Scanner (VIRS) instrument (Kummerow et al. 1998)

was used to determine the cloud top temperature. The cloud top effective radius (Re) is

retrieved from the VIRS data using the method of Nakajima and King (1990). The slope of

3Defined as the height at which potential temperature exceeds the surface value by more than 3K; output

was insensitive to a range from 2-5K
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effective radius with respect to cloud top temperature and the depth of the column where

Re exceeds 15 µm over a 1◦ grid cell are also included to indicate the presence of warm rain

processes as suggested by Rosenfeld and Lensky (1998). Since the visible-infrared retrieval

technique only works during the daytime, daily and monthly composites of these variables

were constructed and used where coincident data were unavailable. The lightning flash rate

comes from TRMM’s Lightning Imaging Sensor (Boccippio et al. 2002). The SPRINTARS

(Takemura et al. 2000) aerosol optical depth (AOD) reanalysis was included as an additional

microphysics variable.

Table 2 lists all of these variables, their distribution shape, and their correlation to ǫDSD

at both thresholds established in section 2. For those variables distributed lognormally, the

correlation coefficient was derived in log space. Since ǫDSD itself is distributed lognormally,

all correlations here and elsewhere in this study are actually in relation to ln(ǫDSD). Many

of the observed and theoretical relationships in section 1 are confirmed with this data. For

example, ǫDSD decreases with increasing melt density (weaker bright bands) and increasing

spatial variability of reflectivity, both of which are commonly used to identify convective rain

(Awaka et al. 2004). Microphysics within the profile are also important; large amounts of ice,

lightning activity, and an absence of the warm rain signature in the slope of the reflectivity

profile below the melting level are also associated with high values of ǫDSD. However, back-

ground environment microphysics (cloud Re and AOD) are uncorrelated with ǫDSD. There

also appears to be an environmental relationship, with warmer, more humid environments

favoring smaller ǫDSD. Although many of these relationships make sense from a physical

point of view, many of these variables are correlated with each other. Thus we will examine

the relationship between ǫDSD and multiple variables in section 4 to identify those which
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have significant predictive ability.

4. Sources of DSD variability

The purpose of this section is to more clearly identify the variables in Table 2 with

the physical mechanisms described in section 1, simultaneously describing as much of the

variability in ǫDSD as possible given the limitations of the retrieval itself, described by MK11

and in section 2. Because many of the variables in Table 2 only take on physically meaningful

values in cold rain (e.g., melt density, IWP), we first separate the database into warm and

cold rain using a simple test of whether or not a valid echo exists within 500m of the freezing

level as determined by the top of the interpolated bright band height. Within the warm

and cold rain subsets, we performed a principle component (PC) analysis of those variables

most strongly correlated with ǫDSD. This analysis creates new proxy variables (the PCs)

that represent correlated behavior amongst the original variables. These PCs are also by

definition uncorrelated with each each other. The empirical orthogonal functions (EOFs)

which come out of this analysis are a regression of the original (standardized) variables onto

the PCs. An important consideration in this type of analysis is assessing the significance of

each mode. For the purposes of this section, we consider a mode significant if a similar mode,

explaining a similar fraction of variance in the database and having a similar correlation with

ǫDSD, is present in subsets of the data (central pixels only and single pre/post-boost years),

and that mode explains more variance than a single independent variable (i.e., for a subset

of n variables, the variance explained must be greater than 1/n).

In warm rain, the individual variables most strongly correlated with ǫDSD are the echotop,
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the total number of echo tops under 5km within the 1◦ surrounding each radar pixel, the

boundary layer relative humidity, lapse rate, and freezing level4. Cloud top temperature

was also included, since cold cloud tops may indicate the influence of cold rain processes

even if the detected echo top is below the freezing level. The first three PCs (Table 3)

of these five variables are significant under the criteria established previously. The first

mode consists primarily environmental variables: high boundary layer relative humidity,

high freezing levels, and small lapse rates together are negatively correlated with ǫDSD. The

second mode and third modes represent the organization of precipitation in terms of low

cloud concentration, cloud top temperature, and echo top height.

