Estimating the Risk of Renal Stone Events during Long-Duration Spaceflight

David Reyes, MD, MPH, Eric Kerstman, MD, MPH
Gary Gray, MD, MPH, and James Locke, MD, MPH

Aerospace Medical Association Meeting 2014
Disclosures

No financial relationships

Off-label use and/or investigational use of drugs or other treatments will not be discussed
Potential Renal Stone Outcomes

• Infection
• Obstruction
• Incapacitation
• Mission failure
• Evacuation
• Long-term disability
• Death
Space Flight Risk Factors

- Fluid shifts in microgravity
- Bone demineralization
- Decreased thirst and fluid intake
- Concentrated urine
- Calcium excretion

Current ISS Medical Standards

Renal stone is a disqualifying medical condition for long duration space flight

- Presence or history of urinary calculus
- Requires a medical waiver
History of Renal Stones in Space Flight

• U.S. Space Program
 • 14 renal stone events among 12 astronauts as of 2008
 • 4 events prior to space flight (no association)
 • 10 events within 2 years postflight

• Russian Space Program
 • 3 renal stone events postflight
 • 1 renal stone event inflight
Inflight Renal Stone Event

- Acute abdominal pain in a cosmonaut on 11/11/82 on Salyut 7 (6 months into a 7 month mission)
- Initially diagnosed as appendicitis
- Caused severe pain and significantly impacted the inflight timeline
- Resolved on-orbit with apparent passing of the stone spontaneously over a period of days
- No medical evacuation
- Mission was completed
Renal Stone Epidemiology

- Lifetime prevalence 10% male, 5% female
- 3.7 % to 4.6% of commercial aviation pilots between 2000 – 2007*
- Similar to astronaut prevalence

Asymptomatic Stones

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Stone Free</th>
<th>Progression</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>28%</td>
<td>40.4%</td>
<td>5.3%</td>
</tr>
<tr>
<td>5 - 10</td>
<td>4.8%</td>
<td>52.4%</td>
<td>9.5%</td>
</tr>
<tr>
<td>> 10</td>
<td>0%</td>
<td>71.4%</td>
<td>14.3%</td>
</tr>
</tbody>
</table>

Size vs. Spontaneous Passage

Medical Risk Matrix – Long-Duration Missions (ISS)
MDC-1

<table>
<thead>
<tr>
<th>Class 1 Medical Event</th>
<th>Class 2 Medical Event</th>
<th>Class 3 Medical Event</th>
<th>Class 4 Medical Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical problem with potential long-term health risk to individual but minimal symptoms or signs during mission</td>
<td>Significant medical event, illness, or injury</td>
<td>Major medical illness or injury requiring full medical resource intervention</td>
<td>Acute medical crisis beyond ISS medical resource capabilities</td>
</tr>
<tr>
<td>May cause a moderate reduction in performance</td>
<td>Significant reduction in performance</td>
<td>Major degradation in performance</td>
<td>Loss of critical function</td>
</tr>
<tr>
<td>Can handle with onboard capabilities</td>
<td>Requires extensive medical resource utilization</td>
<td>Full utilization of all available medical resources</td>
<td>Beyond capability of ISS medical resources</td>
</tr>
<tr>
<td>Can handle within designated timeline</td>
<td>May cause failure to meet mission objectives</td>
<td>Planned decrewing (medical evacuation)</td>
<td>Emergency evacuation</td>
</tr>
</tbody>
</table>

Renal Stone Risk

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Low risk – acceptable for MDC 1 disposition (long duration)</th>
<th>Moderate risk – Further consideration required for an MDC 1 disposition</th>
<th>High risk – unsuitable for MDC 1 disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely ≥2%<5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible ≥1%<2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unlikely <1%≥0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly unlikely <0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSMB Risk-based Decision Analysis

- **Green**: Low risk – acceptable for MDC 1 disposition (long duration)
- **Yellow**: Moderate risk – Further consideration required for an MDC 1 disposition
- **Red**: High risk – unsuitable for MDC 1 disposition
Integrated Medical Model (IMM)

