The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

Christopher R. Reid,1,5 Shane McFarland,2,6 Jason R. Norcross,3,7 Sudhakar Rajulu,4,5
1Lockheed Martin, 2MEI Technologies Inc., 3Wyle, 4National Aeronautics and Space Administration (NASA) – Johnson Space Center
5Anthropometry and Biomechanics Facility, 6Space Suit and Crew Survival Systems Branch, 7EVA Physiology Laboratory

Question: What EVA work-related variables are affecting the hands to cause injury and can they be quantified?

Objectives: A feasibility pilot study to test for quantification methods for use in a pressurized EVA glove environment

Prevalence
• 124 EVA flight related incidents
• 87 EVA training related incidents
• Over 57% of total astronaut upper extremity injuries (n=147) from EVA pool training (1998-2010) occurred to the hand metacarpophalangeal (MCP) joint (n=39), fingernail (n=35), or fingertip (n=10)
• 20% of crew have been injured during training
• 45% of crew have been injured during flight

Potential Causes
• Poor glove-hand fit
• Glove related pressure points
• EVA related training and activities
• Pressurized EVA gloves

Injury Data

Method
• 16 sensors were used to assess changes in forces (9 FSRs, 3 strain gauges), temperature (3), and finger pad blood perfusion (1) levels
• 2 male pilot test subjects performed static hand postures and dynamic strength tasks to assess sensor potentials

Results
• Fingernail strain gauge data revealed higher transverse tension/compression loads than longitudinal/axial ones
 • EVA glove usage influenced how fingernails deformed during tasks
• Finger pad perfusion levels were found to be influenced by both hand posture/task and the EVA glove
 • Blood perfusion levels in the capillaries would drop as finger pads deformed and would rush back in as they returned to a neutral state
• Fingertip temperatures in EVA glove were found to be cooler than hand dorsum and upper arm temperatures (7.5°F and 3.8°F)
 • All body location temperatures increased during testing with the hand dorsum locations being the warmest (avg. 95.6°F)

Injury by Body Part

Static Tasks

Dynamic Tasks

Glove Sensor Setup

Future Work
• Consider sensors to assess moisture and pressure levels
• Consider wearable garment/glove integration
• Continue refining sensor types and testing methods
• Continue quantifying pressurized gloved environment to understand the cause – effect relationship of injury

Finger Pad Temperature

Glove Sensor Data

Strain Gauge Data

https://ntrs.nasa.gov/search.jsp?R=20140005967 2019-06-15T07:03:37+00:00Z