The behavior of ǫDSD with respect to these three modes at the A > 0.007 threshold

is illustrated in Figure 4 (Similar behavior occurs at the A > 0.07 level). The smallest

values of ǫDSD are noted when PC1, PC2, and PC3 are all positive; this represents warm-

topped, shallow precipitation in tropical environments with numerous low clouds, indicative

of large areas of weak convection (Elsaesser et al. 2010). The largest values, meanwhile, occur

when PC1 and PC2 are negative and PC3 is positive, representing colder-topped clouds in

extratropical environments with numerous deep clouds. The presence of colder clouds tops

in this mode may be an indicator of cold rain processes even though the echo top does not

extend above the freezing level. In these profiles, there may be errors in the interpolated

freezing height and/or there may be undetected cold processes due to extension of cloud

top above the 17-dBZ echo top or influence of neighboring pixels (Liu and Zipser 2009).

Additionally, since these are occurring in extratropical environments the underlying forcing

4Although temperatures at various levels have higher correlations than some of these, they are largely

redundant with lapse rate and freezing level.
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may be different (we will examine these relationships in different meteorological regimes in

section 5).

Aside from the possible intrusion of cold rain processes, the primary mechanisms affecting

the DSD in warm rain are sub-cloud-base humidity and echo top height. The effect of

humidity is consistent with theory; smaller values of ǫDSD are retrieved in more humid

environments where the effect of evaporation on DSDs below cloud base is minimized. Echo

top increases towards negative values of PC2 and PC3 (the lower right of the PC2-PC3 plane

in Figure 4); and a corresponding increase of ǫDSD is consistent with the longer path for drop

growth via collision.

In cold rain, additional variables not available in warm rain are included in the PC anal-

ysis. These additional variables are the density of melting particles (a proxy for bright band

strength), the difference in maximum reflectivity above and below the melting layer, and

the slope of reflectivity below the melting layer. Cloud top temperature and echo top height

have little correlation with the DSD in cold rain once the reflectivity structure is accounted

for, so they were removed. As with warm rain, three significant modes of variability are

present among these variables. The first mode primarily represents environments with high

freezing level heights, high relative humidity in the boundary layer, and low concentrations

of shallow clouds and vice-versa. The warmer, more humid environments in this mode tend

towards smaller values of ǫDSD. The second mode represents the coordinated variation in

the properties of the vertical reflectivity structure. Profiles with low reflectivity above the

melting layer relative to below, weak bright bands, and an increase in reflectivity towards the

surface within the rain layer tend to have smaller values of ǫDSD. The third mode represents a

different combination of environment and organization from the first mode; this time, stable
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lapse rates and high humidity are positively correlated with numerous low clouds.

The mean value of ǫDSD as a function of the first three PCs for cold rain is illustrated

in Figure 5. The smallest values of ǫDSD are found in tropical environments with numerous

shallow precipitating clouds and all of the profile characteristics of warm rain: weak bright

bands, high reflectivities below the melting layer than above, and an increase in reflectivity

towads the surface indicating an active coalescence process. Large values of ǫDSD are found

in dry extratropical environments with steep lapse rates. Interestingly, the trend in ǫDSD

with respect to the profile shape is different in the extratropics than in the tropics, with

an increase in ǫDSD in profiles with weaker bright bands and high reflectivities below the

melting layer than above. Steiner and Smith (1998) find that the dense particles in weak

bright bands may be composed of either small, heavily rimed ice particles or larger graupel

or hail, with the latter being preferred in stronger updrafts. In extratropical environments,

convective updrafts can be stronger than in the tropics due to larger thermal buoyancy and

stronger dynamic forcing (Xu and Randall 2001). The increase in drop size with weaker

bright bands in these colder environments is consistent with both of these tendencies. In

addition, the distribution of profiles in the PC1-PC3 plane implies that many of these colder

environments are also dry. Thus, these profiles may be more representative of graupel-

containing convection (consistent with the weak bright band) and with evaporation offsetting

any warm rain processes in the shallow sub-melting layer.

In order to determine the total variance in ǫDSD explained by the first three principle

components of the warm and cold rain database variables, three-dimensional look-up tables

were created (the two-dimensional means of this tables are shown in Figures 4 and 5) with

100 indices in each dimension. The mean value of ǫDSD for each threshold of information
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content was then taken at each index. The value predicted from this table was then compared

to the actual retrieved value. By this method, the database principle components explain

23% of the variance in ǫDSD at the A > 0.007 threshold and 20% at the A > 0.07 threshold.