- IMM Background
 - Software model used to simulate human space flight missions
 - Simulates medical events during space flight missions
 - Estimates the impact of these medical events on crew health and mission success
 - Outputs include estimates of crew health, probability of medical evacuation, and probability of medical loss of crew life
 - Optimization routines can be used to design medical systems which maximize crew health and probability of mission success
IMM Conceptual Model

Inputs
- Medical Conditions & Incidence Data
- Crew Profile
- Mission Profile & Constraints
- Potential Crew Impairments
- Potential Mission End States
- In-flight Medical Resources

Outputs
- Medical Condition Occurrences
- Crew Impairments
- Clinical End States
- Mission End States
- Resource Utilization
- Optimized Medical System
Medical Risk Matrix – Long-Duration Missions (ISS) MDC-1

Astronaut with no history of stones

<table>
<thead>
<tr>
<th>Class 1 Medical Event</th>
<th>Class 2 Medical Event</th>
<th>Class 3 Medical Event</th>
<th>Class 4 Medical Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical problem with potential long-term health risk to individual but minimal symptoms or signs during mission</td>
<td>Significant medical event, illness, or injury</td>
<td>Major medical illness or injury requiring full medical resource intervention</td>
<td>Acute medical crisis beyond ISS medical resource capabilities</td>
</tr>
<tr>
<td>May cause a moderate reduction in performance</td>
<td>Significant reduction in performance</td>
<td>Major degradation in performance</td>
<td>Loss of critical function</td>
</tr>
<tr>
<td>Can handle with onboard capabilities</td>
<td>Requires extensive medical resource utilization</td>
<td>Full utilization of all available medical resources</td>
<td>Beyond capability of ISS medical resources</td>
</tr>
<tr>
<td>Can handle within designated timeline</td>
<td>May cause failure to meet mission objectives</td>
<td>Planned decrement (medical evacuation)</td>
<td>Emergency evacuation</td>
</tr>
</tbody>
</table>

Likelihood

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely ≥2%<5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible ≥1%<2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unlikely <1%≥0.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly unlikely <0.5%</td>
<td></td>
<td></td>
<td>Renal Stone (<5mm)</td>
<td>Renal Stone (>5mm)</td>
</tr>
</tbody>
</table>

MSMB Risk-based Decision Analysis

- **Low risk** – acceptable for MDC 1 disposition (long duration)
- **Moderate risk** – Further consideration required for an MDC 1 disposition
- **High risk** – unsuitable for MDC 1 disposition
IMM Analysis

Six month ISS mission with 6 crew
- with all crew meeting current med standards

• Evacuation
 1. Visual Impairment
 2. Dental Abscess
 3. Kidney Stone
 4. Sepsis
 5. Smoke Inhalation
Three Scenarios

1. No history of stone
2. History of stone
3. Current stone
Hypothetical Case #1

• 38 year old female Astronaut
• No stone history
• No findings on imaging
• Will launch in 2 months to the ISS
• For a 6 month mission

Risk of developing first stone?
Hypothetical Case #2

• 45 year old male Cosmonaut
• History of symptomatic 5 mm stone
• Treated with lithotripsy, resolved
• Will launch in 2 months to the ISS
• For a 6 month mission

Risk of developing a new stone?
Hypothetical Case #3

- 42 year old male Astronaut
- 2 mm calcification in renal parenchyma
- Asymptomatic
- Will launch in 2 months to the ISS for a 6 month mission

Risk of becoming symptomatic?
Risk Quantification

• IMM can provide renal stone risk estimates that can be used to assist
 • Crew medical certification decisions
 • Medical resource allocation
 • Crew medical training
Renal Stone Issues

Renal stones are a low likelihood but high consequence event

• What are acceptable waiver criteria?
• Can renal stone events be prevented?
• How do we monitor for stone formation pre-flight and in-flight?
• How do we manage in-flight stones?
Future Work

• Improved risk assessment
• Prevention
• Close monitoring and early detection
• Improved treatments
• Creation of a NASA Renal Stone Clinical Practice Guideline