Selected lessons learned over the ISS design, development, assembly, and operations: Applicability to international cooperation for standardization

David Hirsch
NASA White Sands Test Facility

ISO SC14 Space Systems and Operations Plenary
Tokyo, Japan
May 26-30, 2014

The ISS Program’s Multilateral Coordination Board captured the lessons learned, and a summary of this effort as conducted by the ISS International Partners (USA, Canadian Space Agency, ESA, JAXA, Russian Space Agency) has been published in July 2009 (“International Space Station Lessons Learned as Applied to Exploration”, Kennedy Space Center, July 22, 2009)
Agenda

- Review lessons learned categories
- Review in more detail a few lessons learned
- Discussions and Conclusions
Lessons Learned Categories

- Mission objective – 6
- Architecture – 22
- International Partner Structure and Coordination – 9
- External communication – 6
- Operations – 3
- Utilization – 6
- Commercial involvement - 2
Mission objectives

- Accommodate Partner’s own objectives
- Establish realistic expectations
- Use clear mission objectives to drive support
- Ensure all mission objectives are well-integrated

Accommodate Partner’s Own objectives (1st lesson). The most significant outcome of the station mission has been the sustainment and growth of each Partner/nation’s aspirations for human space flight. This occurred because from the onset all partners shared a common objective to build, operate and utilize a crewed laboratory in low orbit as an international partnership. The partnership was also flexible enough to foster collaboration with other non-Partner nations. Application for future: Develop a long-term shared vision for space exploration that transcends domestic policies and fosters a shared destiny among the Partners.

Establish realistic expectations (2nd lesson learned): The purpose of the mission should be defined as thoroughly and clearly as possible with planned achievements that are commensurate with planned spending. It is particularly important not to overestimate the mission objectives and scientific outputs. For future: goals must be realistic and well articulated to include the global problems that the mission will help resolve.

Use clear mission objectives to drive support: Properly formulated objectives will ensure stable political and social support. Stages of mission accomplishment must be timely with achievements reported promptly and comprehensively.

Ensure all mission objectives are well integrated: Standardization of technical interfaces and interoperability aspects are critical to success. For future: functional objectives for the elements developed must be carefully integrated with close attention to technical interfaces and aspects of interoperability and crew safety.
Apply common standards and tools for developing interfaces: The actual design of the station interfaces evolved around industry standards where available; but also unique interfaces were created where needed. Recommendation for future: apply commonly used standards and tools to implement and manage rigorous interface control. Only when absolutely necessary should Partners develop unique capabilities to meet unique challenges.

Apply existing interface designs where available: standardization and unification of appropriate interfaces in basic spheres of interaction (system integration, power, transportation, management, etc.) are critical.

Implement procedures to establish common interfaces with modular design: For future: a process to thoroughly address commonality issues and opportunities should be formally established at the highest level early in the exploration program and a modular design approach should be encouraged.

Establish core system interface documents early: common interface documents should be generated at the onset of the program and should accommodate design options that use state-of-the-art technology, but also provides hooks for enhancement as technology advances.

Employ common processes, interfaces, and standards: The standardization of technical interfaces and interoperability are critical to success. In the ISS program, commonality of various interfaces made it possible to simplify the interface definition significantly. Common partnership interfaces and standards create a common operational environment that leads to on-orbit flexibility and adaptability as
situations evolve. For future: agreements to utilize common processes, interfaces, and standards are necessary to build-in flexibility and adaptability for future missions. Commonality of interfaces should be achieved as much as possible in the exploration program.

Improve technology transfer procedures for common interfaces: there are numerous obstacles in transferring technical information regarding the common interfaces. For future: improve the procedures for exchanging technical information and engineering data between the Partners regarding the common hardware interfaces.
Use available space assets as technology test beds: The ISS Program used the
Shuttle and Mir Station technology test beds and now ISS is serving as a test platform
for development and qualification of space technologies. For the future: Exploration
programs should use the ISS to develop, demonstrate, and qualify next generation
space technologies and operations relevant to the future of space exploration. The
ISS partnership can accommodate non-Partner use of the ISS for development and
qualification of space technologies.
Recognize value of prior exploration programs: The ISS leveraged considerably from
the value of previous human and robotic space exploration efforts. In addition, the
ISS allows us to perform many complex hypothesis-driven studies requiring human
intervention or monitoring.
1. Common interfaces and standards create a common operational environment that leads to on-orbit flexibility and adaptability. Commonality of interfaces makes possible systems simplification.

2. Common interface and inter-operability approaches should be created early in the program and should employ state-of-the-art design options, but also allow for future enhancements.

3. Future exploration missions will undoubtedly benefit (flexible systems; adaptability; shortening schedules).

Finally, as a note: more than 10% of lessons learned from ISS design and operations relate to the critical importance of standards.