5. Distribution of DSD variability by geographic region

and meteorological regime

Global maps of the mean and PC-predicted values of ǫDSD are presented in Figure 6.

Many of the observed global patterns are reproduced by the PC-predicted values, including

the maximum over the Mediterranean Sea and other mid-latitude locations, along with the

minima over the eastern Pacific and southern Indian oceans. The increase in ǫDSD from the

eastern to western Pacific is also predicted, but underestimated in magnitude. Also, high

values of ǫDSD in the Caribbean, Gulf of Mexico, and south-central Pacific are underestimated

by the PC-based prediction. Increasing the information content threshold to A > 0.07 does

not eliminate these residual biases, so they are likely not an artifact of limited information

content biasing the mean ǫDSD in some regions more than others.

In order to determine if the relationships derived in section 4 are equally valid under dif-

ferent meteorological conditions, a meteorological regime classification was performed using

a k-means clustering technique (Anderberg 1973) on selected parameters in Table 2. First,

the background environment was classified into three regimes (tropical, subtropical, and

extratropical) by TPW and 850mb temperature. Within the tropical regime, precipitation

was classified as belonging to shallow, mid-level, or deep regimes as defined by Elsaesser
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et al. (2010). These clusters represent different modes of organization in convection fields

(both in a horizontal spatial extent and vertical extent). The subtropical and extratropical

regimes were both broken into two categories by precipitation area, cloud top temperature,

and convective fraction. In both environments, a cluster representing organized frontal pre-

cipitation, with large precipitation areas, cold cloud tops, and low convective fractions and a

cluster representing isolated, shallow convective precipitation were identified. In subtropical

environments the former category can be thought of as precipitation associated with “atmo-

spheric rivers” (Zhu and Newell 1998), long but narrow plumes of moisture extending from

the tropics to mid-latitudes. In extratropical environments this same category may be found

as part of the warm and cold conveyors of extratropical cyclones (Browning 1986). The shal-

low isolated cluster in the subtropics of exists often under a subsidence inversion, whereas

its extratropical counterpart is often triggered when cold continental air is brought over

the warm ocean surface after a frontal passage and the resulting instability forces shallow

convection in an otherwise subsident environment.

The mean retrieved and predicted value of ǫDSD in each meteorological regime and infor-

mation content threshold is given in Table 5. The mean of most clusters closely matches the

predicted value, although the tropical mid-level and subtropical isolated shower means are

overestimated and both extratropical classifications are underestimated. An examination

of maps of the residual error for each cluster (not shown) produces no regional patterns

for the extratropical clusters, but the subtropical and tropical clusters do produce patterns

that constribute to the overall biases. In the subtropical clusters, ǫDSD is under-predicted

near land areas and over-predicted in the mid-latitude oceans far from land, whereas in the

tropical clusters, ǫDSD is under-predicted near land areas and over-predicted over the eastern
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Pacific and southern Indian oceans. These regional patterns suggest that the relationships

identified in section 4, while generally valid, do not fully account for all of the processes that

affect ǫDSD. Differences in ǫDSD from one cluster to another and the difference between the

cluster mean and PC predicted may not be the result of differences in observable background

parameters, but instead may be related to cloud system scale parameters that influence orga-

nization of convection that are largely unobservable from satellite or realized in re-analysis

datasets. One possibility is that convective updraft strength, which modulates the warm

rain formation process by controlling the rate at which cloud droplets grow (Rosenfeld and

Ulbrich 2003), is higher near land due to the origination of systems over land with higher

convective available potential energy (CAPE) (Zipser 1994), while the opposite is true over

the eastern Pacific (Shige et al. 2008). Therefore, caution should be exercised when applying

the relationships derived here to systems over land. In addition, the eastern Pacific contains

more “pure” warm rain profiles that are not part of a larger system that extends above the

freezing level (Liu and Zipser 2009), and these are not fully accounted for by the variables

that define the first three warm PCs in section 4.

6. Summary and Conclusions

In this study we have used the combined radar-radiometer retrieval technique of MK11

to analyze two years of rain DSD retrievals from the TRMM satellite, focusing on the factors

that influence the reflectivity-normalized median drop size (< ǫDSD >) and how these are

related to properties of clouds and their environment. Previous studies, summarized by

(Rosenfeld and Ulbrich 2003), have pointed to a variety of sources of variability in the rain
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DSD and its expression in the coefficients of Z − R power laws. We have found that:

i. Smaller median drop sizes (both in absolute and reflectivity-normalized values) are

found in warm rain than cold rain, as defined by the presence of a radar echo within

500m of the freezing level;

ii. Within the warm rain subset, the smallest drops are found in organized but shallow

convective systems in humid tropical environments;

iii. Within the warm rain subset, drop size increases with echo top height which is consis-

tent with the longer path through which drop growth via collision takes place;

iv. Within the cold rain subset, smaller drops are found in more tropical environments

where there is also evidence of warm rain processes in the vertical profile of reflectivity

(weak bright band and an increase of reflectivity below the melting level);

v. In cold environments, bright band strength does not correlate with < ǫDSD > as

strongly as in tropical environments. This is consistent with stronger convective up-

drafts in the extratropics, which form larger graupel and hail particles than weaker

updrafts in tropical convection which form heavily rimed small ice particles.

Together, these environment and cloud properties explain about 23% of the variability in

retrieved values of < ǫDSD >, which is sufficient to reproduce much of the observed regional

variation in reflectivity-normalized drop size. The remaining variability might be related

to factors unobservable by the TRMM instruments and inadequately represented in the

MERRA reanalysis, such as updraft strength. Inadequate resolution of the low-frequency

microwave footprints used to adjust the DSD or temporal variability within a given set of
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environmental, microphysical, and dynamical factors could also be a sources of the large

amount of variability unexplained in this analysis.

Despite the large amount of unexplained variability at the individual pixel level, the

regional patterns of DSD are captured quite well by the priciple components identified in

section 4. These patterns, which have been produced for both stratiform and convective

rain, are generally similar to those presented by Kozu et al. (2009) for convective rain,

although absolute values of the Z-R coefficients differ due to the inclusion of stratiform rain

in this study. These regional patterns of DSD can be largely explained by patterns in the

dynamical, environmental, and microphysical factors that shape DSD. Much of the bias

between PR and TMI rain estimates appears to be related to these DSD assumptions via

two pathways: 1) Insufficient adjustments to the default DSD by the PR 2A25 algorithm,

especially in light and moderate rain where surface reference estimates of the path-integrated

attenuation do not exceed the noise level, and 2) Incorrect assumption of DSD and/or vertical

distribution of rain water in the database of profiles used by the Goddard Profiling Algorithm

(GPROF) algorithm for TMI, which affects the liquid water content-rain rate conversion.

The former issue could be addressed by including a “warm” vs. “cold” rain identification

process and default DSDs in addition to the stratiform vs. convective identification in future

versions of the PR 2A25 algorithm. Biases introuduced by the latter issue should be reduced

substantially when a database of radiometer-adjusted PR precipitation profiles, with Tbs

that are consistent with Z and R, are used in place of cloud resolving model-derived profiles

in upcoming versions of passive radiometer rain retrieval algorithms (Kummerow et al. 2011);

but this remains to be seen.
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Much work remains to be done to verify these relationships, and in particular to identify

biases in the combined radar-radiometer algorithm that may create spurious relationships

between the DSD adjustment and unrelated factors. Nevertheless, the relationships we have

found are consistent with what is known about the processes that shape the rain DSD and

may be used to create time-varying Z-R relationships for ground-based radars or to enhance

over-land TRMM PR retrievals, where radiometer-enhanced retrievals are complicated by

the unknown factors related to surface emissivity and radar-only retrievals must rely on the

surface reference estimate of attenuation, which is noisier over land than water. However, it

should be emphasized that caution must be used in extending these relationships over land,

as some regimes (e.g., orographic precipitation) may be unsampled over the ocean. The

upcoming Global Precipitation Measurement (GPM) mission, scheduled to launch in 2013,

will carry a dual-frequency radar with the ability to retrieve two parameters of the DSD at

each range gate (Kuo et al. 2004), reducing much of the ambiguity in DSD retrievals over

land and ocean. At that time it will be worthwhile to revisit the relationships noted in this

work.
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Table 1. Coefficients of the relationship Z = ARB and R = αZβ for selected values of ǫDSD

in the relationship D0 = ǫDSDaZb, where a = 0.5794, b = 0.1094, and Z is in units of mm6

m−3, R is in mm hr−1, and D0 is in mm, and a gamma DSD with shape parameter µ = 3
is assumed. The values for a and b were selected to represent an 85% stratiform-weighted
average of the Z − R coefficients given by Iguchi et al. (2000).

ǫDSD A B α β
0.50 40 1.29 0.0576 0.775
0.75 114 1.32 0.0274 0.760
1.00 258 1.34 0.0156 0.748
1.25 510 1.35 0.0097 0.743
1.50 902 1.34 0.0063 0.745
1.75 1440 1.32 0.0041 0.757
2.00 2085 1.29 0.0027 0.775
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Table 2. List of profile database variables with their source and distribution shape. The
correlation coefficient of ln(ǫDSD) with each variable for profiles exceeding the A threshold
of 0.007 (0.07) is given by r1 (r2).

Variable Source Distribution r1 r2

Melt density PR Normal -.21 -.19
Total precipitable water (TPW) TMI Normal -.09 -.13
Ice water path (IWP) TMI+PR Lognormal .19 .19
Sea surface temperature (SST) TMI Normal -.02 -.07
Near-surface dBZ PR Normal -.07 .02
Maximum dBZ in rain layer PR Normal -.02 .09
Maximum dBZ in melting layer PR Normal .15 .24
Maximum dBZ in ice layer PR Normal .13 .10
Reflectivity slope in rain layer PR Normal -.26 -.25
Cloud Top Temperature VIRS Multimodal -.10 -.08
Mean cloud effective radius VIRS Normal .00 .00
Cloud effective radius slope VIRS Normal .00 .00
Warm rain depth VIRS Normal -.02 -.04
Lightning flash rate LIS Lognormal .11 .14
Aerosol Optical Depth SPRINTARS Lognormal -.02 -.01
Echo Top Height PR Multimodal .11 .07
Precipitation feature size PR Lognormal -.04 -.01
Profiles with echo top < 5km within 1◦ PR Lognormal -.20 -.17
Convective “” PR Lognormal -.10 -.10
Profiles with 5km < echo top < 9km within 1◦ PR Lognormal .02 .05
Profiles with echo top > 9km within 1◦ PR Lognormal .08 .05
Convective “” PR Lognormal .01 -.01
1◦ average convective rain rate PR Lognormal -.06 -.05
1◦ average convective rain fraction PR Normal -.08 -.12
25-km reflectivity standard deviation PR Normal -.14 -.20
Surface-850mb lapse rate MERRA Normal .14 .10
850mb temperature MERRA Normal -.13 -.14
700mb temperature MERRA Normal -.12 -.15
500mb temperature MERRA Normal -.16 -.17
850mb height MERRA Normal -.07 -.06
700mb height MERRA Normal -.12 -.12
500mb height MERRA Normal -.14 -.16
Freezing level MERRA Normal -.16 -.17
Mean relative humidity below freezing level MERRA Normal -.13 -.09
850-500mb shear MERRA Normal .06 .07
850-300mb shear MERRA Normal .07 .08
700mb vertical velocity MERRA Normal .04 .00
Boundary layer height MERRA Normal .09 .07
Boundary layer relative humidity MERRA Normal -.18 -.14
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Table 3. Significant EOFs of warm rain variables in order of variance explained (VE).
The correlation of each PC with the number of echo tops under 5km within 1◦ (N5), echo
top height (ETH), boundary layer relative humidity (BLRH), lapse rate (LR), freezing level
height (FLH), Cloud top temperature (CT), and ǫDSD (r1 and r2 have the same meaning as
in Table 2) is given in the table. Correlations above 0.5 are bolded to highlight the variables
most strongly represented by each mode.

Mode VE (%) FLH LR BLRH N5 CT ETH r1 r2

1 28.2 .55 -.70 .79 .13 -.32 .35 -.26 -.22
2 23.5 .28 -.35 .17 -.51 .78 -.55 -.01 .01
3 19.2 -.39 -.08 .34 .71 .06 -.60 -.22 -.24
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Table 4. Significant EOFs of cold rain variables in order of variance explained (VE). In
addition to the variables for warm rain in Table 3 this table includes melting particle density
(RHOM), maximum reflectivity above the melting layer minus maximum reflectivity below
melting layer (ZDIFF), and the slope of reflectivity below the melting layer (ZS). Correlations
above 0.5 are bolded to highlight the variables most strongly represented by each mode.

Mode VE (%) FLH LR BLRH N5 ZDIFF RHOM ZS r1 r2

1 27.1 .83 -.44 .52 -.61 -.44 .23 .15 -.18 -.17
2 24.9 -.19 .38 -.19 .29 -.73 .77 .54 -.21 -.20
3 17.4 -.30 -.57 .60 .64 .01 -.05 .24 -.26 -.21
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Table 5. Mean and predicted (P ) values of < ǫDSD > by meteorological regime and infor-
mation content threshold.

Environment Cluster
A > 0.007 A > 0.07

< ǫDSD > < ǫDSDP > < ǫDSD > < ǫDSDP >

Tropical
Shallow 0.92 0.93 0.94 0.93
Mid-level 0.91 0.94 0.92 0.94
Deep 0.95 0.96 0.95 0.96

Subtropical
Organized Frontal 0.91 0.91 0.94 0.94
Isolated Shallow 0.88 0.91 0.91 0.92

Extratropical
Organized Frontal 0.96 0.95 0.98 0.96
Isolated Shallow 1.04 1.02 1.04 1.03

39



List of Figures

1 a) Root-mean-square difference between retrieved D0 under stratiform as-

sumptions and retrieved D0 under convective assumptions (black), retrieved

and default D0 under stratiform assumptions, and retrieved and default D0

under convective assumptions (red) as a function of A diagonal value. b) same

as a), except as a function of Sa diagonal value divided by Sx diagonal value.

In both panels, the fraction of profiles exceeding the information content value

on the x-axis is indicated by the dashed line and tick marks on the right y-axis. 41

2 Top panel: number of profiles in 1×1◦ grid boxes. Lower panels: fraction

of profiles in each grid box that exceed the threshold of information content

indicated. 42

3 a) Histogram of profiles by precipitation area for different information content

thresholds. b) same as a), except as a function of surface reference path-

integrated attenuation. 43

4 Mean value of ǫDSD in the PC1-PC2, PC2-PC3, and PC1-PC3 planes for warm

rain. 44

5 Mean value of ǫDSD in the PC1-PC2, PC2-PC3, and PC1-PC3 planes for cold

rain. 45

6 Mean and predicted values of ǫDSD at the A > 0.007 threshold gridded at 1◦

resolution. 46

40



Fig. 1. a) Root-mean-square difference between retrieved D0 under stratiform assumptions
and retrieved D0 under convective assumptions (black), retrieved and default D0 under
stratiform assumptions, and retrieved and default D0 under convective assumptions (red)
as a function of A diagonal value. b) same as a), except as a function of Sa diagonal
value divided by Sx diagonal value. In both panels, the fraction of profiles exceeding the
information content value on the x-axis is indicated by the dashed line and tick marks on
the right y-axis.
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 b) A > 0.007 Fraction

0 60 120 180 -120 -60 0

-36

-24

-12

0

12

24

36

  
 

 

  
 

 

  
 

 

0.0

0.2

0.4

0.6

0.8

1.0
 

 c) A > 0.07 Fraction
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Fig. 2. Top panel: number of profiles in 1×1◦ grid boxes. Lower panels: fraction of profiles
in each grid box that exceed the threshold of information content indicated.
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Fig. 3. a) Histogram of profiles by precipitation area for different information content
thresholds. b) same as a), except as a function of surface reference path-integrated attenu-
ation.
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Fig. 4. Mean value of ǫDSD in the PC1-PC2, PC2-PC3, and PC1-PC3 planes for warm rain.
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Fig. 5. Mean value of ǫDSD in the PC1-PC2, PC2-PC3, and PC1-PC3 planes for cold rain.
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 Mean retrieved epsilonDSD
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 PC-predicted epsilonDSD
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Fig. 6. Mean and predicted values of ǫDSD at the A > 0.007 threshold gridded at 1◦

resolution.
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